1. Trang chủ
  2. » Giáo án - Bài giảng

Optimization of a platform process operating space for a monoclonal antibody susceptible to reversible and irreversible aggregation using a solution stability screening approach

9 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Optimization of a Platform Process Operating Space for a Monoclonal Antibody Susceptible to Reversible and Irreversible Aggregation Using a Solution Stability Screening Approach
Tác giả Adrian Man, Haibin Luo, Sophia V. Levitskaya, Nathaniel Macapagal, Kelcy J. Newell
Trường học AstraZeneca
Chuyên ngành Bioprocessing / Biopharmaceuticals
Thể loại Research article
Năm xuất bản 2019
Thành phố Gaithersburg
Định dạng
Số trang 9
Dung lượng 1,84 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Platform manufacturing processes are widely adopted to simplify and standardize the development and manufacturing of monoclonal antibodies (mAbs). However, there are mAbs that do not conform to a platform design due to instability or other protein properties leading to a negative impact on product quality or process performance (non-platform mAb).

Trang 1

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Adrian Mana, Haibin Luoa, Sophia V Levitskayab, Nathaniel Macapagala,

Kelcy J Newella,∗

a Purification Process Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA

b Analytical Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA

Article history:

Received 19 September 2018

Received in revised form 12 March 2019

Accepted 13 March 2019

Available online 20 March 2019

Keywords:

Monoclonal antibody purification

Automation

High throughput process development

Aggregation

Scale-down

Reversible self-association

Platformmanufacturingprocessesarewidelyadoptedtosimplifyandstandardizethedevelopmentand manufacturingofmonoclonalantibodies(mAbs).However,therearemAbsthatdonotconformtoa platformdesignduetoinstabilityorotherproteinpropertiesleadingtoanegativeimpactonproduct qualityorprocessperformance(non-platformmAb).Non-platformmAbstypicallyrequireprolonged developmenttimesandsignificantdeviationsfromtheplatformprocesstoaddresstheseissuesdueto theneedtosequentiallyoptimizeindividualprocesssteps

Inthisstudy,wedescribeanIgG2mAb(mAbA)thatissusceptibletoaggregationandreversible self-association(RSA)underplatformconditions.Inlieuofasequentialoptimizationapproach,we eval-uatedthesolutionstabilityofmAbAacrosstheplatformoperatingspace(solutionstabilityscreen).This screeningdesignwasusedtoidentifyinteractingparametersthataffectedthenon-platformmAb sta-bility.Asubsequentresponsesurfacedesignwasfoundtopredictanacceptableoperatingspacethat minimizedaggregateformationandRSAacrosstheentireprocess.Thisinformationguidedtheselection

ofoptimalparametersbestsuitedtoavoiddestabilizingconditionsforeachprocessstep.Substantial timesavingswasachievedbyfocusingdevelopmentaroundthesefactorsincludingprotein concentra-tion,bufferpH,saltconcentration,andexcipienttype.Inaddition,thisworkenabledtheoptimizationof

acationexchangechromatographystepthatremovedaggregatewithoutyieldlossesduetothepresence

ofreversibleaggregation.Thefinaloptimizedprocessderivedfromthisstudyresultedinanincreasein yieldof ˜30%overtheoriginalprocesswhilemaintainingthesamelevelofaggregateclearancetomatch productquality

Solutionstabilityscreeningisreadilyadaptedtohighthroughputtechnologiestominimizematerial requirementsandaccelerateanalyticaldataavailability.Implementationofhighthroughputapproaches willfurtherexpediteprocessdevelopmentandenableenhancedselectionofcandidatedrugsbyincluding processdevelopmentobjectives

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

Monoclonalantibodies(mAbs)haveemergedasarapidly

grow-ingclassoftherapeuticsincethemid-1990s.AccordingtotheFDA

databasetherearemorethan70modernantibody-based

thera-peuticagentsapprovedintheUSandmorethan500additional

∗ Corresponding author.

E-mail address: newellkj@medimmune.com (K.J Newell).

productsarecurrentlyinclinicaldevelopment[1 Many biophar-maceutical companies have adopted platform mAbpurification processes tosimplifyprocess developmentand manufacture of mAbs[2 Fig.1illustratesacommonplatformprocesswith com-monlyusedstepsincluding;(1)affinitypurificationcapture, (2) lowpHvirusinactivation,(3)anionexchangechromatographyfor processrelatedimpurityandvirusremoval,(4)cationexchange chromatographyforprocessandproductrelatedimpurityremoval (5)virusfiltration,and(6)formulationthatutilizes(a) ultrafiltra-tionand(b)diafiltrationtogeneratedrugsubstance

https://doi.org/10.1016/j.chroma.2019.03.021

0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

Trang 2

Table 1

Summary of non-ideal observations for a mAb in the platform process.

(mS/cm)

Protein conc.

