1. Trang chủ
  2. » Giáo án - Bài giảng

Direct analysis of aromatic hydrocarbons in purified mineral oils for foods and cosmetics applications using gas chromatography with vacuum ultraviolet detection

8 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Direct Analysis of Aromatic Hydrocarbons in Purified Mineral Oils for Foods and Cosmetics Applications Using Gas Chromatography with Vacuum Ultraviolet Detection
Tác giả Alan Rodrigo García-Cicourel, Hans-Gerd Janssen
Trường học University of Amsterdam, Van ‘t Hoff Institute for Molecular Sciences, Analytical Chemistry-Group, P.O. Box 94157, 1090 GD, Amsterdam, the Netherlands
Chuyên ngành Analytical Chemistry
Thể loại research article
Năm xuất bản 2019
Thành phố Amsterdam
Định dạng
Số trang 8
Dung lượng 2,01 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Highly purified mineral oils are used in several pharmaceutical, foods and cosmetics applications. A fast and simple method was developed for the analysis of the total level of residual mineral oil aromatic hydrocarbons (MOAH)in these oils and in the intermediate oils that were sampled during the purification process.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

a University of Amsterdam, Van ‘t Hoff Institute for Molecular Sciences, Analytical Chemistry-Group, P.O Box 94157, 1090 GD, Amsterdam, the Netherlands

b Unilever Research and Development, P.O Box 114, 3130 AC Vlaardingen, the Netherlands

a r t i c l e i n f o

Article history:

Received 26 September 2018

Received in revised form 4 December 2018

Accepted 7 January 2019

Available online 8 January 2019

Keywords:

Mineral oil analysis

Mineral oil aromatic hydrocarbons

MOAH quantification

Gas chromatography

Vacuum ultraviolet detector

a b s t r a c t

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Highlyrefinedandpurifiedmineraloilfractionsarewidelyused

forelaborationofconsumerproductssuchasfoodsand

cosmet-ics.Thesemineraloils(MO)arecalled‘whiteoils’andmustmeet

verystrictcriteriaintermsofresiduallevelsofmineraloil

aro-matichydrocarbons(MOAH)[1 Inadditiontothedeliberateuse

ofthesepurifiedoilsasingredientsforcosmeticsorfoods,mineral

oilcanalsofinditswayintoconsumerproductsasacontaminant,

e.g.throughmigrationfromrecycledpackagingmaterialsorfrom

theenvironment[2 Thesecontaminantscaneasilycontainupto

30%andsometimesevenupto50%ofMOAHandtheir

concen-trationinconsumerproductsrangesfrom10to100mg/kg[3,4

ReliablemethodsformonitoringthetotalMOAHlevelsinMOare

neededfortheoptimizationofMOAHremovalprocessesinwhite

oilproduction, aswellasfordetectingMOAHcontaminationin

qualityassessmentofconsumerproducts.Ideallythesemethods

∗ Corresponding author.

E-mail address: a.r.garciacicourel@uva.nl (A.R García-Cicourel).

wouldalsoprovideinformationonthecompositionoftheMOAH fractionasthismightaffectbothremovalefficiencyandtoxicityof theMOAH[5

Biedermannetal.developedafullyautomatedon-linenormal phaseliquidchromatography(NPLC)–gaschromatography-flame ionizationdetection(GC-FID)methodwithasilicacolumnforthe quantitativeanalysisoflowlevelsofMOAHinfoodsandcosmetics

Inthismethod,theNPLCstepwasusedtoperformapreseparation

ofmineraloilsaturatedhydrocarbons(MOSH)andMOAH.Sensitive anduniversalquantificationofthetwofractionswasthenprovided

bytheFID[6,7 TheBiedermannandGrobmethodisnowwidely used.However,becauseinmanylaboratoriestheinstrumentation requiredisnotavailable,alsolessautomatedapproacheshavebeen developed.AmethodusingSolidPhaseExtraction(SPE)forthe pre-separationofMOSHandMOAHwasdevelopedbyMoretetal.in

2011.ToimprovetheMOSH/MOAHseparation,thesilicasorbent wasreplacedbysilver-loadedsilicamakingthedeterminationof thecutpointbetweenMOSHandMOAHless critical[8,9 Still, forsampleswithMOAHcontentsbelow1%interferencesofMOSH readilyoccur.ForsuchsamplestheendoftheMOSHbandmight overlapwiththestartofthelaterelutingMOAHfraction.Because https://doi.org/10.1016/j.chroma.2019.01.015

