1. Trang chủ
  2. » Giáo án - Bài giảng

Characteristics of starch isolated from maize as a function of grain storage temperature

7 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Characteristics of Starch Isolated From Maize As A Function Of Grain Storage Temperature
Tác giả Ricardo Tadeu Paraginski, Nathan Levien Vanier, Khalid Moomand, Maurício de Oliveira, Elessandra da Rosa Zavareze, Ricardo Marques e Silva, Cristiano Dietrich Ferreira, Moacir Cardoso Elias
Trường học Federal University of Pelotas
Chuyên ngành Food Science and Technology
Thể loại Research Article
Năm xuất bản 2014
Thành phố Pelotas
Định dạng
Số trang 7
Dung lượng 1,7 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Considering the importance of maize starch and the lack of knowledge about the effects of storage temperature on the isolated starch properties; maize grains were stored during 12 months at different temperatures (5, 15, 25 and 35 ◦C). The extraction yield and the physicochemical, thermal, pasting, crystallinity and morphological properties of starches were determined.

Trang 1

j ourna l h o m e pa g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Maurício de Oliveiraa, Elessandra da Rosa Zavarezea, Ricardo Marques e Silvad,

Cristiano Dietrich Ferreiraa, Moacir Cardoso Eliasa

a Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil

b Processed Foods Research Unit, WRRC, ARS, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, United States

c Department of Food Science, University of Guelph, Ontario N1G 2W1, Canada

d Department of Electron Microscopy, Federal University of Pelotas, 96015-560 Pelotas, RS, Brazil

a r t i c l e i n f o

Article history:

Received 27 September 2013

Received in revised form 5 November 2013

Accepted 7 November 2013

Available online 20 November 2013

Keywords:

Maize

Storage temperature

Starch

Pasting properties

Crystallinity

a b s t r a c t

Consideringtheimportanceofmaizestarchandthelackofknowledgeabouttheeffectsofstorage temperatureontheisolatedstarchproperties;maizegrainswerestoredduring12monthsat differ-enttemperatures(5,15,25and35◦C).Theextractionyieldandthephysicochemical,thermal,pasting, crystallinityandmorphologicalpropertiesofstarchesweredetermined.Thestarchisolatedfromgrains storedat35◦Cwasyellowishandshoweda22.1%decreaseinstarchextractionyieldcomparedtofreshly harvestedmaizegrains.At35◦C,areductionincrystallinitywasobservedbytheendof12months, despiteaparallelrearrangementofthestarchchainswhichresultedinanincreaseinX-raypeak inten-sities,gelatinisationtemperaturesandenthalpy.Thestarchisolatedfrommaizegrainsstoredat35◦C appearstohavesmallergranules,whichpresentssomepointsintheirsurface,potentiallyattributedto theproteinmatrixcompressingthegranuleswithinmaizegrains

© 2013 Elsevier Ltd All rights reserved

1 Introduction

Starchiswidelyusedinthefoodindustries,especiallyinthe

preparationof soups,sauces, baked goods,dairy,confectionery,

snacks, pasta, coatings and products made with meat (Davies,

1995).Theabilityofstarchtoformaviscouspastewhenheatedin

waterfollowedbythecoolingpropertymakesstarchsuitablefor

varioususesinthefoodandnon-foodindustries(Nguyen,Jensen,

&Kristensen,1998).Themainbotanicalsourceusedforextraction

ofstarch ismaize, accountingfor about80%of theworld

mar-ket(Jobling,2004).Amongallkindsofstarches,maize starchis

animportantingredientintheproductionoffoodstuffs,andhas

beenwidelyusedasathickener,stabiliser,colloidalgellingagent,

waterretentionandasanadhesive(Singh,Singh,Kaur,Sodhi,&

Gill,2003).Starchisthemainconstituentofmaizekernels,about

72–73%ofthetotalweight(Sandhu,Singh,&Lim,2007)

Afterharvested,themaizegrainsaresubjectedtovarious

post-harveststeps,suchascleaning,dryingandstorage.Severalstudies

haveelucidatedtheeffectsofdryingtemperatureontheproperties

∗ Corresponding author Tel.: +55 53 32757258; fax: +55 53 32757258.