(mg/mL) 1

Protein A

Chromatography

Low salt b

High protein concentration c

High aggregate in product 2

Low pH Inactivation

3

Anion Exchange

Chromatography

Low salt High protein concentration

Peak tailing

4

Cation Exchange

Chromatography

High salt Intermediate protein concentration

Peak splitting, aggregate formation,

low yield 5

Virus Filtration

Flux 6A

UF1

High salt High protein concentration

High feed pressure/Low Flux

6B

UF2

Low salt Very high protein concentration

High feed pressure/Low flux

a pH range was categorized using following criteria: Low (<4.6), Intermediate (4.6–6.5), Neutral (6.6–8.0), High (>8).

b Buffer ionic strength was categorized using following criteria: Low (<5 mS/cm), Intermediate (5–10 mS/cm), High (>10 mS/cm).

c Protein concentration was categorized using following criteria: Low (<1 mg/mL), Intermediate (1–10 mg/mL), High (11–100 mg/mL) and Very High (>100 mg/mL).

Fig 1.Standard platform manufacturing process for monoclonal antibodies.

A well-designed platform process is expected to robustly

removetheprocessandproductrelatedimpuritiesforthe

major-ityoftherapeuticmAbsusedforclinicaldevelopment.Whilemany

monoclonalantibodiesareeasilymanufacturedusingaplatform

processwithminoradjustments,difficultiesarisewithmAbsthat

do not fit intothe establishedplatform design due to

instabil-ityinsolution(non-platformmAbs).Thisproblemcanresultin

prolongeddevelopmenttimes,supplychainconcernsdueto

imple-mentationof noveltechnologiesand delayedclinical timelines

Proteininstabilityinsolutioncanbeduetomultiplecausesrelated

tomAb structuralheterogeneity and resultin theformation of productrelatedimpurities[3–7].Reversibleself-association(RSA)

isauniquesolutionpropertyinwhichnative,reversibleoligomeric species are formed as a result of non-covalent intermolecular interactions[8,9 Unlikeirreversibleaggregates(aggregates),RSA speciesexistatequilibriumwithmonomerandthemodification

ofsolutionconditionssuchaspH,ionconcentration,or tempera-turecandrivetheequilibriumtofavormonomeroverRSA.IfRSA hasaslowdissociationrate,itcanbedetectedbysizeexclusion chromatography.Ifdissociationconstantsareshort,theprimary methodsofRSAdetectionareanalyticalmethodsthatdetectthe hydrodynamicradiusofamixtureofspeciesorsedimentationrates

ofmultiplespeciessuchasdynamiclightscattering(former)and analyticalultracentrifugation(latter).TheprimarychallengeofRSA speciesisthattheyfrequentlybehavelikeaggregatesmakingit verychallengingtoremoveaggregateswhensolutionconditions favorRSAovermonomer.RSAhasbeendemonstratedtohavea largeimpact oncation exchange chromatography [10] and can alsoimpactsolutionviscosity[11].Specifically,Luoetal demon-stratedthatelutionsaltconcentrationsthatfavoredRSAresulted

inlowcolumnyieldsandtheformationofirreversibleaggregates thatappearedtobemediatedbythepresenceofthe chromatog-raphy resin The formation of RSA has thepotential to impact virtuallyeveryotherstepoftheplatformprocessparticularlyifthe RSAspeciesformsatconditionswheremAbmonomersare usu-allystable(Table1).Untilrecentlytheexperimentaltechniques employedtoaddressRSAeffectsupondownstreamprocesshave beenreactiveratherthanpredictivewithdevelopmenttimelines beingdelayedwhileprocesschangeswereevaluatedandforrobust solutions

Inthiswork,weusedanon-platformmAbthatexhibited atyp-ical solution behaviors when manufactured with the platform process(Table1).ADesignofExperiments(DoE)methodologywas usedtoscreenforsolutionconditionfactorsthatimpactthese atyp-icalbehaviorsandidentifymorestablesolutionconditions.The resultswereappliedtoeach processstepwiththegoalof iden-tifyingoperatingconditionsthatwouldenablegoodperformance forthenon-platform mAbwithonlyminordeviations fromthe platformprocess

Trang 3

2 Materials and MethodS

2.1 Chemicalsandreagents

2.1.1 Buffersaltsandexcipients

BuffersaltswereobtainedfromJ.T.Baker(CenterValley,PA)

andwereofreagentgradeorhigher.Concentratedstocksolutions

weremadebythedissolutionofthesolidcomponentsinreverse

osmosisdistilledwater(RODI).Aliquotsofthestocksolutionswere

mixedanddilutedwithRODIifnecessarytoobtainthetargetbuffer

concentrations

2.1.2 Reagents

ThemAb A was expressedin Chinese hamster ovary (CHO)

cellsmadebyAstraZeneca,Gaithersburg,MD.MAbAhasan

iso-electricpointrangeofpH8.5–9.0andanapproximatemolecular

weightof 147kDa Theexpressed mAbA was purified by

Pro-teinAchromatography,specificallyMabSelectSuReobtainedfrom

GEHealthcare(GEHealthcare,Piscataway,NJ).Whereapplicable,

themAbAaliquotswerebufferexchangedandconcentratedinto

theappropriate buffersolutions using tangentialflow filtration

(TFF)regeneratedcellulosemembranes(Millipore,Billerica,MA)