0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

114 A.R García-Cicourel, H.-G Janssen / J Chromatogr A 1590 (2019) 113–120

theGC-FIDquantificationstepprovidesnoadditionalselectivity,

tracesofMOSHcollectedintheMOAHfractionresultinincorrect

MOAHlevels.Theneedforthiscarefulprefractionationmakesthe

methodtime-consuminginroutineanalysisandfaster methods

withlesssamplehandlingstepsaredesired

Recently a novel detector for GC has been introduced, the

VacuumUltraviolet (VUV)detector.This detectormeasuresthe

absorbanceof gas phase compounds in thefar UV wavelength

range from 120to 430nm [10] Essentially almost every

com-poundabsorbsstronglyinthisrangeofwavelengths[11].Indeed

theuniversalnatureofthedetectorhasbeendemonstratedwith

theanalysisof awide varietyofcompoundsin different

matri-ces[12–17].TheVUVdetectorhasattractedsignificantattention

for petrochemical analysis due to its ability to provide

group-typeinformation.In2016,Groegeretal.foundspectraldifferences

betweenaliphaticandaromaticscompoundsindieselfuelanalysis

[18].Atlowwavelengthsallcompounds,aliphaticandaromatic,

aredetected,whereasathigherwavelengthsonlythearomatics

andunsaturatedcompoundsabsorb.Thisisanextremely

attrac-tivefeatureinMOSH/MOAHanalysis.Ifsufficientlyselective,this

wouldmeantheGC-VUVcombinationwouldbeabletoquantify

MOAHdirectly,i.e.withoutpriorseparationofMOSHandMOAH

Thiswouldbehighlyadvantageousintermsofanalysiscostand

methodruggedness Moreover,thechromatogramsand spectra

willcontaininformationonthenumberofaromaticringsorthe

lengthandtypeofalkyl-moietiespresent,whichcouldberelevant

informationfore.g.optimizationoftheMOAHremovalprocesses

inwhiteoilproduction

InthisworkanovelandrapidGC-VUVmethodforthe

deter-mination of the aromatics content in mineral oil samples and

intermediatesfromthewhiteoilproductionprocessisdescribed

QuantitativedataobtainedusingthenewdirectGC-VUVmethod

arecomparedwiththosefromstandard,off-lineSPE-GCmethods

Furthermore,theabilityoftheset-upforprovidingstructural

infor-mationonthemoleculesinthearomaticfractionsfromtheirVUV

spectraisstudied

2 Materials and methods

Hexaneanddichloromethane (DCM),both HPLCgrade,were

purchased from Biosolve BV (Valkenswaard, The Netherlands)

n-undecane (C11), bicyclohexyl (Cycy), n-tridecane (C13), 5-

␣-cholestane (Cho), n-hexyl benzene (6B), 1-methyl naphthalene

(1-MN),biphenyl(BP),1,3,5-tri-tert-butylbenzene(TBB)and

n-nonylbenzene(9B) werefromSigma-Aldrich(Zwijndrecht, the

Netherlands) Silver-nitrate impregnated silica gel (230 mesh)

loaded at approximately 10wt.% was purchased from

Sigma-Aldrich.Mineraloilsamplesfromdifferentstagesinthepurification

processwereobtainedfromalocalsupplierofwhiteoils.The

vis-cositiesoftheoils rangedfrom10.32to153.4cStat 40◦C The

carbonnumbersofthecompoundsrangedfrom15tomorethan

50

2.1 Mineraloilandstandardsolutions

Stocksolutionsofeachmineraloil(at500mg/mL)andofthe

mixtureofstandardcompounds (C11,C13,Cycy,Cho,6B,1-MN,

BP, TBBand 9Bat 1mg/mL percompound), which areused as

markersfortheMOSHandMOAHseparation,toevaluatelosses

ofvolatilecompounds and forquantification, wereprepared in

hexane For theoff-line argentation normal phase liquid

chro-matography–gaschromatography -flame ionizationdetection

(AgNPLC-GC-FID)analyses, samplesfor injectionwereobtained

bycombining200␮Lofthemineraloilstocksolutionand300␮L

ofthestandardmixtureandfillingthevialto1mLusinghexane

(finalconcentrationsof100and0.3mg/mL,respectively).Forthe off-lineSPE-GC-FID,a50mg/mLsolutionofeachmineraloilwas preparedfromthestocksolutionand50␮Lofthissolutionwere combinedwith6␮Lofthestandardsolutionand444␮Lofhexane (5and0.012mg/mL,respectively).FortheGC-VUVanalysis, min-eraloilsolutionsof5mg/mLinhexanewerepreparedwithoutthe standardcompounds

2.2 AgNPLCfractionation

LCfractionation ofthe sampleswasconducted ona Waters Alliance 2695 LC instrument with a Waters 996 DAD detector (Waters,Etten-Leur,TheNetherlands).Themethodwasbasedon that described byBiedermann andGrob [19] withsome modi-ficationstoincreasetheseparationgapbetweentheMOSHand MOAHfractions.Insteadofa250×2mmIDcolumnpackedwith silica,twoseriallyconnected100mmx4.6mmIDx5␮mAgNO3 loadedsilicacolumns(Agilent,Amstelveen,TheNetherlands)were used.TheMOSH/MOAHseparationwasperformedusinga gradi-entstartingwithhexaneheldfor12min,andthenprogrammed

to30%DCMin1min,maintainingthiscompositionuntiltheend

oftherun(25min)ataflowrateof0.3mL/min.Usingthese chro-matographicconditions,theMOSHfractionelutesbetween8and 10.5min,andMOAHfrom13minuntiltheendoftherun.Both frac-tionswereconcentratedto0.5mLpriortoGCanalysis.Toavoid shiftsin theelutionwindow duetocolumn contamination,the column wasreconditioned after every run with100% DCM for

