1. Trang chủ
  2. » Giáo án - Bài giảng

Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches

9 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Structural, Morphological, and Physicochemical Properties of Acetylated High-, Medium-, and Low-Amylose Rice Starches
Tác giả Rosana Colussi, Vania Zanella Pinto, Shanese Lisie Mello El Halal, Nathan Levien Vanier, Franciene Almeida Villanova, Ricardo Marques e Silva, Elessandra da Rosa Zavareze, Alvaro Renato Guerra Dias
Trường học Universidade Federal de Pelotas
Chuyên ngành Food Science and Technology
Thể loại Research Article
Năm xuất bản 2014
Thành phố Pelotas
Định dạng
Số trang 9
Dung lượng 1,91 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The high-, medium-, and low-amylose rice starches were isolated by the alkaline method and acetylated by using acetic anhydride for 10, 30, and 90 min of reaction. The degree of substitution (DS), the Fourier-transformed infrared spectroscopy (FTIR), the X-ray diffractograms, the thermal, morphological, and pasting properties, and the swelling power and solubility of native and acetylated starches were evaluated.

Trang 1

j ou rn a l h o m e pa g e : w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

a Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil

b Department of Food Science, University of Guelph, Ontario N1G 2W1, Canada

c Processed Foods Research Unit, WRRC, ARS, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, United States

d Laboratório de Microscopia Eletrônica, Curso de Engenharia de Materiais, Universidade Federal de Pelotas, 96015-560 Pelotas, RS, Brazil

a r t i c l e i n f o

Article history:

Received 28 September 2013

Received in revised form

25 November 2013

Accepted 23 December 2013

Available online 2 January 2014

Keywords:

Rice starch

Amylose

Acetylation

Degree of substitution

Acetyl groups

a b s t r a c t

Thehigh-,medium-,andlow-amylosericestarcheswereisolatedbythealkalinemethodand acety-latedbyusingaceticanhydridefor10,30,and90minofreaction.Thedegreeofsubstitution(DS),the Fourier-transformedinfraredspectroscopy(FTIR),theX-raydiffractograms,thethermal, morpholog-ical,andpastingproperties,andtheswellingpowerandsolubilityofnativeandacetylatedstarches wereevaluated.TheDSofthelow-amylosericestarchwashigherthantheDSofthemedium-andthe high-amylosericestarches.TheintroductionofacetylgroupswasconfirmedbyFTIRspectroscopy.The acetylationtreatmentreducedthecrystallinity,theviscosity,theswellingpower,andthesolubilityof ricestarch;however,therewasanincreaseinthethermalstabilityofricestarchmodifiedbyacetylation

© 2014 Elsevier Ltd All rights reserved

1 Introduction

Starchiscomposedofamyloseandamylopectinmoleculesand

theratiobetweenbothmoleculesvariesaccordingtothebotanical

originofstarch.Starchisthemajorconstituentofricegrainsand

isconsideredanimportantingredientthathasbeenusedinfood

preparation(Bao,Kong,Xie,&Xu,2004;Blazek&Gilbert,2011)

Duetothewiderangeofamyloselevels,ricestarchhasbeenused

asaningredientinvariousfoodandindustrialproducts,suchas

desserts,bakeryproducts,andalternativestofats(Puchongkavarin,

Varavinit,&Bergthaller,2005)

Nativestarchesdonotalwayshavethedesiredpropertiesfor

certaintypesofprocessing.Inordertoachievesuitable

functional-itiesforvariousindustrialapplications,starchhasbeenmodified

bydifferent methods Basically,there are fourkinds of

modifi-cations:chemical,physical,genetic,andenzymatic(Kaur,Ariffin,

Bhat,&Karim,2012).Chemicalmodificationscanpromote

struc-turalchangesandintroducenewfunctionalgroupsthataffectthe

∗ Corresponding author Tel.: +55 53 32757258; fax: +55 53 32757258.

E-mail address: rosana colussi@yahoo.com.br (R Colussi).

physicalandchemicalpropertiesofstarches(Sandhu,Kaur,Singh,

&Lim,2008)

Acetylation converts the hydroxyl groups of the glucose monomers into acetyl groups (Graaf, Broekroelofs, Janssen, & Beenackers,1995).Theacetylatedstarchesareclassifiedintolow, intermediate, or high degrees of substitution (DS) Acetylated starcheswithalowDS(0.01–0.2)mayfunctionasfilm-forming, binding,adhesion,thickening,stabilizing,andtexturingagents,and arewidelyusedinalargevarietyoffoodsincludingbakedgoods, cannedpiefillings,sauces,retortedsoups,frozenfoods,babyfoods, saladdressings,andsnackfoods.Acetylatedstarcheswith inter-mediateDS(0.2–1.5)andhighDS(1.5–3)havehighsolubilityin acetoneandchloroformand,thus,havebeenreportedasa ther-moplasticmaterial(Luo&Shi,2012)

Acetylationmaybeperformedtoimprovethephysical, chemi-cal,andfunctionalpropertiesofthestarch(Xu,Miladinov,&Hanna,

2004)andhasbeenwidelystudiedbyseveralresearchers( Bello-Pérez, Agama-Acevedo, Zamudio-Flores, Mendez-Montealvo, & Rodriguez-Ambriz,2010;Diop,Li,Xie,&Shi,2011;Garg&Jana, 2011;Huang,Schols,Jin,Sulmann,&Voragen,2007;Mbougueng, Tenin,Scher,&Tchiégang,2012).Thechangesintroducedby acety-lationdependonthebotanicalsource,thedegreeofsubstitution, theratiobetweenamyloseandamylopectin, andthemolecular 0144-8617/$ – see front matter © 2014 Elsevier Ltd All rights reserved.

