1. Trang chủ
  2. » Giáo án - Bài giảng

Pegylation effect of chitosan based polyplex on DNA transfection

8 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Pegylation effect of chitosan based polyplex on DNA transfection
Tác giả Wen Jen Lin, Wan Yi Hsu
Trường học National Taiwan University
Chuyên ngành Pharmaceutical Sciences
Thể loại Research article
Năm xuất bản 2014
Thành phố Taipei
Định dạng
Số trang 8
Dung lượng 1,59 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The aim of this study was to develop hepatocyte-targeting non-viral polymeric nono-carriers for gene delivery. Chitosan was selected as the main polymer. An asialoglycoprotein receptor recognized sugar, galactose, was introduced.

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Wen Jen Lina,b,∗, Wan Yi Hsua

a r t i c l e i n f o

Keywords:

Chitosan

Galactose

a b s t r a c t The aimof this study was todevelop hepatocyte-targeting non-viralpolymeric nono-carriers for genedelivery Chitosanwas selected asthe main polymer An asialoglycoproteinreceptor recog-nized sugar,galactose, was introduced Themethoxypoly(ethylene glycol)(mPEG)or shortchain poly(ethyleneglycol) diacid(PEGd) was further graftedonto galactosylatedchitosan All polyplex possessed positivecharge character.The compactionof DNAbygrafted chitosanwas in orderof chitosan-galactose-mPEG>chitosan-galactose-PEGd>chitosan-galactosewherethe chitosan-galactose-mPEG and pDNA formed the most stable polyplex The polyplex prominently enhanced DNA cellulartransfectionascomparedtonakedDNAinHepG2cellsinorderofchitosan-galactose/pDNA (11.6±0.6–33.0±4.4%)>chitosan-galactose-PEGd/pDNA (12.7±2.5–15.5±3.0%)> chitosan-galactose-mPEG/pDNA(9.0±1.1–12.9±2.4%)

©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/3.0/)

1 Introduction

Chitosanisarelativelylowtoxic,biocompatible,and

biodegrad-ablepolysaccharidewithimmunological,antibacterialand

wound-healing activities Several strategies have been adopted for

chemical modification of chitosan through C2-amino group or

C6-hydroxylgroupusingdifferentsubstitutes(Gaoet al.,2009;

Gorochovceva &Makus, 2004; Laurentin &Edwards, 2003; Lin

& Chen, 2007; Liu et al., 2009; Park et al., 2003; Sajomsang,

Tantayanon, Tangpasuthadol, & Daly, 2009) The modified

chi-tosanisappliedfordrugdelivery,tissue engineering,andother

biomedicalapplications(Alves&Mano,2008;D’Amelioetal.,2013;

Muzzarelli,2010).ThefreeC2-aminogroupofchitosanisfeasible

tocomplexwithnegativelychargedDNAasagenedelivery

car-rier.Poly(ethyleneglycol)(PEG)ispopularlyusedinpharmaceutics

duetoitshydrophiliccharacter,highsolubility,lowcytotoxicity

andgoodbiocompatibility.Itwasreportedthat PEGcanreduce

proteinopsonization ofnanoparticlesand subsequent

phagocy-tosisbynon-parenchymalcellsoftheliverinvivo.Theshielding

effect of PEG prevents nanoparticles from reticuloendothelium

system(RES)uptake resultinginlong-circulatingcharacteristics

(Avgoustakis, 2004; Betancourtet al.,2009; Ioele,Cione, Risoli,

Genchi, &Ragno, 2005; Lu et al.,2009).The similar result has

beenreportedbyvanVlerkenetal.Theyfoundthatthepegylated nanoparticlesavoideduptakebyRES,therebyimproving circula-tiontimeofnanoparticles,andthenanoparticlesareretainedin thetumorforprolongedperiodoftime(vanVlerken,Duan,Little, Seiden,&Amiji,2008).Ontheotherhand,PEGhasbeenusedto improvesolubilityofchitosaninsimulatedgastricpHand physio-logicalpHviaalteringmolecularweightand/orsubstitutiondegree

ofPEG(Casettarietal.,2012;Jeong,Kim,Jang,&Nah,2008) Asialoglycoproteinreceptor(ASGPR) receivesmuch attention

in gene targeting and also plays as a model systemfor study-ing receptor-mediated endocytosis due to its high affinity and rapidinternalizationrate.ASGPRisanintegralmembraneprotein expressedonthesurfaceofparenchymalcellsofliverwithhigh density of1–5×105 receptors(Weigel &Yik,2002) Nanocarri-ers(e.g.,nanoparticles)withsurfacemodificationarenecessaryfor specifictargetingpurpose.Severalsugarligands(e.g.,galactose, N-acetylgalactosamine,mannose,lactose,fructose,etc.)haveproved

tointeractwithASGPRwithvariousextents.Galactosehasbeen provedrecognitionofASGPRthroughmanyinvitroandinvivo stud-ies.Wangetal.(2012)usedgalactoseandPEGmodifiedliposome

toencapsulatedoxorubicinwhichdemonstratedbettertargeting efficiencyandachieved94%tumorgrowthinhibition.Jiangetal preparedPEG-galactosefollowedbygraftedontotheaminogroup

ofchitosan-PEI IthadbettercellulartransfectionthanPEIafter intravenousinjection(Jiang etal.,2008).Chenetal.used lacto-bionicacidandglycyrrhetinicacidtopreparedual-ligandmodified chitosan.ItstransfectionefficiencyinASGPRhigh-expressed