5minat0.5mL/min,followedbya5minrinsewithhexane,also

at0.5mL/min.20␮Lofthemineraloilsamplewasinjectedinto thesystem

2.3 SPEfractionation EmptyglassSPEcartridges(Sigma-Aldrich)werepackedwith 0.5gofsilverimpregnatedsilicagel.Conditioningwasperformed

byheatingthecartridgesat120◦Cfor2h,washingwith10mLof DCMandwith4mLofhexane.Thevolumeofsampleappliedtothe silver-silicaSPEwas0.5mL.ElutionoftheMOSHwasachievedwith

5mLofhexane.TheMOAHfractionwaselutedwith8mLof hex-ane/DCM(50:50v/v).Bothfractionswereconcentratedto0.5mL priortoGCanalysis

2.4 GC-FID

GCanalysisoftheMOSHandMOAHfractionsobtainedfromSPE

orLCwascarriedoutusinganAgilent6890NCinstrument sys-temwithaFocus-PALautosampler(GLSciences,Eindhoven,The Netherlands).The sample(1␮L) wasinjected in splitless mode (2minsplitless time)at 350◦C in a 4mmID linerpackedwith glasswool.Thecapillarycolumn,15mx0.32mmx0.1␮m

DB5-HT(Agilent),wasusedataconstantflowof2mL/minusinghelium

ascarriergas.Thetemperatureprogramranfrom60◦C(3min)to

350◦C(3min)at15◦C/min.TheFIDtemperaturewassetat350◦C andthedatacollectionratewas200Hz

2.5 GC-VUV

AVGA-101VUVdetector(VUVAnalytics,CedarPark,TX,USA) wasconnectedtoanAgilentG1530AGCsystemequippedwithan Optic3injectorandaFocus-PALautosampler(GLSciences).The chromatographicconditionswereidenticaltothosefortheGC-FID analyses.Thetemperatureofthetransferlineandtheflowcellof theVUVdetectorweresetat350◦C.Nitrogenwasusedasmake-up gasatapressureof0.35psi.Thedatacollectionratewas100Hz

Trang 3

Fig 1.GC-VUV absorbance spectra of a) C 13 , b) 6B and c) 1-MN.

3 Results and discussion

3.1 VUVspectroscopicdifferencesofMOSHandMOAH

TheVUVspectraofcompoundscandiffersignificantly

depend-ingonthedifferentfunctionalgroups present inthemolecules

[10].Fig.1showsafewrepresentativeGC-VUVabsorbance

spec-traofanumberofaliphaticandaromaticcompoundscontaining

thetypicalstructuralelementsofMOSH/MOAHcompounds.Clear

differencesareobservedbetweenthedifferentspectra.Forthe

sat-uratedcompound,representingtheMOSHfractionofthemineral

oil,thespectrummonotonouslydecreasesmovingfromthelowest

wavelengthof125nmtolongerwavelengths.Forthesecompounds

noabsorbanceisobservedatwavelengthsabove180nm(Fig.1a)

Thearomaticcompoundsshowadifferentbehaviour(Fig.1 and

c).Forthesecompoundsoneormoredistinctmaximaoccur.The

exactlocationsofthesemaximaandtheirbandwidthdependon

thenumberofaromaticringsandthewaythesearelinked[11]

Moleculeswithoneringshowanabsorbancemaximumaround

185nm Thismaximum shifts tohigher wavelengths whenthe

numberofringsinthemoleculeincreases.ForMOAH,whichare

basicallyalkylatedaromaticcompoundswithoneormoreisolated

orfusedaromaticrings,theabsorbancespectrumwillconsistoftwo

regions,oneadsorptionbandcharacteristicforthearomaticpart,

andamonotonouslydecreasingpartoriginatingfromthealiphatic

substituents

TostudythespectraldifferencesbetweenrealMOSHandMOAH

fractions,eightdifferentmineraloilsampleswereseparatedusing

SPE Fig.2shows theoverall averagedVUV absorbance spectra

obtainedfor the MOSH and MOAHfractions from these8 oils

Sincetheabsorbancespectraofallthemineraloilsanalyzeddid

notpresentanysignificantresponseatwavelengthshigherthan

240nm,onlydatauptothisvaluearepresented.Becausethe

lev-elsof MOSH andMOAH in thesamplesweredifferent, spectra

werenormalizedtoalloweasiercomparison,i.e.intensitiesata

specificwavelengthweresetequal.Normalizationwasperformed

at125nmforMOSH,andat125nmor195nmforMOAH.From thecomparisonoftheFigs.1and2itisclearthattheMOSHand MOAHfractionsshowsimilarabsorbancespectraasthe individ-ualmodel molecules Thealiphatic fractionsshow noresponse above180nmandtheshapeofthespectrafortheeightMOSH fractionsisverysimilar(Fig.2a).Whencomparingthespectraof thearomaticfractionsfromtheeightdifferentmineraloils,two maindifferencesbecomenoticeable.Inthespectranormalizedat