E-mail addresses: paraginskiricardo@yahoo.com.br , ricardo@labgraos.com.br

(R.T Paraginski).

ofisolatedstarches(Altay&Gunasekaran,2006;Eckhoff&Watson, 2009; Haros,Tolaba, &Suarez, 2003;Lasseran, 1973; Malumba

etal.,2010; Malumba,Massaux,Deroanne,Masimango,&Béra, 2009;Setiawan,Widjaja,Rakphongphairoj,&Jane,2010) Accord-ingtoMalumbaetal.(2009),dryingtemperaturesofmaizegrains

upto100◦Ccausechangesinthepastingandtexturepropertiesof thestarchgel,andreducetheextractionyieldaswellaspurityof starch

Thestorageresultsinreducedsolubilityanddigestibilityofgrain proteins(Rehman,Habib,&Zafar,2002),increasedfreefattyacids (Park,Kim,Park,&Kim,2012),andthesemayformcomplexeswith amyloseoramylopectinshortchains,alteringthenutritional prop-ertiesandthephysicalcharacteristicsofthefinalproducts(Hasjim

etal.,2010;Salman&Les,2007).Longperiodsofstoragereducethe yieldofcassavastarchextractionduringwet-milling,asaresultof starchdegradationandtheinteractionsbetweenstarchandother constituents(Abera&Sudip,2004).Setiawanetal.(2010)stored maizegrainsat27◦Candaround85–90%ofrelativehumidityfor

6months,reportingchangesinthepasting,thermal, morphologi-calandcrystallinitypropertiesofstarch;withoutconsideringthe effectsofstoragetemperatureonthepropertiesofisolatedstarch

Yousifetal.(2003)reportedanincreaseingelatinisation tempera-tureofadzukibean(Vignaangularis)starchwithincreasingstorage temperature.Rupolloetal.(2011)evaluatedtheeffectsofstorage

0144-8617/$ – see front matter © 2013 Elsevier Ltd All rights reserved.

Trang 2

phys-icochemical,pasting,crystallinityandmorphologicalpropertiesof

isolatedstarch,observingchangesinthethermalpropertiesand

crystallinityofstarchisolatedfromgrainsstoredat25◦Cduring

360days

Consideringtheimportanceofmaizestarchintheworldmarket

andthelackofknowledgeabouttheeffectsoftemperatureduring

maizegrainsstorageontheisolatedstarchproperties,theaimof

thisstudywastoevaluatethephysicochemical,pasting,thermal,

morphologicalandcrystallinitypropertiesofstarchesisolatedfrom

maizegrainsstoredfor12monthsatdifferenttemperatures

2 Materials and methods

2.1 Storageofgrains

Maizegrainsproducedin the2012growingseasonatSanto

Augusto (27◦5318S, 53◦4720W, 489m) in the State of Rio

Grande do Sul, Brazil, were used.The grains were placed into

raffia bagsafter harvested and immediately transported tothe

Postharvest,IndustrialisationandQualityofGrainsLaboratoryof

DCTA-FAEM-UFPel,wheretheexperimentswerecarriedout.The

grainswereharvestedmechanically,subjectedtoartificialdrying

withairtemperatureof35◦Cuntil14%ofmoisturewasachieved,

andsubsequentlypurgedusingaluminiumphosphidetoprevent

theinterferenceof insects intheexperiment Themaize grains

werestoredinpolyethylenebagsof0.2mmthickplasticfilmwith

acapacityof0.9kgattemperaturesof5,15,25and35◦Cfor12

months,intriplicate.Thegrainsweremaintainedcoveredfromthe

lightbyanaluminiumfoil

2.2 Starchisolation

Theisolationwasperformedaccordingtothemethoddescribed

by Sandhu, Singh, and Malhi (2005), with some modifications

Maizegrains(200g)wereaddedto500-mlof0.1%sodiumbisulfite

(NaHSO3)indistilledwater,andmaintainedfor20hat50◦C.After

thisperiod,thewaterwasdrainedandthegrainswerecrushed

ina grinder(ElectronicFilter600W,Britânia,SãoPaulo,Brazil)

untilthe smallestpossiblefraction(wet milling) wasachieved

Thecrushedsamplesweredoublefilteredthrough100and

270-meshsieves.Theprotein–starchfiltratesweredecantedfor4h.The

supernatantwasremovedandthesedimentedprotein–starchlayer

wasresuspendedindistilledwatertobecentrifugedat5000×g

for20min.Theresultingproteinrichsupernatant wasremoved

andtheremainingstarchslurrywasresuspendedonceagainin

distilledwaterbeforefurthercentrifugationtocompletelyremove

anyremainingproteincontent.Thecollectedstarchwasdriedat

40◦Cfor12hinanovenuntil11%ofmoisturewasachieved.Once

dry,thestarchwasplacedinalaboratorymill(Perten3100,Perten

Instruments,Huddinge,Sweden)with70-meshsieveforattaining

uniformparticlesizedistribution.Atotal of 100gkernelswere

usedtodeterminethepercentageextractionyieldbyweighingthe

starchobtainedafterdrying.Thestarchwasisolatedfromfreshly

harvestedmaizegrains,beforestorage,andconsideredasthe

ini-tialtreatment.Then,thestarchwasisolatedfrommaizegrainsand

storedundertime-temperatureconditionsmentionedabove

2.3 Colourparameters

Thecolouroftheisolatedstarcheswasdeterminedusinga

col-orimeter(Minolta,CR-310,Osaka,Japan).Thecolourparameters

usedwereL*(100=whiteand0=black)andb*(positive=yellow

andnegative=blue)