BEL-7402cellswashigherthaninASGPR-freeLO2hepaticnormalcells (Chenetal.,2012)

http://dx.doi.org/10.1016/j.carbpol.2014.11.046

Trang 2

duetosimpleandeasysyntheticprocedure.However,thepositive

chargeofC2-NH2groupplaysanimportantroleincomplexwith

negatively charged DNA for gene delivery Some studies were

designed to modifychitosan through C6-OHbut leave C2-NH2

groupavailableforDNAcomplexation.Jiang,Wu,Xu,Wang,and

Zeng(2011)usedC6-OHmodifiedchitosantocomplexwithvarious

weightratiosofDNA,andfoundthemolarratioofpolymer/DNA

20:1 expressed the highest cellular transfection The chemical

modificationofchitosanbygraftinglactobionicacid,asareceptor

ligand,throughC6-OHpositionofchitosanhasbeendemonstrated

(Lin,Chen,&Liu,2009;Lin,Chen,Liu,Chen,&Chang,2011)

Lacto-bionicacidisanendogenoussubstancepresentinthehumanbody

(Yu&vanScott,2004).Thechemicalstructureoflactobionicacid

containsagalactoseunitandagluconicacidunitlinkedbyether

linkage.Thecarboxylgroupofgluconicacidunitreactswiththe

aminogroupofchitosantoformanamidelinkage.Thelactobionic

acidgraftedchitosandemonstratedhighertransfectionefficiency

thanligand-freechitosan(45.3%vs19.8%)inASGPRoverexpressed

HepG2 cells Zhang et al (2009) grafted galactose onto C6-OH

followedbypegylationfromC2-NH2group.Theydemonstratedno cytotoxicityofmodifiedchitosaninHEK293kidneycancercells However,itwaslackofdatatoverifythefeasibleapplicationof thismodifiedchitosanindrugand/orgenedelivery

Thepresentstudywasaimedtodevelopahepatocyte-targeting non-viralpolymericnano-carrierforgenedelivery.Chitosanwas selectedasthemainpolymer.Inordertohavespecificliver tar-getingactivity,an ASGPRrecognized sugarmolecule, galactose, wasintroducedintoC6-OHofchitosan.Thehydrophilicmethoxy poly(ethylene glycol)(mPEG) orshort chain PEGdiacid (PEGd) wasgraftedontogalactosylatedchitosanfurtherthroughits

C2-NH2positiontoincreasesolubilityandstabilityofchitosaninvivo ThesynthesizedchitosanderivativeswerecharacterizedbyFTIR, NMRandGPC,andthegalactose,mPEGandPEGdgraftcontents weredetermined.ThegalactosylatedchitosangraftedwithmPEG

orPEGdwasappliedtocomplexwithplasmidDNA,andthe perfor-manceofpolymer/DNApolyplexwascharacterized.Theabilityof condensingnegativelychargedplasmidDNAbymodifiedchitosan, thestabilityofpolymer/DNApolyplexanditscellulartransfection wereevaluated

O

NH HO

O

OH

O

HO

O OH HO

OH HO

O

O

O

O

O

O

HO O

O

OH n

(A) chitosan-galactose

O

HO O

OH

OH

HO

chitosan

O OH HO

OH OH HO

O

HO O

OH

O

HO

O OH HO

OH HO

mPEG

O

O OH

m

O

NH HO

O

OH

O

HO

O OH HO

OH HO

O

O H m

Trang 3

2 Materials and methods

2.1 Materials

Lowmolecularweightchitosan(CS,Mw260kDa,Mn 72kDa,

deacetylationdegree76.3±2.1%)andpoly(ethyleneglycol)diacid

(PEGd,Mn 600Da) were from AldrichChemical Company, Inc.,

(WI,USA).Methoxypoly(ethyleneglycol)(mPEG,MW5,000Da),

borontrifluoridediethylether(BF3•OEt2),andanthronewerefrom

FlukaChemicalCompanyInc.(Buchs,Switzerland).d(+)-Galactose

(99+%)andN-hydroxysuccinimide(NHS)werefromAcros

Organ-ics Co Inc (Geel, Belgium) Sodium nitrite (NaNO2) was from

Showa Chemical Co Ltd (Tokyo, Japan) Sodium

cyanoborohy-dride(NaCNBH3,95%)wasfromAlfaAesaraJohnsonMattheyCo

Inc.(Massachusetts,USA).1-Ethyl-3-(3-dimethylaminopropyl

car-bodiimidehydrochloride(EDC)wasfromTCI ChemicalIndustry

Co.Ltd.(Tokyo,Japan).Minimumessentialmedia(MEM)wasfrom

BiologicalIndustriesIsraelBeit-HaemekLtd.(BeitHaEmek,Israel)