125nm,forthecomparisonofthealiphaticzone(125–180nm), dif-ferencesoccurinthe160–180nmregion.Normalizationat195nm, forthecomparisonofthearomaticzone,emphasizesthe differ-encesintheregionof190–240nm.Thesetwodifferencesamong theeightMOAHfractionsarerelatedtothestructuraldifferences

inthemoleculespresentinthedifferentfractions.Thefirstregion, reflectingthealiphaticsubstituentsofthearomaticrings,differs becauseofdifferencesinthestructure(linear,cyclicorbranched) andlengthofthealkylsubstituents.Thesecondregionwhere dif-ferencesoccur,i.e.the190–240nmregion,reflectsdifferencesin the number and interconnectivity of the aromatic ringsin the molecules.Mono-,di-orpolyaromaticcompoundswithfusedrings

orringsclosely togetherallhave (slightly)differentabsorbance maxima

3.2 StructuralinformationofMOAH

In the previous section, clear differences were observed betweentheVUVspectraofMOAHfractionsfromdifferent min-eraloils.Inasecondseriesofexperiments,changesinthespectra werestudiedovertheGCelutionwindowofaMOAHfraction.This wasdonebyexaminingspectracollectedatdifferenttimesinthe chromatographicrun.Thespectraobtainedareshownin Fig.3 Theseabsorbancespectracanprovidestructuralinformation on thecompoundsformingthearomaticfraction.Themaindifferences seenarerelatedtothealkylpartoftheMOAH.Inthespectra col-lectedatlongerretentiontimes,i.e.fortheheavieranalytes,the aliphaticresponse(125–180nm)increases.Thisisanindicationof

Trang 4

116 A.R García-Cicourel, H.-G Janssen / J Chromatogr A 1590 (2019) 113–120

Fig 2.GC-VUV absorbance spectra of a) MOSH normalized at 125 nm, b) MOAH normalized at 125 nm and c) MOAH normalized at 195 nm from eight different mineral oils The noisy nature of the spectra (below 140 nm) is probably caused by variations in the pressure of the nitrogen in the flow cell.

Fig 3.Absorbance spectra of MOAH fractions from four different mineral oil Each spectrum is the average of a 1 min slice of the chromatogram For mineral oil A the hump starts at 9.29 min (≈C 17 ) and finishes at 24.02 min (≈C 52 ), for mineral oil E from 10.4 min (≈C 18 ) to 23.21 min (≈C 48 ), for mineral oil H from 7.46 min (≈C 14 ) to 16.77 min (≈C 31 ) and for mineral oil C from 13.66 min (≈C 24 ) to 21.69 min (≈C 44 ).

Trang 5

Fig 4. GC-VUV absorbance spectra of different one-ring aromatic compounds.

thepresenceoflongerchainsorahigherdegreeofsubstitutionon

thearomaticcoreforthelaterelutinganalytes.Furthermore,for

thesamplesA,EandCdifferencesarealsoseeninthearomatic

part.Thespectraobtainedatlongerretentiontimesshowhigher

responsesinthe190–240nmregionthantheonesobtainedatthe

beginningofthechromatogram.Thiscanbeanindicationofthe

presenceofalkylatedpolyaromaticcompounds

InordertounderstandhowthestructureoftheMOAH

com-poundsaffects theabsorbancespectrum,VUVlibraryspectraof

differentaromaticcompoundswerecompared.Fig.4ashowsthe

spectraofone-ringaromaticspecieswithincreasingstraightalkyl

chainlength.Asteeperslopeinthealiphaticregionisrelatedto

theincrementofthealkylchainlength.Thearomaticregionisnot

affectedbythesubstituentlength.Ontheotherhand,Fig.4 shows

thespectraldifferencesoffourone-ring isomerswithone alkyl

chainwithdifferentlevelsofbranching.Smallchangesareseenin

thealiphaticpartofthespectrumdependingonthebranching

posi-tionsinthealkylchain.Branchedalkylsubstituentsgiveaslightly

lowersignalinthealiphaticpartofthespectrumcomparedtothe

straightchainmolecules.Ifthemethylgroupsareclosertothe

aro-maticcore,thealiphaticsignalintensityisreduced.Finally,Fig.4c

showsthespectrumofone-ringisomerswithincreasingnumbers

ofalkylchainsattachedtothering.Fortheseisomersthearomatic

partisaffectedmorethanthealiphaticpart.Forthecompounds

withmorethanonealkylsubstituenttheabsorbancemaximumof

thearomaticpartofthespectrumshiftstohigherwavelengths.In

otherwords,thelocationofthemaximumcouldbeanindicator

forthedegreeofsubstitutionofthearomaticcompounds

How-ever,it isimportanttoemphasizethatthepresenceofmultiple

aromaticringsinthestructurewillalsoshifttheabsorbance

maxi-mumofthearomaticstohigherwavelengths,asisnoticedinFig.4d

Theabsorbancespectraofbenzene,naphthaleneandanthracene

demonstratethatanincreaseinthenumberofaromaticringsshifts

theabsorbancemaximumtolongerwavelengths[11].Differences

arealsoobservedamongmoleculeswiththesamenumberof

aro-maticrings.Naphthalene,biphenyland1-methylnaphthaleneall

containtworings;however,theirabsorbancespectraaredifferent Alkylsubstitutionsaffecttheabsorbancespectruminthesameway

aswiththemono-aromatics.1-MNshowsashiftoftheabsorbance maximumtolongerwavelengthsandhasabroadersignalinthe aromaticzonecomparedtonaphthalene.Ontheotherhand,the biphenylabsorbancespectrumismoresimilartothoseobtained forone-ringspecieswithanabsorbancemaximumat195nm Basedontheinformationdiscussedabove,itispossibletodraw somepreliminaryconclusionsonthetypeofMOAHspeciespresent

inthedifferentoilsamplesanalyzedinFig.3.Fromthespectraitcan

beconcludedthatthearomaticcoresofthedifferentmineraloils arelargelyidentical.Fromtheratiosofthearomaticandaliphatic intensities(aromatic/aliphatic),itcanbeconcludedthatmineraloil

