1. Trang chủ
  2. » Giáo án - Bài giảng

Beyond the wall: High-throughput quantification of plant soluble and cell-wall bound phenolics by liquid chromatography tandem mass spectrometry

12 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Beyond the wall: High-throughput quantification of plant soluble and cell-wall bound phenolics by liquid chromatography tandem mass spectrometry
Tác giả Jean-Christophe Cocuron, Maria Isabel Casas, Fan Yang, Erich Grotewold, Ana Paula Alonso
Trường học University of North Texas
Chuyên ngành Biological Sciences
Thể loại Research article
Năm xuất bản 2019
Thành phố Denton
Định dạng
Số trang 12
Dung lượng 2,23 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Plants accumulate several thousand of phenolic compounds, including lignins and flavonoids, which are mainly synthesized through the phenylpropanoid pathway, and play important roles in plant growth and adaptation.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

spectrometry

a BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

b NaPro Research, LLC, Washington, DC, 20018, USA

c Benson Hill Biosystems, St Louis, MO, 63132, USA

d Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA

a r t i c l e i n f o

Article history:

Received 3 August 2018

Received in revised form

20 December 2018

Accepted 26 December 2018

Available online 26 December 2018

Keywords:

Flavonoids

Lignin

Multiple reaction monitoring

Phenolics

Plant cell wall

a b s t r a c t

Plantsaccumulateseveralthousandofphenoliccompounds,includingligninsandflavonoids,whichare mainlysynthesizedthroughthephenylpropanoidpathway,andplayimportantrolesinplantgrowth andadaptation.Anovelhigh-throughputultra-highperformanceliquidchromatographytandemmass spectrometry(UHPLC–MS/MS)methodwasestablishedtoquantifythelevelsof19flavonoidsand15 otherphenoliccompounds,includingacids,aldehydes,andalcohols.Thechromatographicseparation wasperformedin10min,allowingfortheresolutionofisomerssuchas3-,4-,and5-chlorogenicacids, 4-hydroxybenzoicandsalicylicacids,isoorientinandorientin,andluteolinandkaempferol.The lin-earityrangeforeachcompoundwasfoundtobeinthelowfmoltothehighpmol.Furthermore,this UHPLC-MS/MSapproachwasshowntobeverysensitivewithlimitsofdetectionbetween1.5amolto

300fmol,andlimitsofquantificationbetween5amolto1000fmol.Extractsfrommaizeseedlingswere usedtoassesstherobustnessofthemethodintermsofrecoveryefficiency,matrixeffect,andaccuracy Thebiologicalmatrixdidnotsuppressthesignalfor32outofthe34metabolitesunderinvestigation Additionally,themajorityoftheanalyteswererecoveredfromthebiologicalsampleswithanefficiency above75%.Allflavonoidsandotherphenoliccompoundshadanintra-andinter-dayaccuracywithina

±20%range,exceptforconiferylalcoholandvanillicacid.Finally,thequantificationofflavonoids,free andcellwall-boundphenolicsinseedlingsfromtwomaizelineswithcontrastingphenoliccontentwas successfullyachievedusingthismethodology

PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/)

Plantsaccumulate severalthousandof phenolic compounds

Thesecomplexmetabolitesplayimportantrolesinplantgrowth,

developmentandadaptation.Forinstance,theyprovidestructural

support,protectionagainstpathogensandabioticstresses,andact

aspollinatorattractants[1,2 Phenolicsarealsoessentialinhuman

Abbreviations: CE, collision energy; CGA, chlorogenic acid; CXP, collision cell

exit potential; DAD, diode array detector; DP, declustering potential; EP, entrance

potential; ME, matrix effect; PCA, principal component analysis; RE, recovery

effi-ciency; UHPLC-MS/MS, ultra-high pressure liquid chromatography–tandem mass

spectrometry.

∗ Corresponding author at: BioDiscovery Institute and Department of Biological

Sciences, University of North Texas, 1504 W Mulberry St, Denton, TX 76201, USA.

E-mail address: Anapaula.Alonso@unt.edu (A.P Alonso).