Trang 2

intothestarchmoleculeduringacetylationandtheefficiencyof

thereactiondependonthetypeofreagent,reagentconcentration,

pHofreaction,presenceofcatalyst,reactiontime,botanicalorigin,

andsizeandstructurecharacteristicsofthestarchgranules(Huang

etal.,2007;Huber&BeMiller,2000)

Severalresearchershavereportedtheeffectsofacetylationon

potato,corn,andpeastarchproperties(Chen,Li,Li,&Guo,2007;

Elomaa,2004;Graafetal.,1995;Xu&Hanna,2005;Huangetal.,

2007).ArecentstudiedperformedbyLuoandShi(2012)showed

effectsofacetylationonwaxy,normal,andhigh-amylose maize

starchproperties.Therearefewstudiesabouttheeffectsof

acety-lationofstarcheswithawiderangeofamylosecontents.Sodhiand

Singh(2005)studiedthecharacteristicsofacetylatedstarchesfrom

differentricecultivarswithanamylosecontentbetween7.83%and

18.86%;however,thisstudydidnotconsidertheeffectsof

acety-lationreactiontime onstarch properties.Theaimofthis study

wastoevaluatetheeffectsofacetylationwithdifferentDSonFTIR

spectroscopy,X-raydiffraction,thermal,morphological,and

past-ingproperties,swellingpowerandsolubilityofhigh-,medium-,

andlow-amylosericestarches

2 Materials and methods

2.1 Material

Rice grains of cultivars IRGA 417 (high-amylose), IRGA 416

(medium-amylose),andMotti(low-amylose),withamylose

con-tentsof32%,20%,and8%,andpurityof99.4%,99.5%and99.1%,

respectively,wereused.Ricesamplesweredehulled,polished,and

groundinordertoobtainriceflour.Ricestarchwasisolatedwith

0.1%NaOH asdescribed by Wangand Wang (2004).Rice flour

wassoakedin0.18%NaOHata1:2(w/v)ratiofor18h.Thenit

wasblended,passedthrougha63␮mscreen,andcentrifugedat

1200×gfor5min.Thesofttoplayerwascarefullyremoved,and

theunderlyingstarchlayerwasre-slurried.Thestarchlayerwas

thenwashedtwicewith0.18%NaOHandcentrifuged.Thestarch

layerwaswashedwithdistilledwaterandcentrifuged.Thestarch

wasthenre-slurriedandneutralizedwith1.0MHCltoapHof6.5

andcentrifuged.Theneutralizedstarchwaswashedwithdistilled

waterthreetimesanddriedat40◦Cuntil7%moisturecontentwas

achieved

2.2 Starchacetylation

Thehigh-,medium-,andlow-amylosericestarcheswere

acety-latedaccordingtothemethoddescribedbyMarkandMehltretter

(1972),withsomemodifications.Starch(200g)wasdispersedin

600mlaceticanhydrideinaclosedreactorusing2000rpmfor5min

(RW20,IKA,Germany).Afterwards,20gof50%NaOHinwaterwere

addedtotheslurryandthetemperaturewasadjustedto90◦Cfor

15min.Thereactionwasperformedforthreedifferenttimes:10,

30,and90min.Whenthetimeofreactionfromeachtreatment

wasachieved,thetemperaturewasreducedto25◦Cand300mL

of92.6◦Glethanolwasaddedtotheslurryinordertoprecipitate

starch.Thematerialwascentrifugedat3000×gfor10min,

sus-pendedinalcoholforfourtimes,andfinallydriedinanovenat

40◦Cfor16h

2.3 Determinationofacetylpercentage(Ac%)anddegreeof

substitution(DS)

Thepercentageofacetylgroups(Ac%)andthedegreeof

sub-stitution(DS)oftheacetylatedstarchesweredeterminedbythe

titrationmethoddescribedbyWurzburg(1964).Acetylatedstarch

(1g)wasmixedwith50mlof75%ethanolindistilledwater.The

250mlflaskcontainingtheslurrywascoveredwithaluminumfoil andplacedinawaterbathat50◦Cfor30min.Thesampleswere thencooledand40mlof0.5NKOHwereadded.Theslurrywaskept underconstantstirringat200rpmfor72h.Afterthisperiod,the alkaliexcesswastitratedwith0.05NHCl,usingphenolphthalein

asindicator.Thesolutionwaslefttostandfor2handthenany addi-tionalalkali,whichmayhaveleachedfromthesample,wastitrated

Ablank,usingtheoriginalunmodifiedstarch,wasalsoused

Ac%= [blank−sample]×molarityofHCl+0.043×100

BlankandsampletitrationvolumeswereexpressedinmL, sam-pleweightwasexpresseding.DSisdefinedastheaveragenumber

ofsitesperglucoseunitthatpossessa(Whistler&Daniel,1995)

DS= 162×acetyl%

2.4 Fouriertransforminfrared(FTIR)spectroscopy Theinfraredspectraofthenativeandacetylatedstarcheswere obtainedusinga Fouriertransforminfrared(FTIR)spectrometer Prestige-21, Shimadzu, in theregion of 4000–400cm−1.Pellets werecreatedbymixingthesamplewithKBrataratioof1:100 (sample:KBr).Tenreadingswerecollectedataresolutionof4cm−1 2.5 X-raydiffraction