2.4 Proteinandfatcontents ThenitrogencontentwasdeterminedusingtheAACCmethod 46-13(AACC,1995),andtheproteincontentwasobtainedusing

aconversionfactorofnitrogentoproteinof6.25.Thefatcontent wasdeterminedinaccordancewiththeAACCmethod30-20(AACC,

1995)

2.5 Swellingpowerandsolubility Theswellingpowerandsolubilityofthestarcheswere deter-mined as described by Leach, McCowen, and Schoch (1959) Samples(1.0g)weremixedwith50mlofdistilledwaterin cen-trifugetubes.Thesuspensionswereheatedat90◦Cfor30min.The gelatinisedsampleswerethencooledtoroomtemperatureand centrifugedat1000×gfor20min.Thesupernatantsweredriedat

110◦Cuntilaconstantweightwasachievedsothatthesoluble frac-tioncouldbequantified.Solubilitywasexpressedasthepercentage

ofthedriedsolidweightbasedonthedrysampleweight.Swelling powerwasrepresentedastheratioofwetsedimentweighttoinitial drysampleweight(deductingtheamountofsolublestarch) 2.6 Pastingproperties

Thepasting propertiesof themaize starches(3.0g,14% wet basis) were determined with a Rapid Visco Analyser (RVA-4; NewportScientific,Warriewood,Australia)andprofileStandard Analysis1.Theviscositywasexpressedinrapidviscounits(RVU) Thesampleswereheldat50◦Cfor1min,heatedto95◦Cat3.5min and heldat95◦C for2.5min.Thesampleswerethen cooledto

50◦Cin4minandheldat50◦Cfor2min.Therotatingspeedwas heldat960rpmfor10sandthenmaintainedat160rpmduringthe process.Parametersincludingpastingtemperature,peakviscosity, breakdown,finalviscosityandsetbackwererecorded

2.7 Differentialscanningcalorimetry(DSC) Gelatinisation characteristics of the maize starches were determinedusingdifferentialscanningcalorimetry(TA-60WS, Shi-madzu,Kyoto,Japan).Starchsamples(approximately2.5mgona drybasis)wereweigheddirectlyinanaluminiumpan(Mettler, ME-27331),anddistilledwaterwasaddedtoobtainanaqueous suspensioncontaining75%water.Thepanwashermeticallysealed andallowedtoequilibratefor1hbeforeanalysis.Anemptypan wasusedasareference.Thesamplepanswerethenheatedfrom

40to140◦Cattherateof10◦Cmin−1.Theonsettemperatureof gelatinisation(To),peaktemperature(Tp),conclusiontemperature (Tc)andgelatinisationenthalpy(H)weredetermined.Therange

ofgelatinisationwascalculatedbysubtractingTofromTc

2.8 Crystallinity The crystallinity of starches was determined withan X-ray diffractometer(XRD-6000,Shimadzu,Brazil).Thescanningregion

ofthediffractionrangedfrom5◦ to30◦ withatargetvoltageof

30kV,currentof30mAandscanspeedof1◦min−1.Therelative crystallinity(RC)ofthestarchgranuleswascalculatedasdescribed

byRabek(1980)usingfollowingtheequation:

RC(%)=AcAc+Aa×100 whereAcisthecrystallinearea;andAaistheamorphousareaon theX-raydiffractograms

Trang 3

Table 1

Extraction yield, colour parameters and chemical composition of starch isolated from freshly harvested (initial treatment) and stored maize grains at different temperatures for 12 months.

a Results are the means of three repetitions ± standard deviation Values followed by different letter in the same column are significantly different (p ≤ 0.05).

b L* (100 = white; and 0 = black), and b* (positive = yellow; and negative = blue).

2.9 Scanningelectronmicroscopy(SEM)

Themorphologyofthestarchgranuleswasexaminedusinga

scanningelectronmicroscope(Shimadzu,SSX-550).Starch

sam-ples were initially suspended in acetone to obtain a 1% (w/v)

suspension,andthesamplesweremaintainedinanultrasoundfor

15min.Asmallquantityofeachsamplewasspreaddirectlyonto

thesurfaceofthestubanddriedinanovenat32◦Cfor1h

Sub-sequently,allofthesamplesweresputtercoatedwithgoldand

examinedanaccelerationvoltageof15kVandmagnificationsof

1500×and3000×

2.10 Statisticalanalysis

Analyticaldeterminationsforthesampleswereperformedin

triplicate,andstandarddeviationswerereported,exceptforDSC

analysisandX-raydiffractograms,whichwereperformedin

dupli-cate.AcomparisonofthemeanswasascertainedbyTukey’stestto

a5%levelofsignificanceusingananalysisofthevariance(ANOVA)