ConcentratedstockexcipientswerespikedintomAbAsampleas

required.High protein concentrationmAb A preparationswere

achievedusingapressurizedconcentratorcelldevice(Millipore)

andultrafiltrationdiscmembranes(Millipore)

2.2 Analyticalmethods

2.2.1 Proteinconcentration

ProteinconcentrationwasmeasuredusingaNanodrop

spec-trophotometerfromThermoFisherScientific(Waltham,MA).The

absorbanceofthesolutionwasmeasuredat280nmandthe

pro-teinconcentrationwascalculatedfromtheextinctioncoefficient

usingtheBeer-Lambertequation

2.2.2 Dynamiclightscattering(DLS)

ThehydrodynamicradiusfortheIgG2monoclonalantibodywas

analyzedatmultipleproteinconcentrationsusingahigh

through-put384-wellplateDynaProDLSinstrumentfromWyatttechnology

(SantaBarbara,CA)equippedwitha633nmlaser.Thescattered

lightwasmonitoredat173◦totheincidentlightbeamand

auto-correlationfunctionsweregeneratedusingadigitalautocorrelator

ThehydrodynamicradiuswascalculatedusingtheStokes-Einstein

equation

2.2.3 SizeexclusionHPLC

Analytical high performance size exclusion chromatography

(HPSEC)wasperformedusingaTSKgelG3000SWxlcolumnfrom

TosohBioscience(TosohBioscience,Montgomeryville,PA)withan

AgilentHPLC1200systemfromAgilentTechnologies(SantaClara,

CA,USA).Testsamplesweredilutedtoadesiredconcentrationon

iceafterstorage at2–8 ◦C tominimizeRSA dissociation inthe

proteinsamplepriortocolumnchromatography.TheHPLC

auto-samplerwasmaintainedat5◦C,andthecolumnwasrunatambient

temperature.Proteinsamplewasisocraticallyelutedusing0.1M

sodiumsulfate,0.1Msodiumphosphatebuffer,pH6.8,andelution

wasmonitoredbyUVabsorbanceat280nm.RSAwasmeasuredas

apercentoftheleadingshoulderofthemainpeakrelativetothe

totalpeakarea(Fig.2C)

2.3 Statisticaldesignofexperiments

Theexperimentaldesign,wasbuiltwithJMPstatisticalsoftware

version10.0.0(SASInstituteInc.,Cary,NC,USA).Aconcentrated

stockofmAbAwasadjustedtotargetpHandexcipient concen-trationsthroughadditionofstockbuffer/excipientsolutions.The timeofadditionwasdefinedasT=0s.Unlessspecifiedotherwise, theincubationtimewas≥1hpriortosampleanalysistoensure completionoftheaggregationorRSAreaction(Datanotshown) JMPsoftwarewasusedforstatisticalanalysisoftheexperimental dataandmodeldetermination

Screeningexperimentswereusedtoidentifyfactorsthathave

animpactonstabilityindicatingmeasurementsincluding aggre-gateandRSA.Factorstestedwereeitherordinal(salttype,buffer type)orcontinuous(pH,proteinconcentration,saltconcentration, excipientconcentration).Continuousfactorsweretestedatthree levels(−0+)withrangesandcenterpointvalueschosenbasedon anticipatedprocessconditionsorpriorstabilityinformationfrom literatureorin-housedata.Thescreeningdesignincorporatedruns

atcombinationsofhigh(+)andlow(−)valuesforthecontinuous factorsateachordinalfactorpluscenterpointrunsateachordinal factor

Responsesurfaceexperimentswereperformedtomeasurethe degreeofimpactthefactorshaveonthestabilityattributesand identifyinteractionsbetweencontinuousfactors.Anon-face cen-tralcompositedesignincorporatedrunsatcombinationsofhigh (+),centerpoint(0)andlow(-)valuesforeachfactor

2.4 Benchscalechromatographyexperiments 2.4.1 Chromatographyequipmentandmaterials Laboratoryscalechromatographyexperimentswereperformed using a GE Healthcare ÄKTA Explorer 100 using Unicorn soft-wareversion5.2(GEHealthcare,Piscataway,NJ,USA).Thecation exchangeresinusedinthisstudywasCaptoSPImpResobtained fromGEHealthcare(GEHealthcare,Piscataway,NJ,USA).Cation exchangechromatography(CEX)resinswerepackedinto1.15cm innerdiameter(ID)Vantagecolumns(Millipore,Billerica,MA,USA)

toabedheightofapproximately12cmandoperatedatalinear velocityof150cm/hour

2.4.2 Cationexchangechromatography TheCEXcolumnswere equilibratedwith3column volumes (CVs)of50mMsodiumacetatepH4.5.ThepHandconductivityof thecolumneffluentweremonitoredthroughbuilt-inÄKTAprobes