X-raydiffractogramsofthenativeandacetylatedstarcheswere obtainedwithanXRD-6000(Shimadzu,Kyoto,Japan) diffractome-ter.Thescanningregionofthediffractionrangedfrom5to40◦, withatargetvoltageof30kV,acurrentof30mA,andascanspeed

of1◦min−1.Therelativecrystallinity(RC)ofthestarchgranules wascalculatedasdescribedbyRabek(1980)usingtheequation

RC(%)=(Ac/(Ac+Aa))*100,whereAcandAaarethecrystallineand amorphousareas,respectively

2.6 Thermalanalysis Thermalanalysis of the starch sampleswas performed in a TG–DTAapparatus(DTGmodel2010,TAInstruments,NewCastle, USA).Changeinsampleweightagainsttemperature (thermogravi-metricanalysis,TG)andheatreleasedorabsorbedinthesample becauseofexothermicorendothermicactivityinthesample (dif-ferentialthermalanalysis,DTA)weremeasured.Samples(4–8mg) wereheatedfrom30◦Cto600◦Cataheatingrateof10◦C/min Nitrogenwasusedaspurgegasataflowrateof50mL/min Thegelatinizationcharacteristicsofstarchesweredetermined usingdifferentialscanning calorimetry(DSC)(DSCmodel 2010,

TAInstruments,NewCastle,USA).Starchsamples(approximately 2.5mg,drybasis)wereweigheddirectlyinanaluminumpan,and distilled waterwasaddedtoobtaina starch–waterratioof1:3 (w/w).Thepanwashermeticallysealedandallowedtoequilibrate foronehourbeforeanalysis.Thesamplepanswerethenheated from30to120◦Catarateof10◦C/min.Anemptypanwasusedas

areference.Thetemperatureattheonsetofgelatinization(To),the temperatureatpeak(Tp),thetemperatureattheendof gelatiniza-tion(Tc)andtheenthalpy(H)ofgelatinizationweredetermined 2.7 Morphologyofthestarchgranules

Starchsampleswith7% moisturecontentwereinitially sus-pendedinacetonetoobtaina1%(w/v)suspension,andthesamples weremaintainedinanultrasoundfor15mintoeliminatethe pres-enceofairbubbles.Asmallquantityofeachsamplewasspread directlyontothesurfaceofthestubanddriedinanovenat32◦C

Trang 3

Table 1

Percentage of acetyl groups (Ac%) and degree of substitution (DS) of high-,

medium-and low-amylose rice starches acetylated under different reaction times.

Low-amylose 10.34 a 0.43 a 11.60 a 0.49 a 20.47 a 0.96 a

Results are the means of three determinations Values accompanied by different

letters in the same column statistically differ (p < 0.05).

for1h.Subsequently,allofthesampleswerecoatedwithgoldand

examinedinthescanningelectronmicroscopeunderan

accelera-tionvoltageof15kVandmagnificationof5000×

2.8 Pastingproperties

Thepastingpropertiesofthestarchsamplesweredetermined

usingaRapidViscoAnalyser(RVA–4,NewportScientific,Australia)

withaStandardAnalysis1profile.Theviscositywasexpressedin

rapidviscounits(RVU).Starch(3.0gof14g/100gwetbasis)was

weighteddirectlyintheRVAcanister,and25mlofdistilledwater

wasthenaddedtothecanister.Thesamplewasheldat50◦Cfor

1min,heatedto95◦Cin3.5min,andthenkeptat95◦Cfor2.5min

Thesamplewascooledto50◦Cin4minandthenkeptat50◦C

for1min.Therotatingspeedwasmaintainedat960rpmfor10s,

anditwasmaintainedat160rpmduringtheremainingprocess

Parametersincludingpastingtemperature,peakviscosity,holding

viscosity,breakdown,finalviscosity,andsetbackwererecorded

2.9 Swellingpowerandsolubility

Theswellingpowerandsolubilityofthestarcheswere

deter-mined as described by Leach, McCowen, and Schoch (1959)

Samples(1.0g)weremixedwith50mLofdistilledwaterin

cen-trifugaltubes.Thesuspensionswereheatedat90◦Cfor30min

Thegelatinizedsampleswerethencooledtoroomtemperature

andcentrifugedat1000×gfor20min.Thesupernatantwasdried

at110◦Ctoaconstantweighttoquantifythesolublefraction.The

solubilitywasexpressedasthepercentageofdriedsolidweight

basedontheweightofthedrysample.Theswellingpowerwas

representedastheratiooftheweightofthewetsedimenttothe

weightoftheinitialdrysample(deductingtheamountofsoluble

starch)

2.10 Statisticalanalysis

Analyticaldeterminationsforthesampleswereperformedin

triplicateandstandarddeviationswerereported,exceptforX-ray

diffractionandthermalanalysis,whichwereperformedtwice.A

comparisonofthemeanswasascertainedbyTukey’stesttoa5%

levelofsignificanceusinganalysisofvariance(ANOVA)

3 Results and discussion

3.1 Percentageofacetylgroups(Ac%)anddegreeofsubstitution

(DS)