A(0.820-0.426)containsthelongestalkylchainsassubstituents attachedtothearomaticcore,whilemineraloilH(0.938–0.563) hastheshortestchains.Thisstatementisconfirmedbytheviscosity valuesofthemineraloils(91.21and10.32cStat40◦C,respectively) FormineraloilA,EandC,anabsorbanceincreaseisobservedinthe regionofthetwo-ringaromaticcompounds,205–240nm,atlonger

GCretentiontimes.Thisincrementismoreremarkableformineral oilEindicatingahighercontentofpolyaromaticcompoundsinthis mineraloil.Onthecontrary,basedonthespectra,mineraloilH seemstohavethelowestcontentofpolyaromaticcompounds Fig 5 shows a comparison of spectraobtained at thesame retentiontime(15min)forfourmineraloilsamplesfrom differ-entstagesin thepurificationprocess.Becausethespectrawere recordedatthesameGCretentiontime,theybelongtocompounds withsimilarvolatility,andthereforesimilarmolecularweight.The aliphaticresponseishighestformineraloilsAandC.This indi-catesthepresenceofmultiplestraight-chainalkylsubstituentsin theseoilsascomparedtothemineralsoilHandE.Basedonthe aliphaticresponse,mineraloilEseemstocontainmorebranched alkylchains.Furthermore,thearomaticregionforthismineraloil showsashiftintheabsorbancemaximumtohigherwavelengths andtheabsorbancebandiswiderthanfortheotherthreesamples Theseareadditionalindicationsforahigherdegreeofsubstitution

Trang 6

118 A.R García-Cicourel, H.-G Janssen / J Chromatogr A 1590 (2019) 113–120

Fig 5. GC-VUV absorbance spectra of the MOAH fraction of four mineral oils The

spectra were recorded at the same GC retention time.

Fig 6. Chromatogram of mineral oil H analysed on the GC-VUV system without

pre-vious prefractionation The total mineral oil response was obtained using the entire

wavelength range (125–240 nm), whereas the aromatic response was obtained with

a 190–240 nm filter The solvent peak (hexane) in both wavelength filters elutes at

2.5 min The signal in the aromatic filter is either due to impurities in the solvent or

limited detector selectivity The sharp peak at 14.5 min is an impurity.

Apparently,sampleEhasmorebutshorteralkylchainsonthe

aro-maticringthantheoilsA,CandH.Regardingthearomaticregion

thiscorroboratestheinformationpreviouslymentionedaboutthe

type ofaromatic species for each mineraloiland confirms the

addedvalueofVUVdetection.Thecontentofpolyaromaticspecies

ishigherformineraloilAandE,andlowforoilH.However,for

accuratelyestimatingthepercentagesofthesecompoundsinthe

mineraloilotheranalyticalmethodsareneededlike

comprehen-siveLCxGC-MS[20]

3.3 DirectdeterminationoftheMOAHcontentbyGC-VUV

Thepresenceofabsorbancebandsspecificforaromaticsinthe

VUVspectrainprincipleenablesdirectquantitativeassessmentof

MOAHlevelsinmineraloilswithouttheneedforaMOSH/MOAH

preseparation.ToobtaintheMOAHcontentfromtheGC-VUVdata,

twospectral filters wereapplied.Thefirstfiltercoversthe190

to240nm region and detects only the MOAH species (Fig 6)

Thesecondfiltercoverstheentirerangeofwavelengthsrecorded

(125–240nm)andgivesa(semi-)quantitativenumberforthetotal

GCresponseofthemineraloil(MOSH+MOAH).Thissecondfilter

isappliedtobeabletocorrectthedatafordifferencesintotal

min-eraloilresponsesduetosamplediscriminationintheGCinjection

whichwasevaluatedcomparingtheresponseofdifferentmineral

oilsatthesameconcentration

TobeabletocalculatetheMOAHpercentagedirectlyfromthe

GC-VUVchromatogram,theMOSHamountfirstneedstobe

cal-culated.Thiscanbedonefromthepeakareainthe125–240nm

region,correctedforthecontributionofthealiphaticpartsofthe

MOAHtothisarea.Agoodestimateofthecorrectionfactorcan

beobtained fromthe MOAH spectraof the eight differentoils showninFig.2.Theseoilsrepresentthetypicalmineraloilsand intermediatesencounteredinindustry.Inthesespectra,thetotal areais1.38±0.11timeshigherthantheareaintheMOAHregion (190–240nm).Thus,thefollowingequationcanbederived:

BecauseVUVspectroscopyfollowstheadditivityprinciplesof theBeer-Lambertlaw,theMOSHresponsecanbecalculatedfrom: MOSH125 −240=TR125 −240−MOAH125 −240 (2)