Plasmidencodingenhancedgreenfluorescentprotein(pEGFP-N1,

4.7kb) was kindly provided by Professor Jiin Long Chen from

NationalDefenseMedicalCenterinTaiwan.TheHepG2cancercell

linewasagiftfromDr.Hui-LinWuinHepatitisResearchCenterof

NationalTaiwanUniversityHospitalinTaiwan

2.2 Synthesisofchitosan-basedpolymers

Fig.1(A)showstheprocedurestosynthesizechitosan-galactose

(Chitosan(1))(Linetal.,2009,2011).Chitosanwasdeacetylated

inNaOHaqueoussolution(50%w/v)at140◦Cfor4hfollowedby

depolymerizedin0.1Msodiumnitriteaceticsolutionatroom

tem-peraturefor3h.Theobtaineddeacetylateddepolymerizedchitosan

(DADPCS)wasreactedwithgalactoseatfeedmolarratio1:2.5in

themixtureoftetrahydrofuran(THF)andborontrifluoridediethyl

etherate(BF3•OEt2)at60◦C underN2 for24h Thesolventwas

removedbyrotaryevaporation,andthemixturewasdialyzed(MW

cut-off500-1000Dalton)followedbyfreezedried

Fig.1(B)showstheprocedurestosynthesize

chitosan-galactose-mPEG(Chitosan(2)).mPEGwasdissolvedina mixtureofDMSO

and chloroform (10:1, v/v) followed by reacting with acetic

anhydride at room temperature for 9h The ether was added

to precipitate the product mPEG-CHO which was collected

after filtration The mPEG-CHO was dialyzed (MW cut-off

500-1,000Da)andfreezedried.Chitosan(1)waspreviouslydissolved

in a mixture of 2% acetic acid and methanol (1:1 v/v)

mPEG-CHOin deionized water was slowlyadded into and reactedat

room temperature for 3h followed by adding NaCNBH3

aque-oussolution underN2 for further18h Thefeedmolar ratioof

Chitosan(1):mPEG-CHO:NaCNBH3 was1.0:0.6:4.5.Thereaction

solutionwasconcentrated by rotary evaporation,and the

mix-turewasdialyzed(MWcut-off6000-8000Da)followedbyvacuum

dried

Fig.1(C)showstheprocedurestosynthesize

chitosan-galactose-PEGd (Chitosan(3)) Chitosan(1) waspreviously dissolvedin 1%

aceticacidsolution.PEGd,NHSandEDCwereslowlyaddedinto

andreactedatroomtemperaturefor24h Thefeedmolarratio

ofChitosan(1):PEGd:NHS:EDCwas1:7:7:7.Thereactionsolution wasdialyzed(MWcut-off6000-8000Da)followedbyfreezedried TheobtainedChitosan(3)waswashedbyacetoneforthreetimes followedbyvacuumdried

2.3 Characterizationofchitosan-basedpolymers TheobtainedChitosan(1), Chitosan(2), and Chitosan(3) were characterizedbyFTIRand1HNMR,themolecularweights were analyzedbyGPC.Thegalactosylationratiointermsofweight per-centage(Wg%)wascalculatedaccordingtoEq.(1).Thegalactose degreeofsubstitution(DSg%)ofChitosan(1),Chitosan(2),and Chi-tosan(3)weredeterminedbyanthrone–sulfuricacidcolorimetric assay(Laurentin&Edwards,2003)andcalculatedaccordingtoEqs (2),(3),and(4),respectively

GalactoseWg(%)= galactosesampleweightweightinthesample×100% (1)

galactoseDSg1(%)= (galactoseweight) /



Mw galactose



(sampleweight−galactoseweight) / (Mw DADPCS monomer)×100% (2)



Mw galactose



(sampleweight−galactoseweight−mPEGweight) / (Mw DADPCS monomer)×100% (3)



Mw galactose



(sampleweight−galactoseweight−PEGdweight) / (Mw DADPCS monomer)×100% (4)

ThemPEGdegreeofsubstitution(DSmPEG%)ofChitosan(2)was calculatedbyEq.(5)basedon1HNMRdata,andthepegylation weightpercentage(WmPEG%)wascalculatedbyEq.(6)