TheacetylationofstarchyieldeddifferentricestarchDSvalues

dependingontheamylosecontentandtimeofreaction(Table1)

Low-amylosecontentandlongtimeofreactionresultedinthe

high-estAc%and,thus,thehighestDS.Thericestarchesacetylatedfor

90minofreactionshowedhigherDSthanthestarchesacetylated

for10and30minofreaction.Thelow-amylosericestarch exhib-itedgreaterabilityfortheinsertionofacetylgroupscomparedto medium-andhigh-amylosestarches.LuoandShi(2012)studied thecharacteristicsofacetylatedhigh-amylose,normal,andwaxy maizestarches,reportingsimilarresults.Theseauthorsjustifiedthe greatereaseofinsertionofacetylgroupsofthewaxystarch com-paredtothehigh-amylosemaizestarchasbeingduetothegreater extentofreactionsitesinthewaxystarch.SodhiandSingh(2005) acetylatedthestarchfromdifferentricecultivarsandreportedthat thevariation inDS amongdifferentricestarchesmaybedueto thedifferenceinintragranularpackaging.Theyreportedthatthe wayinwhichtheamylosechainispackedinamorphousregionsas wellasthearrangementofamyloseandamylopectionchainscould affectthechemicalsubstitution reactionintheglucoseunitsof starchmacromolecules.However,theeffectsofstarchacetylation

asrelatedtoamylosecontenthavenotbeenexplained

Theacylationofstarchtakesplacebyanaddition–elimination mechanism(Xuetal.,2004).Eachoneofthethreefreehydroxyl groupsofthestarchshowsdifferentreactivity(Garg&Jana,2011) TheprimaryC(6)OHismorereactiveandisacylatedmorereadily thanthesecondaryonesonC(2)andC(3)duetosterichindrance Thisfactcanjustifythehighestdegreeofsubstitutionofthestarch withlowamylosecontent.OfthetwosecondaryOHgroups,C(2)OH

ismorereactivethanC(3),mainlybecausetheformerisclosertothe hemi-acetalandmoreacidicthanthelatter(Fedorova&Rogovin,

1963).SinceC(6)isthemostreactive,ithasbeenthemainreactive siteforsubstitutionofthehydroxylgroupsbyacetylgroups 3.2 Fouriertransforminfrared(FTIR)spectroscopy

FTIRspectroscopyanalysiswasusedtomonitorchangesinthe structureofthestarchespromotedbyacetylationbyanalyzingthe frequencyandtheintensityofthepeaks.Fig.1presentstheFTIR spectraofnativeandacetylatedhigh-,medium-,andlow-amylose ricestarches.TherewasnodifferenceintheFTIRspectraofhigh-, medium-,andlow-amylosericestarches

Thenativeandacetylatedstarchesshowedpeaksat3450cm−1, which is assigned tothe vibrationof O H deformation,and at

2960cm−1,whichcanbeattributedtoC Hbondstretching(Diop

et al., 2011) The acetylated high-, medium-, and low-amylose starches,atallreactiontimes,showedtheintroductionofthe car-bonylgroup(C O)oftheesterifiedacetylgroups,beingverifiedby thebandat1750cm−1(Fig.1).Moreovertherewasadecreasein theintensityofthebandat1650cm−1intheacetylatedstarches comparedtotheirrespectivenativestarches.Thepeakofstarch

at 1650cm−1 was assignedas C O C stretching,which can be attributedtothewaterassociatedtostarchmolecules.The reduc-tionofthisbandinacetylatedstarchesistheresultofloweraffinity

towaterascomparedwithnativestarches.LuoandShi(2012)also reportedthatacetylatedstarcheshaveahydrophobiccharacterdue

totheinsertionofacetylgroupsinthestarchchains

3.3 X-raydiffraction TheX-raydiffractogramsofnativeandacetylatedricestarches are presentedin Fig.2.The nativeand acetylatedrice starches showed diffraction patterns typical of A-type crystalline struc-ture as defined by peaks at 2 of 15◦, 17◦, 17.8◦, 19◦, and

23◦.Thecrystallinity of thenativestarchesfollowed theorder: low-amylose>medium-amylose>high-amylose.Thehigher crys-tallinity of the low-amylose native starch is attributed to its higheramylopectincontent.Theacetylatedricestarchesshoweda decreaseintheintensitiesofthepeakscomparedtothenativeones, withtheexceptionoflow-amylosestarchacetylatedfor90minof reaction.Acetylationreducedthecrystallinityofricestarches,and thelowestvaluesofrelativecrystallinitywereseeninacetylated

Trang 4

450 650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850

3050

3250

3450

3650

Native

30 min

10 min

90 min

(c)

450 650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850

3050

3250

3450

3650

Wavenu mbe r, cm -1

Native

30 min

10 min

90 min

(b)

450 650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850 3050

3250

3450

3650

Wavenu mbe r, cm -1

Native

30 min

10 min

(a)

90 min

Fig 1.FTIR spectra of native and acetylated rice starches High-amylose starch (a),

medium-amylose starch (b), and low-amylose starch (c).