3 Results and discussion

3.1 Extractionyield,colourparametersandchemical

composition

Theextractionyield,colourparameters,proteinandfatcontents

ofmaize starchisolatedfromgrainspoststoragetreatmentare

presentedinTable1.Thelowestextractionyieldwasobservedin

thestarchisolatedfromgrainsstoredatthehighesttemperature

(35◦C).Nostatisticaldifferencesoccurredinstarchisolatedfrom

grainsstoredat5,15and25◦Ccomparedtostarchisolatedfrom

freshlyharvestedgrains(initialtreatment).Theextractionyields

ofstarcharesimilartothosereportedbyMalumbaetal.(2009),

whoobtainedextractionyieldsbetween43.3% and64.4% when

evaluatingtheextractionofmaizegrainssubjectedtodryingair

temperaturesbetween80and130◦C

The greatest starch colour changeoccurred in maize grains

storedat 35◦C, which presented a 3.97%decreased in L* value

anda41.24%increaseinb*valuecomparedtothestarchisolated

fromgrainsbeforestorage(Table1).Insummary,starchisolated

fromgrainsstoredat35◦Cisyellowish,whiletheothersareclear

TheincreaseintheL*valueandthedecreaseinb*valuecanbe

attributedtotheirhigherresidualcontentofproteins.Theprotein

contentofstarchisolatedfromfreshlyharvested(initialtreatment)

maizegrainswas0.23%andreachedupto0.74%inthegrainsstored

at35◦Cfor12months.Thisincreaseisduetotheinteractionsof

thestarchchainswithproteins,resultingfromthestrengthening

ofdisulfidebondsduringstorage(Martin&Fitzgerald,2002;Park

etal.,2012;Zhou,Robards,Helliwell,&Blanchard,2003)which

hindertheseparationofstarchandproteinduringthewet-milling

process.Nodifferenceswereobservedin theproteincontentof

starchisolatedfromgrainsstoredat5,15and25◦Ccomparedto

starchisolatedfromfreshlyharvestedmaizegrains(initial treat-ment).Theresiduallevelsofproteinsareinagreementwiththose reportedbyMalumbaetal.(2009),whoobservedvalueslowerthan 1.5%instarchesisolatedfrommaizegrainsasafunctionofdrying temperature(between80and120◦C)

Thefatcontentofstarchisolatedfrommaizegrainsstoredat

35◦Cwaslowerthantheothertreatments(Table1).Therewasno differencebetweenthefatcontentofstarchisolatedfromfreshly harvestedgrains(initialtreatment)andgrainsstoredat5,15and

25◦C.AccordingtoDebetandGidley(2006),theresidualpresence

oflipidsandproteinsinthestarchgranulemaycauserestriction

oftheswellingpowerofthestarchduringthegelling.Harosetal (2003)andAltayandGunasekaran(2006)statedthattheproteins thatremaininthemaizestarchmaypossiblyreducetheentryof waterintothegranulesduringgelatinisation,limitingthe interac-tionsbetweenthewaterandcomponents,andcausinganincrease

instarchgelatinisationtemperatures

3.2 Swellingpowerandsolubility The swelling powerand solubilityof starches isolated from maizegrainsstoredunderdifferenttemperaturesarepresentedin

Fig.1aandb,respectively.Ingeneral,therewasanincreaseinthe swellingpowerandsolubilitywithincreasingtemperaturefrom60

to90◦C,asexpected.Thestarchisolatedfrommaizegrainsstored

at5◦Cshowedthehighestswellingpowerat90◦C(p<0.05).The resultsareconsistentwiththosedescribedbySandhuandSingh (2007),whichreportedswellingpowerat90◦Cbetween13.0and 20.7gofwaterpergramofdrystarchinninemaizevarietiesin theIowaState(USA).AccordingtoLeachetal.(1959)the inter-nalbondstrengthofstarchgranulesinfluencetheswellingpower, beingahighlycomplexedstarch,itshouldberelativelyresistant

toswelling,consequently,shouldhavelowerswellingpower.The starchsolubilityat80and90◦C(Fig.1b)increasedforall treat-mentsatthe endof 12 monthsofstorage compared tofreshly harvestedgrains(initialtreatment)(p<0.05).Majorchangesin sol-ubilitywereobservedat80and90◦C,asaresultofamyloseleaching fromthestarchgranuleanddiffusionduringtheswelling.The high-estsolubilitycanbeattributedtoalessrigidstructureofthestarch granulesobtainedfromstoredgrains,allowingtheleachingof amy-loseduringheating