IntheseequationsMOSH125-240,MOAH125-240andTR125-240are thepeakareasinthechromatogramoftheMOSH,MOAHandtotal mineraloil,respectively,allcalculatedfromthe125–240nm sig-nal.MOAH190-240 isthecorrespondingareacalculatedfromthe 190–240nmsignal.Theaboveareascanbeconvertedintomass percentagesofMOSHandMOAHinthemineraloilusingtheEqs (3)and(4):

MOAH % = 100 x MOAH125−240 × RRFMOAH

(MOSH125−240× RRFMOSH) + (MOAH125−240× RRFMOAH) (3)

HereRRFsaretherelativeresponsefactorsforMOSHandMOAH relativetomethane.RRFsvaluesforindividualalkaneswere deter-minedinpreviousstudiesanditwasfoundthattheyareremarkably independentofthelengthandstructureofthealkylchain[21].In thiswork,anRRFMOSHof0.775wasusedbasedonpreviousdata [11].ForMOAH,anRRFMOAHof0.425±0.055wascalculated.This valuewasobtainedasanaverageoftheRRFvaluesfortheeight differentMOAHfractionsdescribedpreviously.EachRRFwas cal-culatedfollowingEq.(5),whereAMOSH/AMOAHistheratioofthe areasofthetwofractions:

RRFMOAH= MMMOAH

MOSH

AMOSH(125 −240 nm)

AMOAH(125 −240 nm)RRFMOSH (5)

OncetheseRRFareestablished,theycanbeusedforthedirect GC-VUV MOAH quantitation in unknown mineral oil samples withoutthenecessityofanyMOSH/MOAHpreseparation,i.e.the laboriousLCorSPEstepcanbeavoided.Thisisreflectedinthe anal-ysistime.Whilefortheconventionalmethodsaruntakes46min, theproposedGC-VUVmethodisonly25min

ToevaluatetheperformanceofthedirectGC-VUVmethod,some performancecharacteristicssuchasselectivity,linearity, repeata-bility,limitofdetection(LOD) andlimitof quantification(LOQ) wereassessedusingthetwowavelengthsrangesdescribedabove andfollowingtheEurachemguideformethodvalidation[22].This evaluationwasdoneforthreedifferentmineraloils.Onemineral oilwasvirtually freeof aromatics (mineral oilN),whereasthe othertwocontainedsignificantMOAHlevels(mineraloilAand H).Alsotheboilingpointrangeofthethreemineraloilswas dif-ferent(Fig.7).Theperformancecharacteristicsofthenewmethod areshowninTable1.Theselectivitywasevaluatedbycomparing thepeakareasofequalinjectedamountsofMOSHandMOAH, iso-latedbySPE,intheMOAHregion(i.e.195–240nmregion).Equal amountsofMOSHandMOAHresultedinanapproximately3300 timeshigherresponseforMOAHthanforMOSH.Or,phrased differ-ently,foraMOAHfreeoilourdirectGC-VUVmethodwouldreport

aMOAHlevelof 0.03%.AgoodlinearityofVUV absorbance(R2

>0.989)versusconcentrationwasseenatbothwavelengthranges TheLODandLOQvaluesatthecurrentGCinjectionsettingsare similarformineraloilNandH,bothhavingarathernarrowboiling pointrange.SlightlypoorervalueswereobtainedformineraloilA duetothebroadervolatilityrange,andhencebroader chromato-graphic‘hump’ofthisoil.TheLODandLOQvaluesfortheMOAH fractionwerecalculatedbasedontheconcentrationofMOAHin mineraloilAandH(25and30%respectively).Thus,consideringa

Trang 7

Table 1

Performance characteristics for three different mineral oil samples MO 2 is aromatic free while MO A and H contain MOSH and MOAH.

Total mineral oil 125 – 240 nm MOAH 190 – 240 nm

Fig 7.GC-VUV chromatograms of the three mineral oils selected for the method

validation The chromatograms were obtained using the entire wavelength range

(125 to 240 nm) and at the same concentration 10 mg/mL The boiling point range

of the mineral oils is different Mineral oil N ranges from C 14 to C 40 (centered around

C 23 ), mineral oil A ranges from C 17 to C 52 (centered around C 33 ) and mineral oil H

ranges from C 14 to C 31 (centered around C 23 ).