starcheswiththehighestDS.Shaetal.(2012)reportedthat,with

theincreaseintheproportioninacetylcontentofthericestarch,

crystallinitybecame graduallyloweredand thediffractionpeak

alsoreducedinturn.Theydescribedthatthechangesinthe

diffrac-tionpatternsindicatedthattheintermolecularhydrogenbonding

interactionwasdamaged

AccordingtoLuoandShi(2012),acetylationreducesthe

forma-tionofintermolecularhydrogenbonds,resultinginalowordered

crystalline structure of starch granules These authors studied

theacetylationofmaizestarcheswithvaryingDS,between0.27

and1.29,andreportedthatadestructionofcrystallinestructure

occurredinhigh-amylosestarchwith120minofreaction.Xuetal

Diffraction angle (2θ)

Native, CR= 22.86

10 min, CR= 19.90

30 min, CR= 18.27

90 min, CR= 14.79 (a) High-amylose

Diffraction angle (2θ)

Native, CR= 27.26

10 min, CR= 23.90

30 min, CR= 23.15

90 min, CR= 20.14 (b) Medium-amylose

Diffraction angle (2θ)

Native, CR= 33.71

10 min, CR= 25.99

30 min, CR= 25.75

90 min, CR= 19.03 (c) Low-amylose

Fig 2. X-ray diffraction pattern of native and acetylated rice starches High-amylose starch (a), medium-amylose starch (b), and low-amylose starch (c).

(2004)alsoreportedthatthehigh-amylose maize starch,when acetylatedwithDSbetween1.11and2.23,showeddestructionin theorderedcrystallinestructures

3.4 Thermalanalysis Thermogravimetricanalysis(TGA)hasbeenusedinthe eval-uationofthethermalstabilityofmaterialsandisconsideredone

ofthemainmethodsforevaluatingthermalpropertiesof acety-latedstarches.TheTGAcurvesshowedtwo-stageweightlossfor thestudiedstarches,beingthefirststagearound40–125◦Candthe

Trang 5

100 20 0 30 0 40 0 50 0 60 0

-0

20

40

60

80

100

%

TGA

(c) Low amylose

Native

90 min

30 min

10 min

(c) Low-Amylose

20

40

60

80

100

%

TGA

(b) Medium amylose

30 min Native

90 min

10 min

(b) Medium-Amylose

-0

20

40

60

80

100

%

TGA

(a) High amylos(a) High-Amilose e

Native

90 min

10 min

30 min

Temperature (ºC)

Temperature (ºC)

Temperature (ºC)

Fig 3.Thermogravimetric analysis (TGA) curves of native and acetylated rice

starches High-amylose starch (a), medium-amylose starch (b), and low-amylose

starch (c).

secondonearound250–400◦C.Thefirstweightlossisattributedto

thelossofwater(Fig.3a–c).Thenativemedium-andlow-amylose

ricestarches (Fig.3aand b)had higherinitialweightlossthan

theacetylatedstarches,withvalues around10%intherangeof

40–125◦C, while theacetylated starches showed lossesaround

6%ofweight inthesamerange Byincreasingthetemperature

from250to400◦C,themedium-andlow-amyloseacetylatedrice

starchesunderdifferenttimesofreactionshowedsimilar

behav-ior,losingapproximately70%ofweight.Thisshowsthatacetylation

Table 2

Thermal properties of native and acetylated high-, medium- and low-amylose rice starches.

High-amylose

Medium-amylose

Low-amylose

influencedthethermalbehaviorofstarches;however,theintensity

ofacetylationdidnotaffecttheweightlossbecausetherewasno differencebetweenthestudiedtimesofreaction

The native and the 90min-acetylated high-amylose rice starchesshowedlowerlossofdrymatter(5.5and3.0%, respec-tively)intherangeof40–250◦C,whiletheacetylatedhigh-amylose starchesafter10and30minofreactionloseabout9.0%ofdry mat-ter.Thelowerweightlossinstarchacetylatedfor90minofreaction indicatesthehigherstabilityofthismaterialupto250◦C.Inthe temperaturerangebetween250◦Cand400◦C,thehigh-amylose ricestarchacetylatedfor90minshowedabout85.0%ofdrymatter loss,whilethenativestarchesandstarchessubjectedtoacetylation for10and30minofreactionshowedabout70%ofdrymatterloss

Ontheotherhand,forthelow-amylosericestarch,thehighestdry matterlossintherangeof250–400◦Cwasregisteredforthenative starchandstarchtreatedfor30min

GargandJana(2011)studiedacetylatedstarchesunderdifferent degreesofsubstitutionandverifiedthatacetylatedstarchsamples werethermallymorestablethannativestarch.Theincreasein ther-malstability wasduetothelowamountofremaininghydroxyl groups in starch molecules after modification The increase in molecularweightandcovalentbondingduetotheacetylationof hydroxylgroupswerealsoresponsiblefortheincreasedthermal stability

ThethermalpropertiesmeasuredbyDSCofthehigh-,medium-, andlow-amylosericestarchesarepresentedinTable2.Thenative starchesshowedhighergelatinizationtemperatures.Therewasno differenceinthegelatinizationtemperaturesofnativericestarches

asafunctionoftheamylosecontent.AcetylationreducedtheTo,Tp

andTcvaluesofricestarches,anditwasverifiedadecreaseinthe gelatinizationtemperatureswithanincreaseinthereactiontime usedforstarchacetylation.Thestarchgelatinizationiscontrolled,

inpart,bytheamylopectinmolecularstructureand thegranule structure.Thedecreaseingelatinizationtransitiontemperatures

isinagreementwiththeearlyruptureoftheamylopectin dou-blehelicesandthemeltingofthecrystallinelamellaeinstarches inducedbytheacetylationreaction.LuoandShi(2012)andSingh, Chawla,andSingh(2004),acetylatingthecornandpotatostarches, respectively, also reported a significant decrease in gelatiniza-tiontemperaturesafteracetylation.WottonandBamunuarachchi (1979)suggestedthattheintroductionofacetylgroupsinto poly-merchainsresultedindestabilizationofstarchgranularstructure, leadingtoadecreaseingelatinizationtemperatures