DSmPEG(%)= (areaofpeakc)3.5ppm/3

W mPEG (%) = DSmPEG × M w mPEG

(DS mPEG × M w mPEG ) + (100% × M w monomer ) +

DS g2 × M w galactose



Similarly,thePEGd degreeofsubstitution(DSPEGd%)and the pegylationweightpercentage(WPEGd%) ofChitosan(3) were cal-culatedbyEqs.(7)and(8),respectively

DSPEGd(%)= (areaofpeakc)4.15ppm/2

(areaofpeakd)3.1ppm

(DS PEGd ×M w PEGd ) + (100% × M w DADPCS monomer )+

DS g3 × M w galactose



2.4 Gelpermeationchromatography(GPC) Themolecularweightaswellasmolecularweightdistribution

interms ofpolydispersityofmodified chitosanwasdetermined

bygelpermeationchromatography(GPC)equippedwitha refrac-tiveindexdetector(ShimadzuRID-10A,Japan).Twolinearcolumns (UltrahydrogelTM 500and DP 120, 7.8×300mm, Waters) were appliedand acetatebufferedsolutionatpH5.0wasusedasthe elutingsolventataflowrateof0.8mL/minat35◦C.The calibra-tioncurvewasconstructedusingdifferentmolecularweightsof poly(ethyleneglycol)standards.Themolecularweightofmodified chitosanwasre-calculatedfromthecalibrationcurvebasedonthe measuredretentiontime

Trang 4

2.5 Galactosedetermination

Thecontentofgalactosegraftedontochitosanwasmeasured

bycolorimetric assayusing anthronesulfuric acid(Laurentin&

Edwards,2003).Severalknownconcentrationsofgalactose

solu-tionswereplacedina96-wellpre-cooledat4◦C.Thefreshprepared

anthrone–sulfuricacidinanicebathwasaddedintothe96-well

The96-wellwasheatedat90◦Cfor6minfollowedbycooledto

roomtemperature.Theabsorbancewasdeterminedby

spectropho-tometerat630nm.Thecalibrationcurvewasconstructedbased

onseveralconcentrationsofgalactoseandtheirabsorbance.The

polymersampleswerepreparedaccordingtothesameprocedure,

andthecorrespondingconcentrationwasre-calculatedfromthe

calibrationcurvebasedonthemeasuredabsorbance

2.6 Cytotoxicityofgalactosylatedandpegylatedchitosan

Thecytotoxicity ofChitosan(1), Chitosan(2), and Chitosan(3)

wasinvestigated.HepG2cellswereculturedinthemodifiedEagle’s

mediumcontaining10%fetalbovineserum,sodiumbicarbonate,

nonessential amino acids and sodiumpyruvate The cells were

seeded in a 96-well plate at a density of 9000 cells per well

andmaintainedinahumidifiedincubatorat37◦Cin5%CO2 for

24h.Serialdilutionsofpolymersolutioninculturedmediumwere

addedintoeachwellandincubatedat37◦Cfor24h.Thecultured

mediumwithoutpolymersolutionwasthecontrol.Themedium

wasremoved,andtheMTTsolution

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumwasaddedandincubatedat37◦Cfor4h

(Ciapetti,Cenni,Pratelli,&Pizzoferrato,1993).Theresulting

forma-zanwassolubilizedindimethylsulfoxide,andtheabsorbancewas

measuredusinganenzyme-linkedimmunosorbentassay(ELISA)

reader(PowerWaveXS,BioTek,Winooski,VT)at570nm(Liu&

Lin,2013)