sufficientlysensitiveforallbutthehighestpuritysamples.Finally,

therepeatabilityofthemethodresultedinRSDvaluesbetterthan

8%.Unlikeinthestandardmethods,on-lineoroff-lineSPE-GC-FID

orLC-GC-FID,thesevaluesareonlyrelatedtotheintegration

diffi-cultiesanddeviationsinthesampleintroductionbecausenoother

samplepreparationstepsarepresent

3.4 Analysisofdifferentsamples

Todeterminethepracticalapplicationlimitsofthenewly

pro-posedrapidGC-VUVmethodforMOAHanalysis,aseriesofstarting

samplesand intermediatesof white oilproduction of different

origins and differentMOAH levelswere analysed Fig.8 shows

theMOAHcontentobtainedfor18differentmineraloilsamples

usingGC-VUV.Datafromthestandardmethods(SPE-GC-FIDand

LC-GC-FID)areincludedtoprovideaframeofreference.The

GC-VUVresultsarenotstatisticallysignificantlydifferentfromthose

obtainedbythetwostandardmethods,whichwasevaluatedby

applyingananalysisofvariance(ANOVA)toeachsample.Atthis

point,itisimportanttomentionthattherepeatabilityoftheMOAH

measurementsis much betterfor theGC-VUVmethodas

com-paredtothestandardmethods.Thisisduetotheabsenceofthe

complexmanualsamplepreseparationstep.Thesamplesanalyzed

inthecomparisonhaveMOAHcontents fromlessthan0.13%to

almost50%.Theirsuccessfulanalysisclearlyshowsthe

applicabil-ityofthemethodtooilswithbothhighandlowaromaticscontent

andfractionsfromdifferentstagesinthepurificationprocess

Min-eraloilJshowsthelimitationofthestandardmethods.Thismineral

Fig 8. Comparison of the aromatic percentage using GC-VUV and the two standard methods The GC-VUV method presented the smallest variation due to the absence

of pre-separation.

oilisfreeofaromatics,buteventhoughahighlyselective silver-loadedsilicastationaryphasewasused,stillsomeMOSHeluted

inthetimewindowwheretheMOAHwouldelute.Thisproblem

isrelatedtothecomplexityofthesample.SampleJcontainsvery highmolecularweightcompoundsand,additionally,hasalow con-tentofaromatics.Becauseofthepresenceofthepoorlysoluble highmolecularweightspeciesthereisanincreasedriskofMOSH compoundselutingintheMOAHfraction.Becauseinthenextstep

a non-selectiveflameionizationdetectoris usedfor quantifica-tion,thisimmediatelyresultsinanoverestimationoftheMOAH level.ThisisnotanissueintheGC-VUVanalysisbecauseno pre-separationisrequired

4 Conclusions

AdirectGC-VUVmethodforthedeterminationoftheMOAH contentofpurifiedmineraloilsampleswasdeveloped.Themethod showedtobeagoodalternativefordeterminingthearomatics con-tentinmineraloilsamples.Detectionlimitswerearound0.13%, makingthemethodsufficientlysensitivefor allbutthehighest puritysamples.TheVUVspectraprovidesomestructural informa-tionofthemoleculespresentinthearomaticsfraction.Thanksto theselectivityprovidedbytheVUV detectornosample presep-arationisneeded,whichshortenstheanalysistimesignificantly andeliminatesdifficultexperimentalsetupsand/ormanual sam-plehandlingsteps.Additionally,thenewmethodreducestherisks forerrors,particularlywhencomplexsamples,i.e.sampleswith

alowcontentofaromaticsandahighmolecularweight,haveto

beanalyzed.Thisnewmethodcouldpotentiallyalsobeusedfor analysisofmineraloilinotherconsumerproductssuchasfood However,sample preparation for reducing matrix interferences frome.g.triglyceridesandolefinswillstillbeneeded

Trang 8

120 A.R García-Cicourel, H.-G Janssen / J Chromatogr A 1590 (2019) 113–120

Acknowledgements

TheauthorsthanktheConsejoNacionaldeCienciayTecnología

deMéxico(CONACyT)forthescholarshipawardedtoA.R

García-Cicourel(No.410740)

Thisresearchdidnotreceiveanyspecificgrantfromfunding

agenciesinthepublic,commercial,ornot-for-profitsectors.H.-G

JanssenwasawardedanacademicresearchgrantbyVUVAnalytics,

IncformethoddevelopmentforMOSHandMOAHanalysisinfood

products

References

[1] M Niederer, T Stebler, K Grob, Mineral oil and synthetic hydrocarbons in

cosmetic lip products, Int J Cosmet Sci 38 (2016) 194–200, http://dx.doi.org/

10.1111/ics.12276

[2] S Moret, K Grob, L.S Conte, On-line high-performance liquid

chromatography-solvent evaporation - high-performance liquid

chromatography - capillary gas chromatography - flame ionisation detection

for the analysis of mineral oil polyaromatic hydrocarbons in fatty foods, J.

Chromatogr A 750 (1996) 361–368,

http://dx.doi.org/10.1016/0021-9673(96)00453-0

[3] R Lorenzini, K Fiselier, M Biedermann, M Barbanera, I Braschi, K Grob,

Saturated and aromatic mineral oil hydrocarbons from paperboard food

packaging: estimation of long-term migration from contents in the

paperboard and data on boxes from the market, Food Addit Contam - Part A

Chem Anal Control Expo Risk Assess 27 (2010) 1765–1774, http://dx.doi.

org/10.1080/19440049.2010.517568

[4] K Fiselier, D Fiorini, K Grob, Activated aluminum oxide selectively retaining