3.3 Pastingproperties ThepastingpropertiesofmaizestarchesverifiedintheRVAare showninTable2.Thehighestpastingtemperaturewasverifiedin starchisolatedfromgrainsstoredat35◦C.Therewasnodifference betweentheinitialtreatmentandtheotherstoragetemperatures AccordingtoSandhuand Singh(2007),thepastingtemperature

isthetemperaturethatthestarchviscositystartstoincrease.The increaseinthepastingtemperaturefrom70.50to76.30◦Cafter12 monthsofstorageat35◦Ccanbeattributedtothegreaterpresence

Trang 4

Temperature (°C)

95 90 85 80 75 70 65 60

55

-1 )

0

2

4

6

8

10

12

14

16

18

20

Initial 5°C 15°C 25°C 35°C

Temperature (°C)

95 90 85 80 75 70 65 60

55

0

2

4

6

8

10

12

14

16

18

Initial

5°C

15°C

25°C

35°C

a

b

Fig 1. Swelling power (a) and solubility (b) of maize starches isolated from freshly

harvested (initial) and stored maize grains at different temperatures for 12 months.

ofresidualproteinsinstarch,whichhinderstheswellingofthe

granulesduringthehydrationprocessandeventuallyelevatethe

temperaturetowhichstarchgelatinisationoccurs.Similarresults

werefoundbySetiawanetal.(2010)

Thepeakandfinalviscositiesincreasedinthestarchesisolated

fromgrainsstoredat5,15and25◦Ccomparedtostarchisolated

fromfreshlyharvestedmaize(initialtreatment).Ontheotherhand,

thelowestpeakandfinalviscositieswereobservedinstarch

iso-latedfromgrainsstoredat35◦C(Table2).AccordingtoSinghetal

(2003),thereductioninviscosityreflectsthelowerabilityofstarch

granulestofreelyswellbeforetheirphysicalcollapse.The

break-downwashigherinthestarchisolatedfrommaizegrainsstored

at5◦Ccomparedtostarchisolatedfromfreshlyharvestedgrains

(initialtreatment),whilethebreakdownofstarchesisolatedfrom

grainsstoredat15,25and35◦Cwaslowerthanthebreakdown

ofstarchisolatedfromfreshlyharvestedgrains(initialtreatment)

Thermal properties of maize starches.

T o ( ◦ C) T p ( ◦ C) T c ( ◦ C)

a T o = onset temperature, T p = peak temperature, T c = conclusion temperature,

T = gelatinisation temperature range, and H = gelatinisation enthalpy.

Fig 2.X-ray diffraction patterns of starches isolated from maize grains stored for

12 months at different temperatures.

(Table2).Thedecreaseinbreakdownindicatesa higherrigidity

ofstarchgranulesafterbeingstoredatthosetemperatures, mak-ingthegranuleresistanttodisruptandcollapsewhileheatingand shearing.Thehighest setbackwasalsopresented bystarch iso-latedfromgrains stored at5◦C (Table2).AccordingtoHughes

etal.(2009),thegreaterbreakdownandsetbackreflectthehigher swelling powerofthestarch granulesand rapidaggregationof leachedamylosechains,respectively.Thisstatementisin accor-dancewiththeresultsofswellingpowerpresentedinFig.1a,where thehighestswellingpowerat90◦Cwasobservedinstarchisolated frommaizegrainsstoredat5◦C

3.4 Differentialscanningcalorimetry(DSC) Thegelatinisationtemperatures,thetemperaturerangeof gela-tinisation(Tc−To)andthegelatinisationenthalpy(H)ofstarches isolatedfrom maizegrains storedat differenttemperaturesare presentedinTable3.Therewasasmallincreaseintheonset tem-peratureofgelatinisation(To),peaktemperatureofgelatinisation (Tp)andconclusiontemperatureofgelatinisation(Tc)ofstarch iso-latedfromstoredmaizegrainscomparedtostarchisolatedfrom freshlyharvestedgrains(initialtreatment)(Table3)

Pasting properties of starches isolated from freshly harvested (initial treatment) and stored maize grains at different temperatures for 12 months.

a Results are the means of three repetitions ± standard deviation Values followed by different letter in the same column are significantly different (p ≤ 0.05).

Trang 5

Fig 3. Scanning electron micrographs (SEM) of starches isolated from maize grains stored for 12 months at different temperatures: initial (a and b), 5 ◦ C (c and d), 15 ◦ C (e and f), 25◦C (g and h) and 35◦C (i and j) at low and high magnifications, respectively.

Trang 6

Table 4

Intensity of the main peaks of the X-ray diffractograms and relative crystallinity of

maize starches.

crystallinity (%)

a Counts per second.