2.7 Preparationofpolymer/pDNApolyplex

Chitosan(1),Chitosan(2),andChitosan(3)werecomplexedwith

negativelychargedpDNAatvariousweightratiosof2:1,10:1and

20:1.Eachpolymerwaspreviouslydissolvedin1%aceticsolution

TheplasmidDNAwasdissolvedinsteriledistilledwaterfollowed

byslowlyaddedintopolymersolutionandstirredfor3min.The

resultingpolyplex wasstood for 3hat roomtemperature The

polyplexsolutionwascentrifugedat 16,000×g for30min.The

supernatantwasremoved,andthedistilledwaterwasaddedto

re-dispersethepolyplex.Theparticlesizeandzetapotentialwere

measuredbyusingZetasizernanoanalyzer(Nano-ZS90,Malvern

InstrumentsLtd.,Worcestershire,UK)at25◦C Themorphology

ofpolymer/pDNApolyplexwasobservedbytransmissionelectron

microscope(PhilipsTecnaiF30,Philips,Netherlands).Thestability

ofpolyplexwasevaluatedtheirparticlesizechangeduringstorage

at4◦Cfor28days

2.8 Transfectionofpolymer/pDNApolyplex

ThetransfectionofChitosan(1)/pDNA,Chitosan(2)/pDNA,and

Chitosan(3)/pDNApolyplexwasevaluatedinASGPRoverexpressed

HepG2cancercells.TheHepG2cancercellswereseededina

6-wellplateatadensityof6×105cells/wellandincubatedat37◦C

for 24h After that the medium was removed, the serum-free

MEMmediumcontainingpolymer/pDNApolyplexornakedpDNA

wasaddedintoeachwellandincubatedfor24h.The

phosphate-bufferedsolution(PBS)wasaddedafterthemediumwasremoved

Thecellsuspensionwascentrifugedat 1200rpm for5min.The

cellswerecollectedandresuspendedinpH7.4PBSforflow

cyto-metricanalysisinthefluorescencechannelFL-1atanexcitation

wavelength488nmandanemissionwavelength530nm.Atotal

Table 1

Chitosan-galactose

Chitosan-galactose-mPEG

Chitosan-galactose-PEGd

M w (Da) 6200 8500 7600

M n (Da) 4000 5500 5200

W g (%) 16.7 13.2 13.8

DS g (%) 18.4 27.3 28.2

W PEG (%) – 42.6 52.8

DS PEG (%) – 3.7 43.5

of10,000cellswereanalyzedforeachsample,andtheupperlimit

ofbackgroundfluorescencewassetnomorethan1%.Datawere presentedasmean±standarddeviation.Comparisonbetweentwo groupswasanalyzedbyStudent’st-test,andthedifferencewas consideredsignificantatp<0.05or0.01

3 Results and discussion

3.1 Characterizationofchitosan-galactose(Chitosan(1)) Fig.2(C)showsthe1HNMRspectrumofChitosan(1).TheMW andgalactosylationdataofChitosan(1)arelistedinTable1.The

Mw,MnandpolydispersityofChitosan(1)were6200Da,4000Da, and1.56,respectively.Thecorrespondinggalactosegraftingweight percentage(Wg(%))anddegreeofsubstitution(DSg1(%))were16.7% and18.4%,respectively

3.2 Characterizationofchitosan-galactose-mPEG(Chitosan(2)) PEG plays an important role in preventing nanoparticles aggregationand avoiding nanoparticleseliminated byRES The galactosylatedchitosanwasfurtherpegylatedbymPEG,andthe relevantcharacterizationdataofChitosan(2)aresummarizedin Table 1 The corresponding Mw, Mn and polydispersity of Chi-tosan(2)were8500Da,5500Da,and1.54,respectively.Fig.2(A) shows the 1H NMR spectrum of Chitosan(2) The peaks a at 3.6–4.0ppmwereassignedtoC3–C6protonsofchitosanandthe protonsofgalactose,andpeakdat3.2ppmwasassignedtoC2–H

ofchitosan.Thepeakbat3.6–3.8ppmwasassignedtotheprotons

ofmPEGrepeatunits( CH2 CH2 O ),andpeakcat3.5ppmwas assignedto OCH3ofmPEG.TheWg(%)andDSg2(%)ofgalactose cal-culatedbyEqs.(1)and(3)were13.2%and27.3%,respectively.The mPEGgraftingweightpercentage(WmPEG%)calculatedbyEq.(5) was42.6%,andthecorrespondingdegreeofsubstitution,DSmPEG%, calculatedbyEq.(4)was3.7%basedontheintegrationareaofpeak

candpeakdin1HNMRspectrum.Thedegreesofsubstitutionof galactoseandmPEGofmPEGylated-galactosylated-chitosan devel-oped byZhang et al.(2009) were0.09% and 0.3%,respectively, which weremuch lowerthan ours It seemed that thecurrent methodappliedtograftgalactoseandmPEG ontochitosan was moreefficientintermsofhighergraftingvaluesthantheirs 3.3 Characterizationofchitosan-galactose-PEGd(Chitosan(3)) AnotherapproachwasdesignedtopegylateChitosan(1)with short chain PEG diacid(MW 600Da), and therelevant charac-terization data of Chitosan(3) are summarized in Table 1 The corresponding Mw, Mn and polydispersity of Chitosan(3) were

7600Da,5200Da,and1.46,respectively.Fig.2(B)showsthe1H NMRspectrumofChitosan(3).Thepeakcat4.15ppmandpeakb

at3.6ppmwereassignedtotheC Hnextto COOHofPEGdiacid andtherepeatunits( CH CH O )ofPEGdiacid.Thepeaks

Trang 5

Fig 2.The 1 H NMR spectra of (A) chitosan-galactose-mPEG, (B) chitosan-galactose-PEGd, (C) chitosan-galactose, (D) mPEG, and (E) PEG diacid.