toconfirmcolumnequilibration.ThecolumnwasloadedwithmAb materialtoaresidencetimeof5min.Afterloading,thecolumnwas washedwith3columnvolumes(CV)of50mMsodiumacetate,pH 4.5.Theproteinboundonthecolumnwaselutedovera20CV lin-earsaltgradientfrom0to500mMin50mMsodiumacetatepH 4.5.Theelutionpeakwasfractionatedinhalf-CVfractionsbased

onA280collectioncriteriaof100mAU.Theabsorbanceofthe pro-teinwasmonitoredatA280bybuilt-inÄKTAprobes.In-linepHand conductivitywerealsomonitoredforalltestruns.Allrunswere carriedoutatroomtemperature(20–25◦C).Cleaningin-place(CIP) wasconductedusing3CV50mMsodiumacetate,1Msodium chlo-ride,pH5.0followedby1Nsodiumhydroxide.Thecolumnswere storedin20%ethanolaftereachrun.FinalCEXtestconditionswere demonstratedusinga20mMCaCl2stepelution

3 Results and discussion

3.1 Observationsofatypicalsolutionbehaviorsduring purificationofmAbAusingaplatformpurificationprocess MonoclonalantibodyA(mAbA)waspurifiedusingastandard platformprocess(Fig.1).Whileothermonoclonalantibodiescan

bepurifiedundertheseconditionswithacceptableprocess perfor-manceandproductquality,theprocessstandardsforperformance andqualitycouldnotbeachievedwithmAbA(Table1)

Trang 4

Fig 2. Analytical methods employed to measure the purification process design space A) DLS data demonstrating the changes in hydrodynamic radius of a 10 mg/mL mAb

A sample at 25◦C (monomer) and at 5◦C (multimer) B) HPSEC data used to measure irreversible aggregate levels C) HPSEC data demonstrating RSA when using SEC method with refrigerated autosampler and higher protein concentration load.

AsshowninTable1,aggregateformationisasignificantsource

ofdecreasedproductpurityduringseveralplatformstepsincluding

ProteinAChromatography,LowpHinactivation,Cationexchange

chromatography andUltrafiltration and Diafiltration.For

exam-ple,observationsofmAbAduringlowpHactivationdemonstrated

aggregationratesupto0.9%aggregate/hour(SupplementalFig.1) Thisrateofaggregationis9timeshigherthanouractionlimitsfor aggregationrate(0.1%aggregate/hour)

Highproteinconcentrationconditionsarealsotypicalduring bindandelutechromatographystepsandultrafiltrationstepsofthe

Trang 5

Fig 3.Design space for mAb A purification process [1] Protein A [2] Low pH [3] Anion exchange [4] Cation exchange [5] Virus Filtration [6a] UF1 [6b] UF2 indicating where aggregation and RSA occur A) Platform conditions, B) Platform condition with sucrose, C) Platform condition with calcium chloride.

platformprocess(steps1,4and6inTable1).Whileconventional

mAbs exhibited acceptable stability within these protein

con-centrations,Luoetal.demonstratedthatpeaksplittingobserved

duringmAbAcationexchangechromatographypurificationwas

duetoformationofadditionalaggregatesduringelutionfromthe

column The generation of aggregates results in lower product

purityandconsequentialyielddecreaseduringaggregateremoval

stepssuchasthecationexchangechromatographystep

Aggre-gation hasadditional impacts on process performance such as

reducedfluxduringviralfiltrationandultrafiltration(steps5and

6inTable1)

Early observations suggested that aggregate generation and

advanced aggregation rates might be the cause of the

perfor-mance issues (i.e peak tailing and splitting) observed during

cation exchangechromatography (step 4 ofTable 1).However,

theobservationsofpeaktailingandsplittingstilloccurredeven

when the feed aggregate levels were greatly reduced Further

investigationrevealedthatmAbAexhibitedon-columnreversible

self-association(RSA)aswellasirreversibleaggregateformation

[10] RSA and aggregatelevels canbemeasuredusingDLS and

HPSECrespectively(Fig.2).RefrigerationoftheHPLCauto-sampler

enabled theuseof HPSEC to visualize both RSA and aggregate

levels(Fig 2).RSA formation was demonstrated to be favored

at both refrigerated temperatures and high protein

concentra-tions

ItwashypothesizedthatmAbAnon-conformancetothe

plat-form process is due to susceptibility to RSA and aggregation

Development of a mAb A process therefore required

identifi-cation of solutionconditions where acceptablestability can be

achieved

3.2 Determinationofthedownstreamoperatingspace

A design of experiment (DoE) approach was used toscreen severalfactorsincludingpH,buffertype,salttypeandsalt con-centrationtodeterminetheimpact,ifany,onmAbAstabilityas measuredbyRSAandaggregateformation.Afteridentifying fac-torsthatimpactstability,afollow-upresponsesurfaceexperiment usingthesefactorsgeneratedapredictivemodeltodeterminethe operatingspacethatminimizesRSAandaggregateformation ThisoperatingspacewasdefinedatamAbAprotein concen-trationof10mg/mL.Whileproteinconcentrationisafactorthat wasshowntocauseaggregationandRSAwithincreasing concen-tration(Datanotshown),a10mg/mLconcentrationiswithinthe expectedrangeformostoftheplatformsteps(steps1–5inTable1) andthereforestatisticalmodelswerecreatedatthiscontrolprotein concentration