Thestorageresultedinanincreaseintheenthalpyof

gelatinisa-tion(H)of3.13to15.40Jg−1 abovethevalueobservedinthe

starch isolatedfromfreshly harvested (initial treatment) maize

grains.Thelargestincreaseswereobserved inthestarches

iso-latedfromgrainsstoredat5and35◦C.ThehighestHpresented

bystarchisolatedfromgrainsstoredat5◦Cindicatesahighlevel

of starchchain intramolecular bonds,since theprotein and fat

contents(Table1)weresimilarbetweeninitial,5◦C,15◦Cand25◦C

treatments.Thisphenomenonisprobablywhythestarchisolated

fromgrainsstoredat5◦Cpresentedthehighestswellingpowerat

90◦C(Fig.1)andpeakviscosity(Table2).Ontheotherhand,the

increaseintheHofstarchisolatedfromgrainsstoredat35◦C

maybeduetothelowerpurityofstarch,asreportedinTable1

AccordingtoChung,Liu,Pauls,Fan,andYada(2008)andPiecyk,

Dru ˙zy ´nska,Worobiej,Wołosiak,andOstrowska-Lig ˛eza(2013),the

increaseinHmaybeinfluencedbytheresiduallevelsofproteins

andlipids,impairingthestarchgelatinisation.Thisincreasecanalso

beattributedtotheincreasedrigidityofthegranulesattheendof

storage,whichincreasestheenergyrequiredtodisruptthe

struc-tureofthestarchgranules,duetothecomplexationthatoccursin

thegrainconstituents.Inastudyconductedtoevaluatethe

ther-malpropertiesofriceunderdifferentconditions,Zhou,Robards,

Helliwell,andBlanchard(2010)reportedthattheenthalpyof

gela-tinisationandthegelatinisationtemperaturesareaffectedbyboth

temperatureandstoragetime

3.5 Crystallinity

TheX-raydiffractogramsof starchisolatedfromfreshly

har-vested (initial treatment) maize grains and from maize grains

storedatdifferenttemperaturesispresentedinFig.2.Themaize

starchesshoweda typicalA-typediffractionpattern,withmain

2peaksat15◦,17◦,18◦,20◦and23◦(Zobel,1964).Therewasa

decreaseinstarchcrystallinityattheendof12monthsofstorage

(Table4).Higherstoragetemperaturesprovidedhigherdecreases

in starch crystallinity The largest reduction was observed at

35◦C of storage, where the crystallinity reduced from 30.54%

(initialtreatment)to26.26% Althoughtherewasa reductionin

crystallinity,therewasanincrease intheintensityofthepeaks

15◦,17◦,18◦and20◦ ofthestarchisolatedfromgrainsstoredat

35◦C comparedtostarchisolatedfromfreshly harvestedgrains

(initialtreatement)(Table4).Thehighestpeakintensityindicates

thateventhoughthereislesscrystallineareainthestarchgranule;

therewasarearrangementthatleftthecrystalsinamoreparallel

array.ThisfindingisinagreementwiththeresultsobservedinRVA

(Table2)andDSC(Table3)analyses.Our resultsofcrystallinity

differfromthosereportedbySetiawanetal.(2010),whofound

increased relative crystallinity of starch isolated from maize

grainsaftersixmonthsofstorage.AccordingtoChrastil(1990),

storagecanalter theactivityand propertiesof theendogenous

enzymespresentin thekernels,suchasamylase,protease, and

phosphatase.Dhaliwal,Sekhon,andNagi(1991)andAwazuhara

etal.(2000)attributedchangesinthechainlengthofthebranched

amylopectintoenzymatichydrolysis,wherethe␣-amylaseattacks theamorphousregionofamylopectin,particularlythelongchains, reducingthemolecularweightofamylopectin

3.6 Scanningelectronmicroscopy(SEM) Thescanningelectronmicrographsofmaizestarchgranulesare showninFig.3.Thestarchgranulespresentedshapesvaryingfrom sphericaltopolyhedral,whicharetypicalofmaizestarch(Fig.3a andb).Althoughnochangesinthegranulesshapewasperceivedas

afunctionofstoragetemperature,thestarchgranulesisolatedfrom maizegrainsstoredat35◦Cshowedagreaterappearanceof sub-micronparticulatesonthesurfaceofthegranulesincomparisonto othertreatments(Fig.3 indicatedbyarrows).Further examina-tionviaX-rayphotoelectronspectroscopy(XPS)andatomicforce microscopy(AFM)couldperhapsshedlightonthenatureofthese particulates.Thestarchgranulesisolatedfrommaizegrainsstored

at35◦C appeartohavelowersizethanthegranulesfromother treatments,whichhaspossiblyoccurreddue tothepresenceof

a strongproteinmatrix compressingthestarchgranules within maizegrains.Thestrengthoftheinteractionsofstarchwith pro-teinsandlipidsresultedinagreaterresidualcontentofprotein (Table1)andcanbeassociatedwiththeobservedreductioninpeak viscosity(Table2).Setiawanetal.(2010)evaluatedtheeffectsof 6-monthsofmaizegrainsstorageafterthegrainsbeingdriedunder differentconditionsandfoundanincreaseinthenumberof dam-agedstarchgranules.Thedamageofstarchgranuleswasattributed

