1. Trang chủ
  2. » Tất cả

1523 new weak interaction signal in the SU(2)1⊗SU(2)2⊗U(1)Y model

12 5 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề 1523 New Weak Interaction Signal in the SU(2)1⊗SU(2)2⊗U(1)Y Model
Tác giả Vo Quoc Phong, Nguyen Thi Trang
Trường học Ho Chi Minh City University of Education
Chuyên ngành Physics
Thể loại Journal Article
Năm xuất bản 2019
Thành phố Ho Chi Minh City
Định dạng
Số trang 12
Dung lượng 80,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

( TẠP CHÍ KHOA HỌC Trường ĐHSP TPHCM ) ( Vo Quoc Phong et al ) ISSN TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH TẠP CHÍ KHOA HỌC KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ HO CHI MINH CITY UNIVERSITY OF EDUCATION JOURN[.]

Trang 1

TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH

TẠP CHÍ KHOA HỌC

KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ

HO CHI MINH CITY UNIVERSITY OF EDUCATION

JOURNAL OF SCIENCE

NATURAL SCIENCES AND TECHNOLOGY 1859-3100 Tập 16, Số 3 (2019): 144-151 Vol 16, No 3 (2019): 144-151

Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

NEW WEAK INTERACTION SIGNAL

IN THE 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)� MODEL

Vo Quoc Phong, Nguyen Thi Trang

Department of Theoretical Physics – VNUHCM-University of Science, HCMC, Vietnam Corresponding author: Vo

Quoc Phong – Email: vqphong@hcmus.edu.vn

Received: 29/10/2018; Revised: 24/12/2018; Accepted: 25/3/2019

ABSTRACT

According to the framework of 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)F Model (2-2-1 model), W± (be like W± in the standard model), and W±, �′ decays will be discussed The W2 ± decay width is1

equal to 2.1 GeV, consistently to SM and experimental data The decay width is very large, in which the main contribution to this decay is the channel containing exotic quarks Furthermore, it is found that the lepton rate decay of �′ accounts for the bulk.

Keywords: weak decays, Extensions of SM, SM.

1 Introduction

The standard model (SM) has many successes in explaining physical phenomena at

100 GeV However, this model still has many shortcomings, such as the inability to explain the material-antimatter asymmetry phenomenon or the matter of dark matter Therefore, extending this model

is a necessity

Weak interactions are known as the swaps via �0 and W± These two bosons are fully covered in

SM However, at the energy scale larger than 200 GeV, weak interactions may occur throughout new bosons which can be described in the extended SM

The 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)F Model (2-2-1 model) is one extension of SM, which has the simplest group structure However, there are three coupling constants, three VEVs; two exotic quarks which are in a doublet of 𝑆𝑈(2)2 group; one new charged and one new neutral gauge bosons which are larger than 1.7 TeV (Chuan-Hung Chen and Takaaki Nomura, 2017) This model has two new gauge bosons which can play an essential role in the early universe

The non-SM particles, such as Z’ is searched by LHC, whose estimating mass is about a few TeV The decay channel of this new particle is also an interesting concern and calculated However, in different models, the decay channels are different, because of their interactions with SM particles

Researchers work with the 2-2-1 model, find the vertex coefficients in the possible decay channels

of the two new propagators (Z’, W2) and then calculate their decay width These decay channels are the signals of the weak interaction in the TeV scale, larger than the energy scale in SM, 200GeV After calculating these decay channels, we can know

1

2

1

Trang 2

which is dominant and give experiment the range to look for signals of new particles, or when calculating the higher loop of interaction, we can choose which new particles contribute

This article is organized as follows In Sect.2, a short review of the 2-2-1 model In Sect.3 and 4, We show and calculate the channels of W2 and �′ which are the new signals of weak interaction at the 1-TeV scale Finally, in Sect.5, we summarize and discuss these decay

2 Review on 2-2-1 model

In this model, the SM gauge symmetry is extended to the 2-2-1 model, including the particles of the SM and some new particles The SM particles belong to the representations

of 𝑆𝑈(2)1 ⊗ 𝑈(1)F and are singlets of 𝑆𝑈(2)2 Some new particles include Higgs doublets of 𝑆𝑈(2)2, Higgs singlet S’ and vector-like quarks (VLQ) doublets of