Fig.3aplotswhereRSAandaggregationispredictedtooccurat combinationsofsolutionpHandNaClconcentrationwhichwere determinedtobesignificantfromthescreeningstudy.To illus-trateapotentialpurificationdesignspace,limitsoflessthan40% RSAandaggregatewereassignedtoidentifyapHandNaCl con-centrationrangewherethenon-idealsolutionbehaviorswouldbe minimized.RSAandaggregateformationoccurunderdistinct con-ditionswithRSAoccurringatneutraltohighpHinasalt-dependent mannerandwithaggregatesformingatlowpHconditionsalsoin

asalt-dependentmanner.TheplotshowsanarrowpHrange,from approximatelypH5–6,andnarrowswithincreasingsalt concen-trationwhereRSAandaggregationareavoided.Consequently,only one(step6ainTable1)outofthesixplatformprocessstepsis suitableformAbApurification

Trang 6

Fig 4.Impact of excipients on a) aggregation at pH 3.5 and b) RSA at pH 5.5 on a

50 mg/mL mAb A sample.

TheresultsinFig.3ashowthateitherthedesignspaceneeds

tobewidenedbytheadditionofstabilizingexcipientsorthatthe

purificationprocesswouldneedtobemodifiedtoshiftthemajority

ofprocessstepsintoanoperatingspacethatminimizesRSAand

aggregation

3.3 Excipientscanmodulatethepurificationdesignspace

Stabilityofproteinsmaybeenhancedinthepresenceof

excipi-entsthroughconformationalorcolloidalmechanisms[12].Sugars

suchastrehaloseandsucrosehavebeenshowntoprevent

attrac-tiveelectrostaticinteractionsbetweenmonomericmolecules[13]

ApatentwasfileddemonstratingthatmAbARSAwasmitigated

bytheadditionofsucrose[14],[15].Aggregationmediatedthrough

hydrophobicinteractionscanbemitigatedinthepresenceof

argi-nine and propylene glycol [16,17] Urea can stabilize proteins

throughhydrogenbonding[18].Manyoftheseexcipientsare

cur-rentlyusedinplatformformulationsbasedondemonstrateddrug

substancesafety,efficacyandstability

Ascreeningstudytodeterminetheeffectoffourexcipients,

sucrose,propyleneglycol(PG),ureaandarginine,uponRSAand

aggregationwasperformedandtheresultsshowninFig.4.Based

ondatafromtheresponsesurfacedesignmodelidentifyingpH,

NaClconcentrationandproteinconcentrationasfactorsimpacting

aggregationandRSA,twotestconditionsweredefined(50mg/mL

proteinconcentrationpH3.5orpH5.5inthepresenceof0.1M

NaCl).Excipientconcentrations testedweredemonstratedtobe

effectivewith othermonoclonalantibodies under development

(Datanotshown).MabAissusceptibletoaggregationandRSAat

pH3.5andpH5.5respectively.Theaggregateandreversibly

associ-atedspeciesweremeasuredandthepercentchangeineachspecies

relativetothenegativecontrol(mAbAintheabsenceofexcipient) calculated.ResultsfromthisstudyaresummarizedinFig.4 Sig-nificantmAbAaggregationoccursatpH3.5butthepresenceof sucrosemitigatestheincreaseby8%.Theotherexcipientstested appeartoexacerbateaggregation.RSAoccurringatpH5.5is miti-gatedbysucrose,propyleneglycolandargininebutismosteffective withsucrose.UreaisshowntobeineffectiveinstabilizingmAbAat eitheroftheriskconditionsforaggregationandRSA.Sucrosewas theonlyexcipienttestedthatmitigatedbothaggregationandRSA formation

ThedatainFig.4 suggeststhatsucrosehasthepotentialfor wideningthemAbApurificationdesignspace.Aresponsesurface designexperimentwasperformedwiththeinclusionofsucroseasa factorinadditiontopHandNaClconcentration.Applyingthesame criteriaforaggregationandRSAasthemodeldescribedinFig.3a,

bdemonstratesthat0.3Msucrosebroadensthedesignspace.The resultisthatfourofthesixplatformsteps(steps1,4,5and6in Table1)occurinthebroadersafeoperatingspace

Whileadditionofsucrosetoallprocessstepscanmitigatethe non-idealsolutionbehaviorsobservedwithmAbA,thereare pro-cess challenges and risks associated with theuse of sugars as

a manufacturingraw material.Thesechallengesinclude:higher viscosity liquids[19], a carbon sourcefor adventitious biologic contamination,andahigherriskforunacceptableendotoxin lev-elsin thedrugsubstance.Sucrose additionmaybeappropriate for unit operationslikelow pHinactivation (step2 inTable 1) whereexposuretimetosucrosewouldbelimitedandriskof micro-bialcontaminationlowatthispHcondition.Sucroseadditionto theProtein A chromatography (step1 in Table 1)low pH elu-tionbuffermayalsopreventaggregateformationunderplatform conditions However,filtrationsteps(steps 5 and 6in Table 1) withpressureconsiderationsorpolishingchromatographysteps (steps3and4inTable1)withpotentiallylongerproduct expo-suretime tosucrose are at greater risk tothe aforementioned challenges