Trang 6

Polymer concentration (µg/mL)

500 250 150 100 50 25 15 5 1

0

20

40

60

80

100

120

chitosan-galactose-mPEG chitosan-galactose-PEGd

aat3.7–3.9ppmwasassignedtoC3–C6protonsofchitosanand

theprotonsofgalactose,andpeakdat3.1ppmwasassignedto

C2–Hofchitosan.ThegalactosegraftingWg(%)andDSg3(%)were

13.8%and28.2%,respectively.Theweightpercentageofpegylation

(WPEGd(%))was52.8%,andthecorrespondingDSPEGd(%)was43.5%

basedontheintegrationareaofpeak c and peakdin1HNMR

spectrum

3.4 Cytotoxicityofgalactosylatedandpegylatedchitosan

Fig.3illustratesthecellularviabilityofChitosan(1),Chitosan(2),

andChitosan(3) inHepG2 cells.The cytotoxicityofgrafted

chi-tosan wassimilarirrespective ofthe presence of PEGand PEG

chain length,and there wereat least 80% cells viable at

poly-mer concentration ≤5␮g/mL All of the grafted chitosan had

IC50correspondingto50%cytotoxicityhigherthan500␮g/mL.It

indicatedthatthegalactosylated-pegylated-chitosanhadlow

cyto-toxicityandwasmuchsafebeingusedinvivo.Kim,Shin,andLee

(1999)reportedthatthecytotoxicityofPEGwithmolecularweight

greaterthan3000Dawasignorable.Similarly,Maoetal.(2005)

foundthatthelowcytotoxicityofPEG-conjugated-chitosanwas

observedin PEG Mw 5000Da rather than550Da Nevertheless,

therewasnodifferenceincytotoxicitybetweenmPEG(5000Da)

andshortchainPEGdiacid(600Da)graftedchitosaninourcurrent

study

3.5 Characterizationofpolymer/DNApolyplex

Thegalactosylated-pegylated-chitosanwasappliedasa DNA

delivery carrier Complex of cationic chitosan and negatively

charged plasmid DNA spontaneously formed polyplex due to

electrostatic interaction.Fig.4(A) illustrates theparticlesize of

Chitosan(1)/pDNA,Chitosan(2)/pDNA,andChitosan(3)/pDNAwith

various polymer/DNA weight ratios The particle size of

Chi-tosan(2)/pDNA polyplex with polymer/pDNA weight ratio 2:1,

10:1,and 20:1 was 159.9±43.0, 104.6±8.1, and 98.7±6.6nm,

respectively.ThecompactionofDNAbyChitosan(2)was

promi-nent when polymer/DNA weight ratio wasincreased from 2:1

to10:1wheretheparticlesizewassignificantlydecreased

Fur-ther increase in polymer/DNA weight ratio to 20:1 did not

change particle size too much The sterically repulsive nature

of mPEG protected Chitosan(2)/pDNA from secondary

aggrega-tionandformedpolyplexwithreliableparticlesizeintherange

of100–200nm.Thesimilar phenomenonhasbeen reportedby

chitosan-gala

ctose/DNA chitosan-gala

ctose-mPEG /DNA

chitosan-gala

ctose-PEGd/DNA

0 100 200 300 400 500 600 700

800

2:1 10:1 20:1

chitosan-gala

ctose/DNA chitosan-gala

ctose-mPEG /DNA

chitosan-gala

ctose-PEGd/DNA

0 10 20 30 40 50 60

70 2:1 10:1 20:1

(B) (A)

Kataoka,Harada,and Nagasak(2001)wherethepolyionic PEG-poly(l-lysine) block copolymer was complexed with positively chargedpDNA.TheymentionedthatthePEGcoronasurrounded

onmicellesurfacedecreasedthelocaldielectric constantwhich facilitated DNA compacted by PEG–PLys However, only the 2:1(w/w) polyplex of Chitosan(3)/pDNA and Chitosan(1)/pDNA had particle size less than 200nm The increase of polymer (e.g.,polymer/DNA10:1 and20:1)was failtosufficiently com-pact DNA into polyplex of Chitosan(3) and Chitosan(1) which resulted in quite large in particle size The lack of steric pro-tectionbythesetwopolymersaccountedfor resultingpolyplex with quite large size All of these results implied that the compaction of DNA by grafted chitosan was in order of Chi-tosan(2)/pDNA>Chitosan(3)/pDNA>Chitosan(1)/pDNA, and the bestDNAcompactionwasachievedbyChitosan(2).The morphol-ogyofChitosan(2)/pDNApolyplexisillustratedinFig.5

Fig.4(B)illustratesthezetapotentialofpolyplexwithvarious polymer/DNAweightratios.Allpolyplexpossessedpositivecharge characterinorderofChitosan(2)/pDNA(+20–30mV)<Chitosan(3)/ pDNA(+40–50mV)<Chitosan(1)/pDNA (+45–60mV) The mPEG polymerchainssurroundedonthepolyplexsurfacediminishedthe positivechargeofchitosanresultinginthelowestzetapotential

ofChitosan(2)/pDNApolyplex.ThechainlengthofmPEGpolymer waslongerthan PEGdiacidwhere mPEGformedbettersurface