1 Equal contribution.

health and industrial applications Theyhave antioxidant, anti-inflammatory andanti-carcinogenicproperties whentakeninto consumptionoffruits,vegetablesandtheirderivedproducts[3 Fromtheindustrialperspective,phenolicsplayanimportantrole duringpulpingandbiofuelproduction[1,2

Phenolicsaresynthesized viathephenylpropanoid pathway Theconversionofphenylalaninetocinnamicacidisthefirst com-mittedsteptothephenylpropanoidpathway(Fig.1).Cinnamicacid willthenbranchintotheconversionofadditionalphenolicacids Alternatively,cinnamicacidcanbeconvertedtocoumaroyl-CoA, whichwillleadtoadditionalphenolicsandligninpolymerization

ontheonehand,andontheotherhandtoflavonoidbiosynthesis (Fig.1).Phenylpropanoidsarechemicallydiversewithphenolics divided into acids, aldehydes and alcohols, which will gener-ateligninwithdifferentcross-linkingdegrees.Flavonoidscanbe dividedintoseveralsub-classesincludingtheflavanones,flavonols, flavones and anthocyanins To add to this chemical diversity, https://doi.org/10.1016/j.chroma.2018.12.059

Trang 2

Fig 1 Schematic of the phenylpropanoid biosynthetic pathway.The different classes of compounds generated from general phenylpropanoids (framed in orange) are presented: flavonoids (green), lignins (grey), and other phenolics (blue) The compounds whose name is red were monitored in this study (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

flavonoidscanbefurtherdecoratedbyacylationorglycosylation

(Fig.1 making itdifficult toseparate,identifyandquantify in

complexplantbiologicalmatrices

Maizeisthemostimportantcerealcropworldwide,withthe

USA corn grain production in 2016 being 15.1 billion bushels

( ˜380milliontons)(http://www.nass.usda.gov/),inexcessof$50

billionin value.Agricultural outputderived from the

develop-mentofhigh-yieldvarietiesofgrainscombinedwithtechnological

improvementsresultedinfoodproductioncontinuouslyexpanding

sincethe1960s.Toboostpathwaydiscovery,andtoguide

breed-ingprogramsaswellasmetabolicengineering,itisessentialto

relyonrapidandsensitivemethodstoscreenforthemetabolites

synthesizedfromthephenylpropanoidpathway[4,5

Severalanalyticaltechniqueshavebeenappliedforthe

sepa-rationandquantificationofplantflavonoidsandotherphenolics,

andextensivelyreviewed[6–9].Separationofthesemetabolitesis

commonlyachievedthroughhighperformanceliquid

chromatog-raphy(HPLC)usingareverse-phaseC18column.Plantflavonoids

andotherphenolicsareallaromaticcompoundsandthereforehave

theabilitytoabsorbintheultra-violetwavelengths,makingthem

detectableandquantifiableusingadiodearraydetector(DAD).For

instance,adozenofphenolicacidshavebeenquantifiedinfood

samples[10],thelevelsofsixflavonoidsandfourphenolicacids

havebeensimultaneouslydetermined[11],andcell-wallbound phenolicshavebeenanalyzed[12].Becausethesecompoundsare

sodiverseandoftenhighlydecorated,themajorityofthe stud-iescombinetheDADwitha time offlight oran iontrapmass spectrometer,andthenuseliteraturetotentativelyelucidatetheir chemicalstructures[13–16].Inordertospecificallyquantify tar-getedcompounds,somemethodologiescouplingHPLCwithatriple quadrupoleweredeveloped.Ingeneral,approachesfocusonone classofmetabolites,thatistosayeitheronphenoliccompounds [17,18]orflavonoids[19,20].Onlyafewstudiesdeterminedthe lev-elsofbothflavonoidsandphenolicacids[21–24].However,none

ofthemachievedthesimultaneousdetectionandquantificationof flavonoids,andotherplantphenolics,suchasphenolicaldehydes andalcoholsthatareimportantintermediariesandcomponentsof lignin

This study describes the development of a novel high-throughputultra-high performance liquid chromatography tan-demmassspectrometry(UHPLC–MS/MS)methodtoseparateand quantifythelevelsof19 plantflavonoidsand15otherphenolic compounds,includingphenolicacids,aldehydesandalcohols.The chromatographicresolutionofthesemetaboliteswasachievedin lessthan 10min,withtheseparationof alltheisobaricspecies underinvestigationwiththeexceptionofisovitexinandvitexin

Trang 3

Table 1

Compound-dependent MS parameters for MRM scan survey.