3.4 Changingsaltsusedinthecationexchangechromatography stepcanmodulatethedesignspacelocation

Theresponsesurfacedesign showsthatRSAandaggregation increaseswithincreasingsodiumchlorideconcentration.Thesalt typewasnotasignificantfactorasdifferentsalts(Ex.calcium chlo-ride)hadasimilarimpactonRSAandaggregation(Supplemental Fig.2)atequivalentmolarconcentrations.While thisdata sug-geststhatselectionofsalttypecannotmodulatethedesignspace withrespecttoRSAandaggregationatequivalentmolarities,salt typecanimpactelutionconditionsduringcationexchange chro-matography [20] Cationexchange elution salt concentrationis dependentuponthestrengthofthecationiccharge.Becausethe bindingbetweenthemAbandtheresinligandiselectrostatic,the requiredconcentrationofsalttoelutethemAbvariesbasedonthe respectivechargeofthecation

Astudywasperformedtoevaluatetheefficacyofdifferentsalt typesinresolvingmAbAmonomericproductfromhigh molecu-larweight(HMW)impurityspeciesandtodeterminetherequired saltconcentrationtoachieveresolution.MabAwasloadedontoan equilibratedcationexchangecolumn,washedandelutedwithsalt

aspreviouslydescribed(Section2.4.2).Thischromatographic pro-cedurewasusedtoscreendifferentsalttypes,includingpotassium chloride,sodiumsulfate,sodiumacetate,sodiumcitrate,arginine hydrochloride,magnesiumchlorideandcalciumchloride,in addi-tiontotheplatformsodiumchloride.Thecationexchangeoutputs

ofstepyield,productvolumeandproductqualityweremeasured foreachrun

TheelutionchromatogramsforeachsalttypeareshowninFig.5 ThemAbAmonomer(peak1)iselutedfirstduringthesalt

Trang 7

gra-Fig 5.Impact of Salt Species on Separation of Monomer and High Molecular Weight (HMW) Impurities during Cation Exchange Chromatography Monomer is the early eluting peak while the HMW impurities, annotated with the percent HMW, are late eluting.

Table 2

Summary of process modifications for mAb A purification and applicable HTPD tools for future non-platform mAb case studies.

Observations

Modified Conditions Potential HTPD methods 1

Protein A

Chromatography

High aggregate in product

Reduced aggregate in product

Low pH Low salt, High conc.

Sucrose

96-well stability study, DLS plate reader, HTSEC 2

Low pH Inactivation

Aggregate formation No aggregate formation 3

Anion Exchange

Chromatography

Low salt High conc.

Sucrose

TeChrom Robo-column purification

4

Cation Exchange

Chromatography

Peak splitting, aggregate formation, low yield

Peak splitting, No aggregate formation, Increased yield

Intermediate pH Low salt 5.

Virus Filtration

Low flux

Increased Throughput

Filterplate throughput experiments 6A.

Ultrafiltration 1

High feed pressure/Low flux

Reduced Feed pressure/

Increased flux

Intermediate pH Low salt High conc.

DLS flowthrough cuvette, High throughput tangential flow filtration 6B

Ultrafiltration 2

Intermediate pH Low Salt Arginine Very high conc.

dientfollowedbytheHMWspecies (peak2).Thisisdue tothe

HMWspecieshavingagreateraffinitytothecationexchange

lig-and.Theyieldpercentageofeachpeakcanbecalculatedfromthe

relativepeakareas.TheyieldoftheHMWspeciesisannotatedon

eachchromatograminFig.5.Thepoolofeachpeakwascollected

and analyzedfor product quality(Data not shown).Comparing

eachofthechromatographicrunswithrespecttomonomerpeak

purityandstepyield,calciumchlorideelutionachievedbothhigh

monomerpurity(98%)andhighyield(82%).Therunwithcalcium

chloridealsoshowsalowlevel(13.7%)oftheHMWspeciesandisan

indicationthatthiselutionsaltconditionminimizestheformation

ofHMWspecies.Thisobservationisconsistentwiththeresponse

surfacedesignmodelthatshowsRSAandaggregationoccurringat

highsaltconcentration.Peakelutionwithcalciumchlorideoccurs

atapproximately25mM whileother salts(Ex sodiumacetate)

thatrequireahighsaltconcentration(approximately150mM)for elutionshowa higheryield(36.4%) oftheHMWspecies While othersalttypescan achievesomecombinationof (1)highstep yield,(2)highproductpurityor(3)minimalHMWspecies forma-tion,calciumchlorideachievesallthreedesiredobjectives.Further confirmationofcalciumchlorideefficacyformAbApurification wasshownbyasubsequentcationexchangechromatographyrun usingacalciumchloride20mMisocraticstepelutionwherehigh yieldandhighproductqualitywereachieved(SupplementalFig.3) Additionally,theproductvolumewiththecalciumchlorideelution was25%lesscomparedtotheplatformsodiumchloridecondition allowingformanufacturingfacilityfitbenefits.Fig.3cillustrates howtheuseofcalciumchlorideshiftsthedesignspacelocationfor thecationexchangestep(step4inTable1)intoasafeoperating areatoavoidaggregation