Trang 7

Fig 5.The TEM image of chitosan-galactose-mPEG/pDNA polyplex with

coverageonChitosan(2)/pDNApolyplex.Ontheotherhand,the

shorterchainlengthofPEGdiacidexertedlesssurfacecoverage

thanmPEGandresultedinthezetapotentialofChitosan(3)/pDNA

higherthanChitosan(2)/pDNAbutlessthanChitosan(1)/pDNA

3.6 Stabilityofpolyplex

Fig.6illustratesthestability intermsofpercentageof

parti-clesizechangeofpolyplexafterstorageat4◦Cfor28days.Most

ofChitosan(2)/pDNAandChitosan(3)/pDNApolyplexmaintained

theirparticlesizeattheend of 28days except20:1(w/w)

Chi-tosan(3)/pDNApolyplex.Itloststabilityafterstoragefor21days

wherethepolyplexwasaggregatedinterms ofenlarging

parti-clesizemuch.AlloftheseresultsindicatedthatChitosan(2)was

not only capable of condensing plasmid DNA but also formed

stablepolyplexascomparedtoChitosan(1)andChitosan(3).The

presenceofmPEGofChitosan(2)playedanimportantrolein

pre-venting polyplexaggregation and maintainingits stablenature

wherethehydrophilicPEGchainssurroundedontheoutershell

ofthepolyplexandextendedintheaqueousenvironmenttoexert

shieldingeffect(Betancourtetal.,2009;Linetal.,2009;Luetal.,

2009)

3.7 Transfectionofpolyplex

Fig 7 illustrates the transfection efficiency of polyplex in

asialoglycoproteinreceptor (ASGPR)overexpressedHepG2 cells

The transfection of naked plasmid DNA (pEGFP-N1) was

simi-lar to the negative control (MEM medium only) However, all

of the polyplex enhanced pDNA cellular transfection as

com-paredtonakedDNAinorderofChitosan(1)/pDNA>Chitosan(3)/

pDNA>Chitosan(2)/pDNA.Increaseinpolymer/DNAweightratios

of Chitosan(1)/pDNA polyplex from 2:1 to 20:1 prominently

increased transfection efficiency in terms of producing more

greenfluorescentproteinsinASGPRoverexpressedHepG2cells

This provided the evidence to ensure the specific targeting of

galactose to ASGPreceptor The galactose grafting weight

per-centage(Wg%)ofChitosan(1),Chitosan(2) andChitosan(3)were

16.7, 13.2 and 13.8%, respectively Although the grafted

galac-tose of Chitosan(1) was similar to the other two kinds of

galactosylated-pegylated-chitosan,itsgalactosemoietywasfully

exposed and specifically bound to ASGP receptor to enhance

cellulartransfectionthemost.Nevertheless,theshieldingeffect

0 20 40 60 80 100 120 140 160

2:1 10:1 20:1

chi tosan-galac tose/pDNAweight rao

7 da y 14 day 21 da y 28 day

0.27 0.27 0.26 0. 0.22 0.22 0.27 0.38 0. 0.27 0.27

0 20 40 60 80 100 120 140 160

2:1 10:1 20:1

chitosan-galactose-mPE G/pDNA weight ra o

7 day 14 da y 21 day 28 day

0.22 0. 022 0 0. 0 0 0. 0.28 0.28 0.25 0.

0 20 40 60 80 100 120 140 160

chi tosan-galactose -PEG d/pDNA weight rao

7day 14day 21day 28 day

0.35 0 0.32 0 0.34 0 0 0.26 0.26 0.29 0.32 0.32

(A)

(B)

(C)

of mPEG on the surface of Chitosan(2)/pDNA polyplex dimin-ishedthespecifictargetingabilityofgalactosetoASGPreceptor resulting in the lowest cellular transfection in HepG2 cells as compared to the other polyplex On the other hand, the Chi-tosan(3)/pDNApolyplexwascoveredbyshortchainPEGdiacid TheshieldingeffectofPEGdiacidwasnotsoprominentasmPEG whichaccountedforthecellulartransfectionofChitosan(3)/pDNA polyplex higher than Chitosan(2)/pDNA but lower than Chi-tosan(1)/pDNA

Trang 8

ol

Nake

d DNA ch

san-g alacto se

ch

san-g alacto

se-m

PEG

ch

san-g alacto se

EGd

0

5

10

15

20

25

30

35

40

2:1

10:1

20:1

**

**

**

*

**

**

**

**

**

4 Conclusion

The galactosylated-pegylated-chitosan with

asialoglycopro-teinreceptor targeting abilitywasdeveloped for genedelivery

The chitosan was chemically grafted by galactose and

differ-entchain lengthsof hydrophilic methoxypoly(ethylene glycol)