long chain n-alkanes: Part II Integration into an on-line high performance

liquid chromatography-liquid chromatography-gas chromatography-flame

ionization detection method to remove plant paraffins for the determination

of mineral oil paraffins in foods and environmental samples, Anal Chim Acta

634 (2009) 102–109, http://dx.doi.org/10.1016/j.aca.2008.12.011

[5] M Biedermann, K Grob, Comprehensive two-dimensional GC after HPLC

preseparation for the characterization of aromatic hydrocarbons of mineral

oil origin in contaminated sunflower oil, J Sep Sci 32 (2009) 3726–3737,

http://dx.doi.org/10.1002/jssc.200900366

[6] M Biedermann, K Fiselier, K Grob, Aromatic hydrocarbons of mineral oil

origin in foods: method for determining the total concentration and first

results, J Agric Food Chem 57 (2009) 8711–8721, http://dx.doi.org/10.1021/

jf901375e

[7] M Biedermann, C Munoz, K Grob, Update of on-line coupled liquid

chromatography – gas chromatography for the analysis of mineral oil

hydrocarbons in foods and cosmetics, J Chromatogr A 1521 (2017) 140–149,

http://dx.doi.org/10.1016/j.chroma.2017.09.028

[8] S Moret, L Barp, G Purcaro, L.S Conte, Rapid and sensitive solid phase

extraction-large volume injection-gas chromatography for the analysis of

mineral oil saturated and aromatic hydrocarbons in cardboard and dried

foods, J Chromatogr A 1243 (2012) 1–5, http://dx.doi.org/10.1016/j.chroma.

2012.04.040

[9] S Moret, L Barp, K Grob, L.S Conte, Optimised off-line SPE-GC-FID method

for the determination of mineral oil saturated hydrocarbons (MOSH) in

vegetable oils, Food Chem 129 (2011) 1898–1903, http://dx.doi.org/10.1016/

j.foodchem.2011.05.140

[10] K.A Schug, I Sawicki, D.D Carlton, H Fan, H.M McNair, J.P Nimmo, P Kroll, J Smuts, P Walsh, D Harrison, Vacuum ultraviolet detector for gas

chromatography, Anal Chem 86 (2014) 8329–8335, http://dx.doi.org/10 1021/ac5018343

[11] B.M Weber, P Walsh, J.J Harynuk, Determination of hydrocarbon group-type

of diesel fuels by gas chromatography with vacuum ultraviolet detection, Anal Chem 88 (2016) 5809–5817, http://dx.doi.org/10.1021/acs.analchem 6b00383

[12] I.C Santos, K.A Schug, Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy, J Sep Sci 40 (2017) 138–151, http://dx.doi.org/10.1002/jssc.201601023

[13] C Qiu, J Cochran, J Smuts, P Walsh, K.A Schug, Gas chromatography-vacuum ultraviolet detection for classification and speciation of polychlorinated biphenyls in industrial mixtures, J Chromatogr A 1490 (2017) 191–200,

http://dx.doi.org/10.1016/j.chroma.2017.02.031 [14] L Skultety, P Frycak, C Qiu, J Smuts, L Shear-Laude, K Lemr, J.X Mao, P Kroll, K.A Schug, A Szewczak, C Vaught, I Lurie, V Havlicek, Resolution of isomeric new designer stimulants using gas chromatography – vacuum ultraviolet spectroscopy and theoretical computations, Anal Chim Acta 971 (2017) 55–67, http://dx.doi.org/10.1016/j.aca.2017.03.023

[15] M Zoccali, K.A Schug, P Walsh, J Smuts, L Mondello, Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures, J Chromatogr A 1497 (2017) 135–143, http://dx.doi.org/10.1016/j.chroma 2017.03.073

[16] I.C Santos, J Smuts, K.A Schug, Rapid profiling and authentication of vanilla extracts using gas chromatography-vacuum ultraviolet spectroscopy, Food Anal Methods 10 (2017) 4068–4078, http://dx.doi.org/10.1007/s12161-017-0976-1

[17] J Schenk, G Nagy, N.L.B Pohl, A Leghissa, J Smuts, K.A Schug, Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy, J Chromatogr A 1513 (2017) 210–221, http://dx.doi org/10.1016/j.chroma.2017.07.052

[18] T Gröger, B Gruber, D Harrison, M Saraji-Bozorgzad, M Mthembu, A Sutherland, R Zimmermann, A vacuum ultraviolet absorption array spectrometer as a selective detector for comprehensive two-dimensional gas chromatography: concept and first results, Anal Chem 88 (2016) 3031–3039,

http://dx.doi.org/10.1021/acs.analchem.5b02472 [19] M Biedermann, K Grob, On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil Part 1: method of analysis, J Chromatogr A 1255 (2012) 56–75,

http://dx.doi.org/10.1016/j.chroma.2012.05.095 [20] S De Koning, H.G Janssen, U.A.T.T Brinkman, Group-type characterisation of mineral oil samples by two-dimensional comprehensive normal-phase liquid chromatography-gas chromatography with time-of-flight mass spectrometric detection, J Chromatogr A 1058 (2004) 217–221, http://dx.doi.org/10.1016/j chroma.2004.08.083

[21] P Walsh, M Garbalena, K.A Schug, Rapid analysis and time interval deconvolution for comprehensive fuel compound group classification and speciation using gas chromatography-vacuum ultraviolet spectroscopy, Anal Chem 88 (2016) 11130–11138, http://dx.doi.org/10.1021/acs.analchem 6b03226

[22] Eurachem, Eurachem Guide: The Fitness for Purpose of Analytical Methods –

A Laboratory Guide to Method Validation and Related Topics, 2014, doi:978-91-87461-59-0.

[23] Bundesinstitut für Risikobewertung, Highly Refined Mineral Oils in Cosmetics: Health Risks Are Not to Be Expected According to Current Knowledge, 2018, http://dx.doi.org/10.17590/20180702-124741-0

Ngày đăng: 31/12/2022, 09:59

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w