Trang 8

Fig 6.Optimized operating space for mAb A purification process [1] Protein A [2]

Low pH [3] Anion exchange [4] Cation exchange [5] Virus Filtration [6a] UF1 [6b]

UF2 indicating where aggregation and RSA is predicted to occur Proposed optimized

mAb A process using sucrose during Protein A chromatography and calcium chloride

during cation exchange chromatography.

4 Conclusion

Inthispaper,wedescribeacasestudywhereatypicalsolution

behaviors,determinedtobereversibleself-association(RSA)and

aggregation,wereobservedduringplatformprocessingofmAbA

resultinginunacceptableproductqualityandyieldforaplatform

commercialmanufacturingprocess.Anintensivestudywas

per-formedtobetterunderstandthesenon-ideal solutionbehaviors

andtodevelopadownstreamprocessforthisnon-platformmAb

Throughtheuseofscreeningandresponsesurfacedesignof

exper-iments,factorsimpactingthenon-idealsolutionbehaviorswere

identifiedandstatisticalmodelstopredictRSAandaggregation

lev-elswithinrangesofthesefactorsweregenerated.Itwasshownthat

pH,saltconcentration,proteinconcentrationandsucroseare

fac-torsthatdeterminewherenon-idealsolutionbehaviorsoccur.With

thisknowledge,anoptimizedprocessformAbAwasproposed

BecauseofthemAbAstabilizingpropertiesofsucrose,inclusion

ofsucrosetotheelutionbufferoftheProteinAchromatography

step(step1inTable2)andtotheacidificationtitrantofthelowpH

inactivationstep(step2inTable2)isexpectedtoreduceaggregate

formationcurrentlyobservedatplatformconditions

Manufactur-ingconcernsabouttheriskofadventitiousbiologiccontamination

associated withhighsugar concentrations aremitigated bythe

subsequentprocess stepswheresucrose would bediluted

dur-ingneutralizationafterlowpHtreatmentandflow-throughanion

exchangechromatography(step3inTable2)andremovedduring

cationexchangechromatography(step4inTable2).Knowledge

ofthesaltconcentrationeffectonRSAandaggregationdrove

fur-therexperimentstoscreensalttypesthatcanelutemAbAfrom

thecationexchangecolumnatalowmolarconcentration.Theuse

of20mMcalciumchlorideelutedmAbAproductof high

prod-uct quality and yield without aggregateinduced peak splitting

observed with the platform sodium chloride elution salt

Con-sequential lowersalt concentrationin themAbA producthave

additional process benefits where low salt concentrations may

improvefluxandreducefeedpressureduringviralfiltrationand

ultrafiltration(steps5and6inTable2)[21].Fig.6illustrateshow

leveragingthecombination ofexcipientandsalt typeresultsin

amanufacturingprocessthatisonlymodestlydifferentfromthe

platformbutnowallowsforfour(steps1,4,5and6inTable2) outofthesixplatformprocessstepstobewithinastableoperating spaceformAbApurification.WhilelowpHinactivation(step2in Table2)andanionexchangechromatography(step3inTable2) stilloccurwithintheaggregationandRSAriskspacerespectively, thehighmolecularweightspeciesformedatthesestepsarewithin theimpurityremovalcapabilitiesofthesubsequentdownstream steps

Thisstrategyforoptimizingaprocessforanon-platformmAb wasareactiveapproachtopurificationproblemsobserved dur-ingconventionalprocessdevelopment.Whilesuccessful,delayed timelinesandsignificantadditionalinvestmentinlabscale devel-opment time were an unintended consequence Most of the developmenttimewasattributedtoperformingthebenchscale experiments(section2.4)andanalyticalmethods(section2.3) For future mAband non-mAb drugproducts, theuseof the designofexperimentapproachdescribedherecouldbeusedina proactivemannerwherecandidatemoleculesareinitiallyscreened

toassesssolutionproperties.Thisapproachwillneedto(1) min-imize the amount of protein needed for thesestudies and (2) generatedataquicklytoenablecandidatedrugselection within theexistingdevelopmenttimelines.Bothobjectivescanbereadily accomplishedbyleveragingexistinghighthroughputscale-down modelsandanalytics,collectivelyreferredtoashigh-throughput process development(HTPD) Ourlab hasimplemented several HTPDmethodsthatgreatlyreduceexperimenttime[22].Someof thesetechniquesandtheirapplicabilitytoprocessstepsinthiscase studyareshowninTable2.Thisdatacanthendeterminesuitability forfurtherprocessdevelopmentandapplicabilitytoourplatform processthusreducingcostlydevelopmenttime.Themodelforour developmentlabofthefuturewilllinktheseHTPDtoolstogether

toenabletheproactivescreeningofallbiopharmaceuticalsthatfit withintheplatformparadigmtoassessthemolecule’sprocessfit andenablebetterplanningfordevelopmentresourcesand time-line

Acknowledgements

TheauthorswouldliketoacknowledgeMatthewDickson, Yul-ingLi,TimothyPabst,IrinaRamos,DavidRobbinsandMinZhu(all currentlyorformerlyatAstraZeneca)

Appendix A Supplementary data

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion, atdoi:https://doi.org/10.1016/j.chroma.2019 03.021

References

[1] G Walsh, Second-generation biopharmaceuticals, Eur J Pharm Biopharm 58 (2004) 185–196.