tostarch-hydrolyzingenzymeactivities.Similarobservationwas notverifiedinourwork

4 Conclusions

This was thefirst study to evaluate effects of storage tem-perature onthe physicochemical, pasting, thermal, crystallinity andmorphologicalpropertiesofmaizestarchisolatedfrommaize grainsstoredfor12months.Thestorageofmaizegrainsat35◦C causedareductionof22.1%intheextractionyieldofstarchand pro-videsayellowishcolourtostarch,whichmakesitlessattractivefor applicationswherepasteclarityisimportant.Thestarchisolated fromgrainsstoredduring12monthsshowedlowercrystallinity thanstarchisolatedfromfreshlyharvestedgrains.However,this hasprobablyresultedinamoreorganisedrearrangementofthe starchchainswithinthegranuleandpromotedinteractionswith otherconstituents, mainlyin starchisolated frommaize grains storedat35◦C.Thisproducedhighergelatinisationtemperatures andhigherenthalpyofgelatinisationasobservedbyDSCanalysis, andlowerpeakandfinalviscositiesverifiedinRVA.TheSEMof starchisolatedfrommaizegrainsstoredat35◦Cshowedthe pres-enceofsomepointsinthegranulesurfaceandthegranulesalso appeartobesmallerthanthosefromothertreatments,probably

asafunctionofastrongerproteinmatrixaroundstarchgranules withinthegrains.Furtherstudiesshouldbeconductedinorderto evaluateeffectsofthegrainstoragetemperatureduringshort-time storageonthepropertiesofisolatedstarch.Studiesabouteffectsof themoisturecontentofthegrainsinshort-andlong-timestorage

onthepropertiesofisolatedstarcharealsonecessary

Acknowledgements

We would like to thank CAPES (Coordenac¸ão de Aperfeic¸oamento de Pessoal de Nível Superior), CNPq (Con-selho Nacional de Desenvolvimento Científico e Tecnológico), SCT-RS(SecretariadaCiênciaeTecnologiadoEstadodoRioGrande

doSul)andPolodeInovac¸ãoTecnológicaemAlimentosdaRegião Sul

Trang 7

AACC (1995) Approved methods of the American Association of Cereal Chemists 9 a ed.

Saint Paul, MN, USA.

Abera, S., & Sudip, K R (2004) Effect of dry cassava chip storage on yield and

functional properties of extracted starch Starch/Stärke, 56(6), 232–240.

Altay, F., & Gunasekaran, S (2006) Influence of drying temperature, water content,

and heating rate on gelatinization of corn starches Journal of Agricultural and

Food Chemistry, 54(12), 4235–4245.

Awazuhara, M., Nakagawa, A., Yamaguchi, J., Fujiwara, T., Hayashi, H., Hatae, K., et al.

(2000) Distribution and characterization of enzymes causing starch degradation

in rice (Oryza sativa cv Koshihikari) Journal of Agriculture and Food Chemistry,

48(2), 245–252.

Chrastil, J (1990) Influence of storage on enzyme in rice grains Journal of Agricultural

and Food Chemistry, 38(5), 1198–1202.

Chung, H-J., Liu, Q., Pauls, K P., Fan, M Z., & Yada, R (2008) In vitro starch digestibility,

expected glycemic index and some physicochemical properties of starch and

flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada Food

Research International, 41(9), 869–875.

Davies, L (1995) Starch-composition, modifications, applications and nutritional

value in foodstuffs Food Technology Europe, 2(2), 44–52.

Debet, M R., & Gidley, M J (2006) Three classes of starch granule swelling: Influence

of surface proteins and lipids Carbohydrate Polymers, 64(3), 452–465.

Dhaliwal, Y S., Sekhon, K S., & Nagi, H P S (1991) Enzymatic activities and

rheo-logical properties of stored rice Cereal Chemistry, 68, 18–21.

Eckhoff, R S., & Watson, S (2009) Corn and sorghum starches: Production In J.

N BeMiller, & R Whistler (Eds.), Starch: Chemistry and technology (3rd ed., pp.

441–510) Academic Press/Elsevier.

Haros, M., Tolaba, M P., & Suarez, C (2003) Influence of corn drying on its quality

for the wet-milling process Journal of Food Engineering, 60(2), 177–184.

Hasjim, J., Lee, S.-O., Hendrich, S., Setiawan, S., Ai, Y., & Jane, J-l (2010) Effects of

a novel resistant-starch on postprandial plasma-glucose and insulin responses.

Cereal Chemistry, 87(4), 257–262.