OTHER

PHENOLICS

3,4-Dimethoxycinnamic ac C 11 H 11 O 4 − C 8 H 7 − 207/103 −90 −10 −18 −47 4-Hydroxybenzoic acid C 7 H 5 O 3 − C 6 H 5 O − 137/93 −80 −10 −26 −39 Benzoic acid C 7 H 5 O 2 − C 6 H 5 − 121/77 −40 −10 −16 −33 Caffeic acid C 9 H 7 O 4 − C 8 H 7 O 2 − 179/135 −50 −10 −24 −55 3-CGA, 4-CGA, 5-CGA C 16 H 17 O 9 − C 10 H 7 O 4 − 353/191 −55 −10 −36 −49 Cinnamic acid C 9 H 7 O 2 − C 8 H 7 − 147/103 −50 −10 −18 −45 Coniferyl aldehyde C 10 H 9 O 3 − C 9 H 6 O 3 − 177/162 −90 −10 −22 −43 Coniferyl alcohol ** C 10 H 11 O 3 C 9 H 7 O + 163/131 50 10 13 16 p-Coumaric acid C 9 H 7 O 3 − C 8 H 7 O − 163/119 −75 −10 −22 −51 Ferulic acid C 10 H 9 O 4 − C 8 H 6 O 2 − 193/134 −80 −10 −24 −55 Salicylic acid C 7 H 5 O 3 − C 6 H 5 O − 137/93 −80 −10 −26 −39 Sinapaldehyde C 11 H 11 O 4 − C 9 H 5 O 4 − 207/177 −80 −10 −28 −29 Sinapic acid C 11 H 11 O 5 − C 6 HO 3 − 223/121 −100 −10 −40 −51 Sinapyl alcohol C 11 H 13 O 4 − C 9 H 5 O 3 − 209/161 −90 −10 −28 −17 Syringic acid C 9 H 9 O 5 − C 6 HO 3 − 197/121 −100 −10 −24 −55 Vanillic acid C 8 H 7 O 4 − C 6 H 4 O 2 − 167/108 −90 −10 −30 −47 Vanillin C 8 H 7 O 3 − C 7 H 4 O 3 − 151/136 −70 −10 −20 −55 FLAVONOIDS Apigenin C 15 H 9 O 5 − C 8 H 5 O − 269/117 −145 −10 −46 −13

Apigenin-7-O-glucoside C 21 H 19 O 10 − C 15 H 9 O 5 − 431/269 −170 −10 −40 −29 Dihydrokaempferol C 15 H 11 O 6 − C 6 H 5 O 3 − 287/125 −100 −10 −30 −55 Dihydroquercetin C 15 H 11 O 7 − C 6 H 5 O 3 − 303/125 −120 −10 −38 −51 Eriodictyol C 15 H 11 O 6 − C 7 H 3 O 4 − 287/151 −100 −10 −22 −13 Isoorientin C 21 H 19 O 11 − C 17 H 11 O 7 − 447/327 −165 −10 −38 −29 Isovitexin C 21 H 19 O 10 − C 16 H 11 O 5 − 431/283 −250 −10 −46 −31 Kaempferol C 15 H 9 O 6 − C 6 H 5 O − 285/93 −100 −10 −52 −43 Luteolin C 15 H 9 O 6 − C 7 H 3 O 4 − 285/151 −170 −10 −36 −41 Luteolin-7-O-glucoside C 21 H 19 O 11 − C 15 H 9 O 6 − 447/285 −200 −10 −46 −31 Maysin C 27 H 27 O 14 − C 21 H 15 O 9 − 575/411 −115 −10 −30 −37 Naringenin C 15 H 11 O 5 − C 7 H 3 O 4 − 271/151 −120 −10 −26 −23 Orientin C 21 H 19 O 11 − C 17 H 11 O 7 − 447/327 −165 −10 −38 −29 Quercetin C 15 H 11 O 7 − C 7 H 3 O 4 − 301/151 −150 −10 −30 −55 Rhamnosyl-isoorientin C 27 H 29 O 15 − C 16 H 10 O 6 − 593/298 −150 −10 −60 −1 Vitexin C 21 H 19 O 10 − C 17 H 11 O 6 − 431/311 −170 −10 −32 −37

* DP: Declustering Potential.

EP: Entrance Potential.

# CE: Collision Energy.

§CXP: Collision cell Exit Potential, are depicted for each metabolite.