WhencomparingtheHvaluesofnativelow-,medium-,and high-amyloserice starches,itcanbeobserveda highHvalue forthelow-amylosericestarch.Thisfactcanbeexplainedbythe differenceinrelativecrystallinity,sincethecrystallinitylamellae

ofstarchgranulesrequireshigherenergyforgelatinizationthan theamorphouslamellae.TheacetylationprovidedlowHvalues

Trang 6

Fig 4. Scanning electron micrographs of rice starches: native high-amylose starch (a), native medium-amylose starch (b), native low-amylose starch (c), acetylated high-amylose starch (d), acetylated medium-amylose starch (e), acetylated low-amylose starch (f) Figures d–f represent starches acetylated for 90 min of reaction.

forthehigh-,medium-,andlow-amylosericestarches(Table2)

Hprimarilyreflectsthelossofdouble-helicalorderratherthan

lossofcrystallineregisterwithinthegranule.ThedecreaseinH

valuesofstarchacetatessuggeststhatsomeofthedoublehelices

presentinsemi-crystallineregionsofthegranuleweredisrupted

duringacetylation.ThelowerHsuggestsalowerpercentageof

orderedcrystallitesoralowerstabilityofthecrystals.Thehigher

theDSofthestarch,thelargerthedecreaseinHvalues(Table2)

3.5 Morphologyofstarchgranules

The morphology of starch granules was investigated using

scanning electron microscopy (SEM) and the micrographs are

presentedinFig.4.Themicrographsofthericestarchesshowed

the presence of polyhedral granules The high-, medium-, and

low-amylose rice starches subjected to 90min of acetylation

(Fig.4d–f)hadhigherDSandwerecomparedwiththeirrespective

nativestarches (Fig.4a–c) Noeffectofacetylationonthe

mor-phologyofstarchgranuleswasfound.SodhiandSingh(2005)also

reportedthattheSEMrevealednosignificantdifferencesbetween

externalmorphologyofnativeandacetylatedstarches.However, theseauthorsreportedthattheacetylationbroughtaboutslight aggregationofgranules.Similarobservationshavebeenreported regardingthemorphologyofacetylatedcorn,potato(Singhetal.,

2004),andricestarches(Gonzalez&Perez,2002).Shaetal.(2012) showed that the granule surface of acetylated starch was less smooth thanin nativestarch,but thestarchgranules still kept

arelativelycomplete particlestructure Astheacetyl increased, the intermolecular hydrogen bonds were damaged and more starchgranulesweredisrupted.Theseauthorsalsosuggestedthat the crystalline regions were also involved in the reaction; the differencewasthatcrystallinegranulesdidnotcollapse

3.6 Pastingproperties Thepastingpropertiesofnativeandacetylatedhigh-, medium-,andlow-amylosestarchesanalyzedwithaRapidViscoAnalyser (RVA)areshowninTable3andtheRVAcurvesarepresentedin Fig.5.Acetylationreducedthepastingtemperatureofricestarches, exceptforthehigh-amylosericestarchwiththelowestDS(10min

Trang 7

Table 3

Pasting properties, swelling power and solubility of native and acetylated high-, medium- and low-amylose rice starches.

Pasting temperature ( ◦ C)

Peak viscosity (RVU)

Breakdown (RVU)

Final viscosity (RVU)

Setback (RVU)

Swelling power (g/g)

Solubility (%)

a Results are the means of three determinations Values accompanied by lowercase letter in the same column and uppercase letters in the same row, for each property, statistically differ (p < 0.05).

b nd, non-detected.

ofreaction).AccordingtoSaartrat,Puttanlek,Rungsardthong,and

Uttapap(2005),thepastingtemperatureshowedlowervaluein

acetylatedstarchthaninnativestarch,anddecreasedastheacetyl

groupscontentincreased.Thischaracteristicisoneofthemany

advantagesachievedwithacetylation,becauseitallowssuggesting

theusetheacetylatedstarches inprocesseswhereathickening

agentmustgelatinizeatlowertemperatures,orsimplytoreduce

energycostsduringthemanufactureofproductsinwhichthese

starchesareused(Betancur,Chel,&Canizares,1997)

Thehigh-amylosericestarchacetylatedfor10minandthe

low-amylosericestarchesacetylatedfor10and30minofreactionhad

higherpeakviscositiesthantheirnativestarches.When90minof

reactionwereusedforthehigh-andlow-amylosericestarches,the

peakviscositydecreasedcomparedtotheirnativestarches.The

peakviscosityofmedium-amyloserice starchessubjectedtoall

DShadlowervaluesthanthenativemedium-amylosericestarch

Acetylationreduced thefinalviscosityof ricestarch, exceptfor

thehigh-amylosericestarchacetylatedfor10minandthe

low-amylosericestarchacetylatedfor10and30minofreaction,which

showedequalandincreasedfinalviscosity,respectively,compared

withtheirnativestarches.Saartratetal.(2005)alsofoundthatthe

viscositiesofacetylatedcannastarcheswerelowerthanthoseof

nativestarches

Themarkeddecreaseintheviscosityofthehigh-,medium-,

andlow-amylosericestarchesacetylatedfor90min(Fig.5)