or poly(ethylene glycol) diacid The concentration of grafted

chitosan corresponding to 50% cytotoxicity was higher than

500␮g/mL The positively charged grafted chitosan formed

polyplex with negatively charged plasmid DNA, and the

com-paction of DNA by grafted chitosan was in order of

Chi-tosan(2)/pDNA>Chitosan(3)/pDNA>Chitosan(1)/pDNA All

poly-plexenhanced DNAcellulartransfection ascompared tonaked

DNA.AlthoughChitosan(2)/pDNApolyplexmaintaineditsparticle

sizeforlongesttime,theshieldingeffectofmethoxypoly(ethylene

glycol)diminished the specific targeting ability of galactose to

asialoglycoproteinreceptorresultinginthelowestcellular

trans-fectioninHepG2cells.Throughthisstudyelucidatedtheroleof

poly(ethyleneglycol)inchitosan-basedpolyplexstabilityand

cel-lulartransfection

Acknowledgments

ThisworkwassupportedbyNationalScienceCouncilTaiwan

(NSC102-2320-B-002-007-MY3).TheauthorsthankDr.FuHsiung

ChangfortheZetasizer,Dr.JiinLongChenforplasmidDNA,andDr

HuiLinWuforHepG2cellline

References

modifi-cations for biomedical and environmental applications International Journal of

Biological Macromolecules, 43, 401–414.

nanoparticles: Preparation, properties and possible applications in drug

deliv-ery Current Drug Delivery, 1, 321–333.

Journal of Biomedical Materials Research, 91A, 263–276.

PEGylated chitosan derivatives:synthesis, characterizations and pharmaceutical

synthesis of dual-ligand modified chitosan as a liver targeting vector Journal of Materials Science, 23, 431–441.

cell/biomaterial interaction by MTT assay Biomaterials, 14, 359–364.

Insight into the molecular properties of chitlac, a chitosan derivative for tissue engineering Journal of Physical Chemistry B, 117, 13578–13587.

formu-lation on stability and biodistribution of siRNA in mice Molecular Therapy, 17, 1225–1233 (The Journal of the American Society of Gene Therapy).

chitosan-O-poly (ethylene glycol) graft copolymers European Polymer Journal,

40, 685–691.

photosta-bility study of tretinoin and isotretinoin in liposome formulations International Journal of Pharmaceutics, 293, 251–260.

spectro-scopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan Carbohydrate Research, 343, 282–289.

Galacto-sylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting Journal of Controlled Release, 131, 150–157.

galac-tosylated chitosan/tripolyphosphate nanoparticles and application as a gene carrier for targeting SMMC7721 cells Journal of Bioscience and Bioengineering,

111, 719–724.

deliv-ery: Design, characterization and biological significance Advanced Drug Delivery Reviews, 47, 113–131.

nanospheres composed of methoxy poly(ethylene glycol) and glycolide: Prop-erties, cytotoxicity and drug release behaviour Biomaterials, 20, 1033–1042.

anthrone–sulfuric acid colorimetric assay for glucose-based carbohydrates Ana-lytical Biochemistry, 315, 143–145.

pendant as targeting ligand for glycoprotein receptor Carbohydrate Polymers,

67, 474–480.

acid grafted pegylated chitosan and nanoparticle complex application Polymer,

50, 4166–4174.

lacto-bionic acid grafted pegylated chitosan with enhanced HepG2 cells transfection Carbohydrate Polymers, 83, 898–904.

using nanoparticles conjugated with EGFR specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice Journal of Nanoparticle Research,

15, 1956–1969.

effect of superoxide dismutase on superoxide anion release from macrophages

by chemical modification with polysaccharide and attenuation effects on radiation-induced inflammatory cytokine expression in vitro Journal of Drug Targeting, 17, 216–224.

advances in research and clinical applications of PLGA-based nanotechnology Expert Review of Molecular Diagnostics, 9, 325–341.

char-acterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers Biomaterials, 26, 6343–6356.

Matsuo (Eds.), Handbook of carbohydrate polymers: Development, properties and applications (pp 583–604) New York, NY: Nova Publ.

Galactosy-lated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1) Journal of Controlled Release, 86, 349–359.

Quaterniza-tion of N-aryl chitosan derivatives: Synthesis, characterization, and antibacterial activity Carbohydrate Research, 344, 2502–2511.

Biodis-tribution and pharmacokinetic analysis of paclitaxel and ceramide administered

in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model Molecular Pharmaceutics, 5, 516–526.

liposomes as carriers for gene delivery: Physico-chemical characterization and mechanism of cell transfection African Journal of Biotechnology, 11, 2763–2773.

asialoglycoprotein and hyaluronan/chondroitin sulfate receptors Biochimica et Biophysica Acta, 1572, 341–363.

In Skin diseases in the elderly New York, NY: Marcel Dekker, Inc.

proper-ties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative Journal of Materials Science: Materials in Medicine, 20, 673–680.

Ngày đăng: 07/01/2023, 20:06

🧩 Sản phẩm bạn có thể quan tâm