𝑆𝑈(2)2, �′� = (𝑈′, �′) The electric charge operator � = �(1) + �(2) + �, with

�(1,2) =

�3

and � is Pauli matrix

2

To clarify, the explicit representations of the particle generations in this model which include the particles in the standard model and the new particles are recorded as follows

�� = (��) ; (��) ; (�

�)

i (ߥ𝑒� ߥ𝜇� ߥ𝑐

� = 𝑒� ) ; (𝜇� ) ; (�� )

𝑈� = 𝑢�; 𝑐�; ��

�� = ��; ��; ��

�� = 𝑒�; 𝜇�; ��

The particles in the new model include VLQ, Higgs �2 doublet, and S’ singlet Unlike the standard model, VLQ doublet in this model includes both the left and right polarizations

� �(�) = ( ′)

�(�)

The covariant derivative is as

�𝜇 = ∂𝜇 − i�i�(i)�� − i�F��𝜇, (1)

� i𝜇

where �i and �� (� = 1,3 ) are the gauge coupling and gauge field of 𝑆𝑈(2)i �F

and �𝜇

are coupling and gauge field of 𝑈(1)F �(i)= �� and �� are the Pauli matrices Y is the

hypercharge of a particle When 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)F group breaks down to 𝑈(1)F, the gauge fields �3 , �3and �𝜇 of 𝑈(1)F will be mixed so that we have two

1𝜇 2𝜇

massive neutral gauge bosons � and �′ and one massless photon Moreover, we obtain charged gauge field W± and W± which are defined by W± = (�1 ∓ �2)/√2

TẠP CHÍ KHOA HỌC - Trường ĐHSP

2

3

i 𝜇

Trang 3

The new Yukawa interaction is written following as:

� = [−�F��F �′

�𝑆′ − ����F �2�� − ����F �˜2�� − �ƒ��F �′

� +

only quarks t and b in the standard model are coupled the VLQs in Yukawa interaction The Higgs potential has two doublets; �1 is the SM Higgs doublet and �2 is heavy Higgs doublet of 𝑆𝑈2(2),

𝑉(�1, �2, 𝑆′) = ∑ [𝜇2�†�i + �i(�†�i)2] + 𝜇2𝑆′2 + �𝑆𝑆′4

i i i=1,2

+𝜇𝑆𝑆′3 + 𝑆′(𝜇1𝑆�†�1 + 𝜇2𝑆�†�2)

+�12�†�1�†�2 + �1𝑆𝑆′2�†�1 + �2𝑆𝑆′2�†�2, (3)

�†

�i = (�i+ℎi+i�0)

i

√2

𝑆′ = �𝑆 +𝑆

,

√2

where �±,0 are unphysical Nambu-Goldstone bosons and ℎ1,2, 𝑆 are the physical scalar

bosons Table 1 Masses of bosons and fermions in the 2-2-1 model

�2 ±

�1

�2 ±

�2

�2

~�2

�2�2 4

2�2 4 2

�2

4

�2 ~�2F 1 �′4�2 + �4�2

4 �2 − �′2

ℎ ℎ 1

+

3𝜇𝑆�𝑆

− 2√2

𝜇1𝑆�2 +

𝜇2𝑆�2 2√2�𝑆

�2~�2F =

O

(�ƒ +

√2 �𝑆)

TẠP CHÍ KHOA HỌC - Trường ĐHSP

144-151

3

i

i

2 2

2

� =

2

Trang 4

�2 ~�2F =

2

O

(�ƒ +

√2 �𝑆)

TẠP CHÍ KHOA HỌC - Trường ĐHSP

144-151

4

Trang 5

3. W± �𝑛� W± Decay

the mixing between VLQ and SM-quarks will be not considered In order to calculate the scattering vertex factor of fermions with W− and W−, we base on the Lagrangian,