can-notbeattributedtothepartialgelatinizationofstarchgranules,

sincetherewasnolossofgranularintegrityaccordingtotheSEM

(Fig 4d–f) The decreasein the viscosityof acetylated starches

comparedtonativestarchescanbeattributedtotheinsertionof

acetylgroupsthathindertheassociationbetweenstarchchains

anddecreasedtheabilityofstarchgranulestoabsorbwater.Thus,

itgivesstarchahydrophobiccharacter

Acetylationreducedthebreakdownofricestarches,increasing thethermalandmechanicalstabilityofacetylatedstarches,except forthehigh-andlow-amylosericestarchesacetylatedfor10and

30minofreaction.Thehigh-amylosericestarchesacetylatedatall

DSandthelow-amylosericestarchacetylatedfor90minofreaction hadalowersetbackcomparedtotheirnativestarches.Therewas

anincreaseinthesetbackoflow-amylosericestarchacetylatedfor

10and30mincomparedtothenativelow-amylosericestarch.The reductioninthesetbackisduetotheintroductionofacetylgroups

instarchchains,whichcanpreventcloseparallelalignmentof amy-losechainsandthuslowersetbackviscosities.HoweverSodhiand Singh(2005)foundthatacetylatedstarchesshowhighersetback viscositiesthantheirnativecounterparts.Sucheffectwasobserved formedium-amylosestarchesandforlow-amylosestarch acety-latedfor10and30minofreaction(Table3)

3.7 Swellingpowerandsolubility Acetylationreducedtheswellingpowerofricestarches,except forthelow-amylosericestarchwhenacetylatedfor10and30min, whichshowedswellingpowersimilartonativestarch.The high-estdecreaseinswellingpowerwasverifiedinstarchesacetylated for90minofreaction(Table3 whichexhibitedhighDS(Table1)

Instarchesmodifiedbyacetylation,theintroductionof hydropho-bicacetylgroupscanmakethewaterintakeintostarchgranules difficult,thusdecreasingtheswellingpower

Comparingthericestarcheswithdifferentamylosecontents, thelow-amylosestarchshowedthelowestsolubilitycomparedto thehigh-andmedium-amylosericestarches,whichisprobablydue

totheloweramountofamylosemoleculesthatareleachedduring hydrationandheating.Thedecreaseinstarchsolubilityisduetothe loweramyloseleachingandcanbearesultofthehigherinteraction

Trang 8

Fig 5. RVA curves of native and acetylated rice starches High-amylose starch (a),

medium-amylose starch (b), and low-amylose starch (c).

betweenamyloseandamylopectinmolecules,preventingthe amy-losefromleachingfromthegranule.Theincreaseinthemolecular weightofstarchduetotheintroductionofacetylgroupsmainly

inC(6)maymaketheleachingofamylosefromthestarch gran-uledifficult.Thesolubilitycharacteristicoftheacetylatedstarchis dependentoftheDSandthepolymerizationofamyloseand amy-lopectinchains.Lawal(2004)alsofoundsimilartrendsofdecreased solubilityfromnewcocoyamstarchacetylatedwith60minof reac-tionwhencomparedwithnativestarch

4 Conclusions

Thepresentstudywasthefirstoneaboutacetylationofrice starchofdifferentamylosecontents.Thelow-amylosericestarch wasmoresusceptibletoacetylationcomparedtothemedium-and high-amylosericestarches.Theintroductionofacetylgroupswas confirmedbyFTIRspectroscopy.Acetylation,mainlyover90minof reaction,reducedricestarchcrystallinityand,ingeneral,its past-ingtemperature,breakdown,peakand finalviscosities,swelling power,andsolubility.Thedecrease inpasting temperatureand breakdownofrice starchesenablesobtainingproductssensitive

tohightemperaturesandmorestableproductswhilecooking.The continuityofthisworkshouldevaluatethesusceptibilityof acety-latedstarcheswithdifferentamylosecontentandDStoenzymatic hydrolysis,aswellastheproductionofbiodegradablefilmsusing acetylatedricestarch

Acknowledgements

We would like to thank FAPERGS (Fundac¸ão de amparo a pesquisadoestadodoRioGrandedoSul),CAPES(Coordenac¸ãode Aperfeic¸oamentodePessoaldeNívelSuperior),CNPq(Conselho Nacional de Desenvolvimento Científico eTecnológico), SCT-RS (SecretariadaCiênciaeTecnologiadoEstadodoRioGrandedoSul) andPólodeInovac¸ãoTecnológicaemAlimentosdaRegiãoSul

References

Bao, J., Kong, X., Xie, J., & Xu, L (2004) Analysis of genotypic and environmental effects on rice starch 1 Apparent amylose content, pasting viscosity, and gel texture Journal of Agriculture and Food Chemistry, 52, 6010–6016.

Bello-Pérez, L A., Agama-Acevedo, E., Zamudio-Flores, P B., Mendez-Montealvo, G.,

& Rodriguez-Ambriz, S L (2010) Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch LWT – Food Science and Technology, 43, 1434–1440.

Betancur, A D., Chel, G L., & Canizares, H E (1997) Acetylation and characteriza-tion of Canavalia ensiformis starch Journal of Agricultural and Food Chemistry, 45, 378–382.