[2] A.A Shukla, J Thommes, Recent advances in large-scale production of monoclonal antibodies and related proteins, Trends Biotechnol 28 (2010) 253–261.

[3] W Wang, Protein aggregation and its inhibition in biopharmaceutics, Int J Pharm 289 (2005) 1–30.

[4] W Wang, S Singh, D.L Zeng, K King, S Nema, Antibody structure, instability, and formulation, J Pharm Sci 96 (2007) 1–26.

[5] S.J Shire, Z Shahrokh, J Liu, Challenges in the development of high protein concentration formulations, J Pharm Sci 93 (2004) 1390–1402.

[6] E.Y Chi, S Krishnan, T.W Randolph, J.F Carpenter, Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation, Pharm Res 20 (2003) 1325–1336.

[7] W Wang, C.J Roberts, Protein aggregation – mechanisms, detection, and control, Int J Pharm 550 (2018) 251–268.

[8] R Esfandiary, A Parupudi, J Casas-Finet, D Gadre, H Sathish, Mechanism of reversible self-association of a monoclonal antibody: role of electrostatic and hydrophobic interactions, J Pharm Sci 104 (2015) 577–586.

Trang 9

[9] D Some, J Pollastrini, S Cao, Characterizing reversible protein association at

moderately high concentration via composition-gradient static light

scattering, J Pharm Sci 105 (2016) 2310–2318.

[10] H Luo, N Macapagal, K Newell, A Man, A Parupudi, Y Li, Y Li, Effects of

salt-induced reversible self-association on the elution behavior of a

monoclonal antibody in cation exchange chromatography, J Chromatogr A

1362 (2014) 186–193.

[11] P.S Sarangapani, J Weaver, A Parupudi, T.M.D Besong, G.G Adams, S.E.

Harding, P Manikwar, M.M Castellanos, S.M Bishop, J.A Pathak, Both

reversible self-association and structural changes underpin molecular

viscoelasticity of mAb solutions, J Pharm Sci 105 (2016) 3496–3506.

[12] D.S Goldberg, S.M Bishop, A.U Shah, H.A Sathish, Formulation development

of therapeutic monoclonal antibodies using high-throughput fluorescence

and static light scattering techniques: role of conformational and colloidal

stability, J Pharm Sci 100 (2011) 1306–1315.

[13] J.K Kaushik, R Bhat, Why is trehalose an exceptional protein stabilizer? An

analysis of the thermal stability of proteins in the presence of the compatible

osmolyte trehalose, J Biol Chem 278 (2003) 26458–26465.

[14] M Dimitrova, N Mody, in: Antibody Formulations, U.S.P Office, USA, 2012

(Ed.).

[15] G.V Barnett, V.I Razinkov, B.A Kerwin, S Blake, W Qi, R.A Curtis, C.J Roberts,

Osmolyte effects on monoclonal antibody stability and

concentration-dependent protein interactions with water and common

osmolytes, J Phys Chem B 120 (2016) 3318–3330.

[16] K Tsumoto, D Ejima, Y Kita, T Arakawa, Review: why is arginine effective in suppressing aggregation? Protein Pept Lett 12 (2005) 613–619.

[17] A Apicella, P Heunemann, S Bolisetty, M Marascio, A Gemperli Graf, L Garamszegi, R Mezzenga, P Fischer, C.J Plummer, J.A Manson, The influence

of arginine on the response of enamel matrix derivative (EMD) proteins to thermal stress: towards improving the stability of EMD-based products, PLoS One 10 (2015) e0144641.

[18] Q Zou, S.M Habermann-Rottinghaus, K.P Murphy, Urea effects on protein stability: hydrogen bonding and the hydrophobic effect, Proteins 31 (1998) 107–115.

[19] P Longinotti, H Corti, Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime, J Phys Chem Ref Data

37 (2008).

[20] W.R Melander, Z el Rassi, C Horvath, Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography Effect of salts on the retention of proteins, J Chromatogr 469 (1989) 3–27.

[21] J Luo, Y Wan, Effects of pH and salt on nanofiltration—a critical review, J Membr Sci 438 (2013) 18–28.

[22] S.T Evans, K.D Stewart, C Afdahl, R Patel, K.J Newell, Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes, J Chromatogr A 1506 (2017) 73–81.

Ngày đăng: 31/12/2022, 10:00