�f𝑒��i�𝑛� = ∑ i�′

� �𝜇�𝜇��,� + ∑ i�f�𝜇�𝜇�f

W− → 𝑒 +

ߥ𝑒 W− → 𝜇 + ߥ

−i �1 (�𝜇 −

�𝜇�5) 2√2

−i �1 (�𝜇 −

�𝜇�5 ) 2√2 W− → � + ߥߥ𝑐 −i �1 (�𝜇 − �𝜇�5 ) 1

2√2

W1− → � + 𝑢ߥ −i �1 (�𝜇 − �𝜇�5) 2√2

𝑢�

W1− → � + 𝑢ߥ −i �1 (�𝜇 − �𝜇�5) 2√2

𝑢�

W1− → � + 𝑢ߥ −i �1 (�𝜇 − �𝜇�5) 2√2

𝑢�

W− → � + 𝑐ߥ −i �1 𝑉𝑐�(�𝜇 − �𝜇�5) 1

2√2

W− → � + 𝑐ߥ −i �1

1 2√2

𝑐�

W− → � + 𝑐ߥ −i �1

1

W− → �′ +

𝑈̅ ߥ

2√2 𝑐�

−i� 2 �𝜇 √ 2

According to the Golden rule for 2-body decays in the CM frame (see detail in C Patrignani et al., 2016; D.Bardin and G.Passarino, 1999), the decay width is

Γ�→�

+� = 𝑘�C |��→� +� |2, (5)

where 𝑘 is the momentum of �1 and �2, and c=1 (in ‘Godiven’ unit)

Besides, we consider in the CM frame and obtain as,

2

�→𝑙+ߥ� ( 2 2 1 − �2 2 2 − �2)], (6)

2�2 21 −(��22−�2)2 2 1

|� F F ̅̅F|2 = 2 [�2 − ( 2 1

− �2 − �2) + 3�2�1], (7)

,

� i

TẠP CHÍ KHOA HỌC - Trường ĐHSP

5

1 1

2

W

[ 1 − (� −� )

Trang 6

with � = �� −, � is the factor that depends on �1 and �2 (a=1 for leptons, � =

𝑉ij for quarks), 𝑉ij is obtained from the experimental value (C Patrignani et al., 2016),

(8)

In Eq (5), the decay widths are calculated in tree order so we need to add QCD corrections Finally, the formula for decay widths is obtained,

TẠP CHÍ KHOA HỌC - Trường ĐHSP

6

0.97434 0.2250

6 0.00357

|𝑉ij| = (0.22492 0.97351 0.0411 ).

Trang 7

Γ�

=

(Γ�− →𝑒+�ߥ

+

Γ�− →𝜇 +�ߥ + Γ�− →𝑐+�ߥ ) (1 + � � )

𝑒

1 𝜇

⎪ +(Γ�−→� +𝑢ߥ + Γ�− →�+𝑢ߥ + Γ�− →�+𝑢ߥ + Γ�− →�+𝑐 ߥ + Γ�− →�+𝑐 ߥ + Γ�− →�+𝑐 ߥ) (1 +

2𝛼s) �𝑐

= 2.108 �𝑒𝑉,

� �

3𝜋 (9)

Γ�2 = (Γ�− →𝑒+ߥ� 𝑒 + Γ�− →𝜇+�ߥ 𝜇 + Γ�− →𝑐+�ߥ � ) (1 + )

� +Γ + F ̅̅F (1 + 2��) �𝑐,

�2 →�

+𝑈

3𝜋

where, ��=��(MW)=0.1255 (C Patrignani et al., 2016) and

�𝑐 = 1; 𝑙𝑒p��𝑛 { ��(�2 ) 1.405�2(�2 ) 12.77�3(�2

�𝑐 = 3 (1 + W + � + W � W ) ; 𝑞𝑢��𝑘

In case ��2 = 1.7 �𝑒𝑉 , �𝑈F = ��F = 750 �𝑒𝑉 and �2 = 2, we obtain Γ�2

= 15.07243 �𝑒𝑉

4. �′ Decay

The branch decay width of �′ → X1X2 is given rule (S M Boucenna, A

Celis, J Fuentes-Martin, A Vicente and J Virto, 2016a; 2016b),

√�(�2F ,�2,�2)

Γ = � 1 2 |�ߥ|2, (11)

16𝜋�3

with |�ߥ|2 is the average value of square amplitude respectively, �1,2 is mass of two particles at final state, and

�(�2F , �2, �2) = �4F + �4 + �4 − 2(�2�2F + �2�2F +

We set

�1,2

= �1 ,�2

and obtain

��F

√�(�2F , �2, �2) = √�4F [1 + �4 + �4 − 2(�2 + �2 + �2�2)] = �2F

The Eq (11) is written as follows:

Γ = � (1,�

16𝜋��F

|�ߥ|2 F = |� F |2�2F {12�����1�2 + (�2 + �2)[2 − � 2 − 2 − (� 2 − � 2)2]},(15)

where, ƒ = ߥ𝑒, 𝑒, 𝑞 are fermions in

SM �1

=

�2

=

�f

=

� ƒ ��

F

with fermions are slighter

than quarks top, the decay width (�′ →

ƒƒ ) is calculated in SM with �1 = �2 = 0, ��

F

=

� and |�′ f|2 + |�′ f|2 = |�′ f|2 + |�′ f|2,

TẠP CHÍ KHOA HỌC - Trường ĐHSP

144-151

7

1 2

1

Trang 8

�𝑐�2��F ′ f 2 �

′ f 2

(�′ → ƒƒ)

=

24𝜋𝑐2 (|�

Γ

�2��F ′� 2 ′� 2 ( 2)

(�′ → ��)

=

8𝜋𝑐2 (|�

𝑉| + |� ) � | 1 − �� (17) Quark top has �1 = �2 = �� , where �� = 173.21�𝑒𝑉 Within limit �� = 0, 𝑐�

= 1

��F

2

We have the interaction coupling in table 2 with � =W

��𝑐

and

��,� = 0,

��,� = �� = 0.3

TẠP CHÍ KHOA HỌC - Trường ĐHSP

144-151

8

W

W

Trang 9

Table 2 �

𝑉

and

in limit 𝑐� = 1, �� = 0, ��,� = 0

f �′𝑉 �′� |�′𝑉|2 + |�′�|2

�𝑙 = �𝑒,𝜇,� 1 ���� 1 ���� 1 �2 �2

𝑙 = 𝑒, 𝜇 � 3 ���� − 1 ���� 5 �2 �2

�� �� 1 ���� 17 �2 �2

18

� �

�, �

2 ����

-���

18

����

� 2 1 2 2 � W

� 2

�) (

� )4(1 − 2

)2 W

� 2 21 31

2 ��𝑐

W

1

3

� 1

2 2

� � � 2

� (�� )

+ �2 )2 W

2 2

Finally, the decay width for the different decay modes are:

Γ( ′

)

�2��F

1 2 2

� →

νߥν = 24�𝑐2 × 2 �W��, (18) Γ( ′

�2��

F 5 2 2

� → 𝑙𝑙) =

24�𝑐2 ×

Γ(�′ → 𝑢ߥ𝑢,

𝑐ߥ𝑐

�2 �

=

8�𝑐2 ×

Γ( ′ ߥ

�2��

F 5 2 2

� → ��, �ߥ�) =

8�𝑐2 ×

Γ �′

→ �2 �

− 2 2 �2 −

(22)

Γ �′ →

ߥ 8�𝑐2

�2� F

2 3 �

− 1

1

� �

2 �2 ( − )

(23)

( ��) = �

TẠP CHÍ KHOA HỌC - Trường ĐHSP

9

6

W

W

W

) �F 17 2 2

W

( ��) =

�2) ,

� 𝑐

× (�� )

4( � )2 (

1

8�𝑐

2

Trang 10

2 +

� �

Besides (�′ → �ℎ), an important decay, we have� ∗µ

��h = 𝑐�F �h�µ�ε�F ε� ,

��h = 𝑐�F �h�µF �F ε�F ε� ,

|�ߥ �h|2

= 1 |��h|2

= 1F |𝑐

2

|2[2 + (1 + �� 2

with

and vertex factor 𝑐

Where �𝜇 is orthogonal polarization

,z �

vector and � (p)�∗(p) =

−� p𝜇p� So, the decay width �′ → �ℎ is

𝜇 � 𝜇� (� W−𝑐 )2

�2�2 �2� F

Γ(�′ → �ℎ) = × �[2�1 2 2 +(1, �2, �2) 1 (1 + �2 − �2)2]. (25)

4

The last is the decay (�′ → W+W−) with the average value of decay square amplitude

+

− =

𝑐 + − Γ �𝜇 �∗� �∗�− ,

��

�FW

W

𝜇�

� �F �+

∗𝜇F

�F

�F

���+ �− = 𝑐 FW+W− Γ𝜇F �F�F ��F ��+ ��− ,

TẠP CHÍ KHOA HỌC - Trường ĐHSP

10

�2

𝑐2

F

W �

Trang 11

Conflict of Interest: Authors have no conflict of interest to declare.