Blazek, J., & Gilbert, E P (2011) Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review Car-bohydrate Polymers, 85, 281–293.

Chen, L., Li, X., Li, L., & Guo, S (2007) Acetylated starch-based biodegradable mate-rials with potential biomedical applications as drug delivery systems Current Applied Physics, 71, 90–93.

Diop, C., Li, H L., Xie, B J., & Shi, J (2011) Effects of acetic acid/acetic anhydride ratios

on the properties of corn starch acetates Food Chemistry, 126, 1662–1669 Elomaa, M (2004) Determination of the degree of substitution of acetylated starch

by hydrolysis, 1 H NMR and TGA/IR Carbohydrate Polymers, 57, 261–267 Fedorova, A F., & Rogovin, Z A (1963) Relative reactivity of cellulose hydroxyls on esterification in an acid medium Vysokomolekulyamye Soedieneiya (Abstract), 5, 519–523.

Garg, S., & Jana, A K (2011) Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution Carbohydrate Polymers, 83, 1623–1630.

Gonzalez, Z., & Perez, E (2002) Effect of acetylation on some properties of rice starch Starch/Stärke, 54, 148–154.

Graaf, R A., Broekroelofs, G A., Janssen, L P B M., & Beenackers, A A C M (1995) The kinetics of the acetylation of gelatinised potato starch Carbohydrate Polymers,

28, 137–144.

Huang, J., Schols, H., Jin, Z., Sulmann, E., & Voragen, A G J (2007) Pasting proper-ties and (chemical) fine structure of acetylated yellow pea starch is affected by acetylation reagent type and granule size Carbohydrate Polymers, 68, 397–406 Huber, K C., & BeMiller, J N (2000) Channels of maize and sorghum starch granules.

Trang 9

Kaur, B., Ariffin, F., Bhat, R., & Karim, A A (2012) Progress in starch modification in

the last decade Food Hydrocolloids, 26, 398–404.

Lawal, O S (2004) Composition, physicochemical properties and retrogradation

characteristics of native, oxidised, acetylated and acid-thinned new cocoyam

(Xanthosoma sagittifolium) starch Food Chemistry, 87, 205–218.

Leach, H W., McCowen, L D., & Schoch, T J (1959) Structure of the starch

gran-ule I Swelling and solubility patterns of various starches Cereal Chemistry, 36,

534–544.

Luo, Z.-G., & Shi, Y.-C (2012) Preparation of acetylated waxy, normal, and

high-amylose maize starches with intermediate degrees of substitution in aqueous

solution and their properties Journal of Agricultural and Food Chemistry, 60,

9468–9475.

Mark, A M., & Mehltretter, C L (1972) Facile preparation of starch triacetates.

Starch/Stärke, 24, 73–76.

Mbougueng, P D., Tenin, D., Scher, J., & Tchiégang, C (2012) Influence of acetylation

on physicochemical, functional and thermal properties of potato and cassava

starches Journal of Food Engineering, 108, 320–326.

Puchongkavarin, H., Varavinit, S., & Bergthaller, W (2005) Comparative study of

pilot scale rice starch production by an alkaline and an enzymatic process.

Starch/Stärke, 57, 134–144.

Rabek, J F (1980) Experimental methods in polymer chemistry: Applications of

wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers Chichester:

Wiley Interscience.

Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D (2005) Paste and gel

properties of low-substituted acetylated canna starches Carbohydrate Polymers,

61, 211–221.

Sandhu, K S., Kaur, M., Singh, N., & Lim, S.-T (2008) A comparison of native and oxi-dized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties LWT – Food Science and Technology, 41, 1000–1010 Sha, X S., Xiang, Z J., Bin, L., Jing, L., Bin, Z., Jiao, Y J., et al (2012) Preparation and physical characteristics of resistant starch (type 4) in acetylated indica rice Food Chemistry, 134, 149–154.

Singh, N., Chawla, D., & Singh, J (2004) Influence of acetic anhydride on physico-chemical, morphological and thermal properties of corn and potato starch Food Chemistry, 86, 601–608.

Sodhi, N S., & Singh, N (2005) Characteristics of acetylated starches prepared using starches from different rice cultivars Journal of Food Engineering, 70, 117–127.

Wang, L., & Wang, Y J (2004) Rice starch isolation by neutral protease and high-intensity ultrasound Journal of Cereal Science, 39, 291–296.

Whistler, R L., & Daniel, J R (1995) Carbohydrates In O R Fennema (Ed.), Food chemistry (pp 69–137) New York: Marcel Decker.

Wotton, M., & Bamunuarachchi, A (1979) Application of DSC to starch gelatiniza-tion Starch/Stärke, 31, 201–204.

Wurzburg, O B (1964) Acetylation In R L Whistler (Ed.), Methods in carbohydrate chemistry Boca Ratón, FL: Academic Press, 240 pp.

Xu, Y., & Hanna, M A (2005) Preparation and properties of biodegradable foams from starch acetate and poly (tetramethylene adipate-co-terephthalate) Car-bohydrate Polymers, 59, 521–529.

Xu, Y., Miladinov, V., & Hanna, M A (2004) Synthesis and characterization of starch acetates with high substitution Cereal Chemistry, 81, 735–740.

Ngày đăng: 07/01/2023, 20:03

🧩 Sản phẩm bạn có thể quan tâm