KI N TH C C N NH I.CÁC CÔNG TH C BI N I L NG GIÁC
1.CÔNG TH C C NG 2.CÔNG TH C NHÂN ÔI
cos(a + b) = cosa.cosb – sina.sinb cos2a = cos2
a – sin2
a cos(a - b) = cosa.cosb + sina.sinb = 2cos2a –1
sin(a + b) = sina.cosb + cosa.sinb = 1 – 2sin2
a sin(a - b) = sina.cosb - cosa.sinb sin2a = 2.sina.cosa
tan(a + b) = 1 - tana.tanbtana + tanb tan2a = 1 - tan2.tana2
cosa - cosb = -2.sin a + b2 sin a - b2
sina + sinb = 2.sin a + b2 cos a - b2
sina - sinb = 2.cos a + b2 sin a - b2
sin( )tan tan
cosa.cosb = 12 [cos(a – b) + cos(a + b)]
sina.sinb = 12 [cos(a – b) - cos(a + b)]
Trang 26.B NG GIÁ TR L NG GIÁC C A CÁC CUNG C BI T
-3 2
-1
-3 2
-2 2
2 2
-2 2
-2 2
-3 2
1.Ph ng trình sinx=a.( -1 a 1)
sinx = a arcsina+k2
arcsina+k2
x x
Trang 3a c
Trang 4sin x sin 2 x 2cos x 2
sinx ( 2 cosx – sinx ) = 0 sin 0
2 , 1
6 sin
2
7 2 6
2 ,1
6sin
26
Trang 52sin cos cos sin
5tan
arctan( )2
2
kx
a 3sinxsin 2x 0 b.2sinx2cosx 2
c sinxsin3xsin5x 0
d sinxsin3xsin5xcosxcos3xcos5x
2sin x5sin cosx x4cos x f 2 2 2
2cos 2x3sin x 2
sin 2xcos 3x 1 h tan tan5x x 1
i 5cos 2x12sin 2x j 2sin13 x5cosx 4
k 2cosx3sinx 2
Bài 4.Gi i các ph ng trình:
a tanxcotx b.2 2
(3 cot ) x 5(3 cot ) x
c 3(sin3xcos )x 4(cos3xsin )x d 2 2
4sin x3 3sin 2x2cos x 4
Trang 6sin x sin 2 x 2cos x 2
sinx ( 2 cosx – sinx ) = 0 sin 0
tan 2
x x
2
x x
2 2 2 6 7 2 6
2 4
x k
0.25đ*2
0.25đ*2
2 2 2 6 5 2 6
Trang 7d) 3sin 1cos 2
2 x 2 x 2 5
2 12 11
2 12
a 2sin x 3 0 b 2cos x 1 0 c cos 2 x 3sin x 2 0 d 3 sin x cos x 2
2 2 2 6 5 2 6
12 7 2 12
a 2sin x 1 0 b 2cos x 2 0 c 2 cos2x -3cosx +1 =0 d 3 sin x cos x 2
2 12 11
2 12
0.25đ*3
Câu 6(3đ) : Gi i Ph ng trình
a 3 sin x cos x 2 b cos 2 x 3sin x 2 0
c cos2x + sinx +1=0
Trang 82 12
b.sin2x +3sinx cosx -5 cos2x= 0
a/ 2cos x 1 0 cos x 1 cos2
Trang 9b sinx + sin2x = cosx + cos3x
c.4sin2x -5sinx cosx -6 cos2x= 0
2
Câu 11(2đ) : Gi i Ph ng trình
a 3 sin x cos x 2 b cos 2 x 3sin x 2 0
1a) 3sin 1cos 2
2 12
Trang 103 cot
cot 2
Trang 11Bài 2 3(sin5xcos )x 4(sinxcos5 )x 3sin5x4cos5x4sinx3cosx
3sin 5 4cos5 4sin 3cos
Bài 3 3sin3x 3 cos9x 1 4sin 33 x 3
(3sin 3x 4sin 3 )x 3 cos9x 1
Trang 124cos 2 cosx x 3sinx 3cosx
2(cos3xcos )x 3 sinx3cosx
C2 (*)8sin2xcosx 3 sinxcosx 2
8(1 cos x)cosx 3 sinx cosx
26
Trang 1362sin 1
5
26
tt
Bài 11 2cos3xcos 2xsinx 0 3 2
2cos x 2cos x 1 sinx 0
Trang 14Bài 12 1 cot 2 1 cos 22
sin 2
xx
1 cos 2
xx
sin 2 cos 2x x cos 2 (1 cos 2 )x x 0
cos 2 (sin 2x xcos 2x 1) 0
cos 2 0sin 2 cos 2 1
Trang 15(sinx 3 cos )(sinx x 3 cosx 4sin cos )x x 0
sin 3 cos 0sin 3 cos 4sin cos 0
sinx 3 cosx 4sin cosx x 0
Bài 16 sin3xcos3xsinxcosx 2 3
sin (sinx x 1) cos x cosx 0
Trang 162sin xsin cosx xcos x (*) m
a.Tìm m sao cho ph ng trình có nghi m
sin 1 tan
xx
Trang 17cos 0(3sin 2 ) 16 25
a 2 2(sinxcos )cosx x 3 cos 2x b (2cosx1)(sinxcos ) 1x
c 2cos 2x 6(cosxsin )x d 3sinx 3 3 cosx
e 2cos3x 3 sinxcosx 0 f cosx 3sinxsin 2xcosxsinx
h sinxcosxcos 2x
k cos7 cos5x x 3sin 2x 1 sin 7 sin5x x l 4(cos4xsin4x) 3 sin 4x2
m cos2x 3 sin 2x 1 sin2x n 4sin 2x3cos 2x3(4sinx 1)
p
2
(2 3)cos 2sin ( )
2 4 12cos 1
xx
Trang 18Ta có: 5(sin cos3 sin 3 ) 5sin 2sin 2 sin cos3 sin 3
Trang 192 2
sin(1) 5sin 2 3(1 sin )
1 sin
xx
265
26
xxx
Trang 20i chi u đi u ki n ph ng trình có nghi m: ,
Bài 8 4cos3x3 2 sin 2x8cosx 3
4cos x 6 2 sin cosx x 8cosx 0
2
xx
24
2x
265
26
Trang 21Bài 10 3cot2x2 2 sin2x (2 3 2)cosx (1)
2x
2
xx
Bài 12 cosxcos3x2cos5x 0 (cos5xcos )x (cos5xcos3 )x 0
2cos3 cos 2x x 2cos 4 cosx x 0
Trang 23V y,ph ng trình có nghi m: xk2, arccos 1 21 2
x
xx
cos2x(1 2cos 2 ) x 0
cos 0cos 2 1 / 2
xx
Trang 24i u ki n:
23
3(1 tan )
x
xx
tan 0
tan 1
xx
cos 2 0sin( 2 ) 0
4
x
xx
Trang 25cos
22sin cos
x
x x
22sin x
24cos 2 [4cos 2x x 2cos 2 (1 cos 2 )x x 5] 0
34cos 2 (2cos 2x x 2cos 2x 5) 0