Acknowledgements: This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number C2017-18-12.

|� |2 = 1

│ |2 =

1

│ 𝑐 + − |2�2F �(1, � 2 , � 2 )(1 + 20�2 + 12� 4 ), (26)

��

3 �FW W

where �� = �W

and

��F

|𝑐 + − |2 = �𝑐

� ≈ �𝑐 ×�� 22� � ≈ �𝑐 × �1�2 = × �2 (27)

�FW

W

2

�2

� � �

We get approximate to �(�2 ) if �2F ≫ �2 so the decay width �′ → W+W−

is

�2�4 �2� F � �

3

Γ F + − � = W � × (1 − �2 )2 × �4 (1 + 20�2 + 12�4 ), (28)

� →�

with �(1, �2 , �2 ) = 1 − 4�2

The total decay width of �′, Γ�F is calculated by summing all the decay width above

The result obtain as:

Γ�F = 3Γ(�′ → 3+ ( ߥߥΓ(�′ → 𝑙𝑙ߥ ) + 2Γ(�′ → 𝑢ߥ𝑢) + 2Γ(�′ → �ߥ� ) + Γ(�′ →

�ߥ�)

+Γ(�′ → �ߥ�) + Γ(�′ → �ℎ) + Γ(�′ → W+W−) (29) The branching ratios is

��(�′ → X�) = Г(�F→X�) (30)

Г�F

If we assume ��F = 1.7 TeV, 𝑆� = 0.3, �2 = 2,

��(�′ → 𝑙𝑙)

�ℎ) ≈ 0.001, ��(�′ → WW) ≈ 10−8

5 Conclusion & discussion

≈ 0.1, ��(�′ →

the �′ and W1, W2 decays are performed in the 2-2-1 model The decay width of

W1 is the same as in SM, about 2.108 GeV The Z’ decays mostly lepton, therefore, we

can seek for its signal in the lepton interactions

Decay width of particle has a huge effect on the transfer functions of force carriers

The larger the decay width of a particle is, the shorter its lifetime gets For that reason,

detecting them in a low energy scale is a difficult task However, the signals of those kinds

of particles can be found by LHC because its scale is about a few TeV

In this model, there is the mixing between exotic quarks and the existence of FCNC, therefore, will not be considered In the future, we will work with these problems

TẠP CHÍ KHOA HỌC - Trường ĐHSP

144-151

11

Trang 12

Chuan-Hung Chen, & Takaaki Nomura (2017) Phenomenology of an 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)� Model at the LHC Phys Rev D 95, 015015-015026.

Patrignani, C et al (2016) Particle Data Group Chin Phys C 40, 100001-101809

David Griffiths (2008) Introduction to element particles Addison-Wesley Publishing Company Bardin, D., & Passarino, G (1999) The Standard Modelin the Making Clarendon Press, Oxford.

Boucenna,S M., Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J (2016a) Phenomenology

of an 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)� Model With lepton-flavour non-universality JHEP

1612, 059-112.

Boucenna, S M., Celis, A., Fuentes-Martin, J., Vicente, A & Virto, J (2016b) Phys Lett B 760,

214-219

TÍN HIỆU TƯƠNG TÁC YẾU MỚI TRONG MÔ HÌNH 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗

𝑈(1)�

Võ Quốc Phong, Nguyễn Thị Trang

Bộ môn Vật lí Lí Thuyết, Trường Đại học Khoa học Tự nhiên – ĐHQG TPHCM

Corresponding author: Võ Quốc Phong – Email: vqphong@hcmus.edu.vn

Ngày nhận bài: 29-10-2018; ngày nhận bài sửa: 24-12-2018; ngày duyệt đăng: 25-3-2019

TÓM TẮT

Theo mô hình 𝑆𝑈(2)1 ⊗ 𝑆𝑈(2)2 ⊗ 𝑈(1)F (mô hình 2-2-1), phân rã W± (giống như

trong mô hình chuẩn) và W±, �′ �ẽ đượ𝑐 𝑛�ℎiê𝑛 𝑐ứ𝑢 Bề rộng phân rã W± bằng 2,1 GeV,

phù hợp với SM và dữ liệu thử nghiệm Bề rộng phân rã rất lớn mà đóng góp chính cho sự phân rã này là kênh chứa các quark ngoại lai Hơn nữa, nghiên cứu cho thấy rằng tỉ lệ rã nhánh lepton của Z’ chiếm phần lớn.

Từ khóa: phân rã yếu, mở rộng mô hình chuẩn, mô hình chuẩn.

1

2

TẠP CHÍ KHOA HỌC - Trường ĐHSP

12

Ngày đăng: 05/01/2023, 23:24

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w