Hughes, T., Hoover, R., Liu, Q., Donner, E., Chibbar, R., & Jaiswal, S (2009)

Com-position, morphology, molecular structure, and physicochemical properties of

starches from newly released chickpea (Cicer arietinum L.) cultivars grown in

Canada Food Research International, 42(5–6), 627–635.

Jobling, S (2004) Improving starch for food and industrial applications Current

Opinion in Plant Biology, 7(2), 210–218.

Lasseran, J C (1973) Incidence of drying and storing conditions of corn (maize) on

its quality for starch industry Starch/Stärke, 25(8), 257–262.

Leach, H W., McCowen, L D., & Schoch, T J (1959) Structure of the starch granule.

I Swelling and solubility patterns of various starches Cereal Chemistry, 36(6),

534–544.

Malumba, P., Janas, S., Roiseux, O., Sinnaeve, G., Masimango, T., Sindic, M., et al.

(2010) Comparative study of the effect of drying temperatures and

heat-moisture treatment on the physicochemical and functional properties of corn

starch Carbohydrate Polymers, 79(3), 633–641.

Malumba, P., Massaux, C., Deroanne, C., Masimango, T., & Béra, F (2009) Influence

of drying temperature on functional properties of wet-milled starch granules.

Carbohydrate Polymers, 75(2), 299–306.

Martin, M., & Fitzgerald, M A (2002) Proteins in rice grains influence cooking properties Journal of Cereal Science, 36(3), 285–294.

Nguyen, Q D., Jensen, C T B., & Kristensen, P G (1998) Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes Chemical Engineering Journal, 70(2), 165–171.

Park, C-E., Kim, Y-S., Park, K-J., & Kim, B-K (2012) Changes in physicochemical characteristics of rice during storage at different temperatures Journal of Stored Products Research, 48, 25–29.

Piecyk, M., Dru ˙zy ´nska, B., Worobiej, E., Wołosiak, R., & Ostrowska-Lig ˛eza, E (2013).

Effect of hydrothermal treatment of runner bean (Phaseolus coccineus) seeds and starch isolation on starch digestibility Food Research International, 50(1), 428–437.

Rabek, J F (1980) Applications of wide-angle X-ray diffraction (WAXD) to the study

of the structure of polymers In Experimental methods in polymer chemistry (1st ed., pp 505–508) Chichester: Wiley-Interscience.

Rehman, Z-U., Habib, F., & Zafar, S I (2002) Nutritional changes in maize (Zea mays) during storage at three temperatures Food Chemistry, 77(2), 197–201.

Rupollo, G., Vanier, N L., Zavareze, E R., Oliveira, M., Pereira, J M., Paraginski, R T., et al (2011) Pasting, morphological, thermal and crystallinity properties

of starch isolated from beans stored under different atmospheric conditions Carbohydrate Polymers, 86(3), 1403–1409.

Salman, H., & Les, C (2007) Effect of storage on fat acidity and pasting characteristics

of wheat flour Cereal Chemistry, 84(6), 600–606.

Sandhu, K S., & Singh, N (2007) Some properties of corn starches II Physicochem-ical, gelatinization, retrogradation, pasting and gel textural properties Food Chemistry, 101(4), 1499–1507.

Sandhu, K S., Singh, N., & Lim, S-T (2007) A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties LWT – Food Science and Technology, 40(9), 1527–1536.

Sandhu, K S., Singh, N., & Malhi, N S (2005) Physicochemical and thermal properties

of starches separated from corn produced from crosses of two germ pools Food Chemistry, 89(4), 541–548.

Setiawan, S., Widjaja, H., Rakphongphairoj, V., & Jane, J.-L (2010) Effects of dry-ing conditions of corn kernels and storage at an elevated humidity on starch structures and properties Journal of Agricultural and Food Chemistry, 58(23), 12260–12267.

Singh, N., Singh, J., Kaur, L., Sodhi, N S., & Gill, B S (2003) Morphological, thermal and rheological properties of starches from different botanical sources Food Chemistry, 81(2), 219–231.

Yousif, A M., Batey, I L., Larroque, O R., Curtin, B., Bekes, F., & Deeth, H C (2003).

Effect of storage of adzuki bean (Vigna angularis) on starch and protein proper-ties LWT – Food Science and Technology, 36(6), 601–607.

Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C (2003) Effect or rice stor-age on pasting properties of rice flour Food Research International, 36(6), 625–634.

Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C (2010) Effect of storage temperature on rice thermal properties Food Research International, 43(3), 709–715.

Zobel, H F (1964) X-ray analysis of starch granules In R L Whistler, R J Smith, &

J N BeMiller (Eds.), Methods in carbohydrate chemistry (4th ed., pp 109–113) Orlando, FL: Academic Press.

Ngày đăng: 07/01/2023, 20:13

🧩 Sản phẩm bạn có thể quan tâm