** Precursor ion [M-H 2 O] + is followed for coniferyl alcohol due to a loss of a water molecule at the electrospray ionization source.

Additionally,themethodwastestedandvalidatedbyquantifying

freeandcell-wallboundcompoundspresentinseedlingsfromtwo

maizelineswithcontrastinglignincontent

2.1 Chemicals

Flavonoidandotherphenolicstandardswerepurchasedfrom

Millipore-Sigma.[1-13C1]-benzoicacidwasorderedfromIsotec

LC–MSgradeaceticacid, formicacid,acetonitrile,andmethanol

wereobtainedfromThermo-Fisher.Ultrapurewater(>18m)was

generatedthroughaMilli-QsystemfromMillipore.Phloroglucinol

forligninstainingwaspurchasedfromMillipore-Sigma

2.2 Plantmaterialsandgrowthconditions

Plantselectionswereperformedonthe“maizeNested

Associa-tionMapping”(NAM)parentalpanelobtainedfromtheUSDA-ARS

North CentralPlant IntroductionStation(IowaStateUniversity,

Ames,IA).Two-week-oldCML333,Oh7B,andB73maizeseedlings

usedforsolubleandcellwallphenolicanalysisweregrowninthe

greenhouseat27◦C/21◦Cdayandnighttemperaturesrespectively,

witha16hday/8hnightphotoperiodand60%relativehumidity

Threebiologicalreplicates(n=3)wereusedfortheanalyses

2.3 Standardpreparationforstockandworkingsolutions Flavonoid and otherphenolic standards as wellas [1-13C1 ]-benzoicacidinternalstandardwerereconstitutedin100%LC–MS grade methanoltoa final concentrationof 1mM and storedat

−20◦C.Standardcurvesweregeneratedbyseriallydilutingeach

metabolitewith100%methanoltogiveworkingsolutionswhose concentrationsledtoabsoluteinjectedquantitiesintherangeof 50–500,000fmol, and 20,000–5,000,000fmol, depending on the compound.Thelimitsofdetectionandquantificationweredefined

asthreeand10timesthesignaltonoiseratio,respectively

A mixtureofflavonoid,otherphenolic, and [1-13C1]-benzoic acidstandards(1␮Mofeachmetabolite,except10␮Mforsinapyl alcohol)wasprepared.Thisstandardmixwasrunalongwiththe biologicalsamplesinordertoperformabsolutequantificationof flavonoidsandotherphenolicsextractedfrommaizeseedlings

2.4 High-performancereversephaseliquidchromatography FlavonoidsandotherphenolicswereanalyzedutilizingaUHPLC

1290systemfromAgilentTechnologies.Themixtureofmetabolites wasautomaticallyinjectedusinganauto-samplerkeptat10◦C Theliquidchromatographyseparationwascarriedoutat30◦C.In ordertoobtainanaccurateliquidchromatographicmethodforthe quantificationofflavonoidsandotherphenolics,areversephase C18Symmetry column(4.6×75mm;3.5␮m)witha Symmetry C18pre-column(3.9×20mm;5␮m)fromWaterswastestedfor itscapacitytoresolvethe35metabolitesofinterestwithinashort periodoftime.Forthispurpose,acombinationofdifferentsolvents

Trang 4

Fig 2 Analysis of phenolic standards using multiple reaction monitoring.The separation and the assignment of phenolics were conducted as indicated in the Materials and Methods, Tables 1, and 2 Each individual LC–MS/MS chromatogram represents a transition precursor/product ion associated with one or more phenolic(s) A transition with more than one peak depicts the existence of isomers (see 4-OHBA/SA transition) 3,4-DMCA, 3,4-dimethoxycinnamic acid; 4-OHBA, 4-hydroxybenzoic acid; SA, salicylic

Trang 5

Table 2

LC–MS/MS method sensitivity and linearity for flavonoids and other phenolics.

OTHER

PHENOLICS

Dihydrokaempferol 287/125 6.5 50–20,000 0.9997 0.4 1.3 Dihydroquercetin 303/125 5.4 500–100,000 0.9999 1.2 3.9 Eriodictyol 287/151 7.4 20–10,000 1.0000 0.1 0.4 Isoorientin 447/327 3.7 200–100,000 0.9926 2.0 6.7 Isovitexin * 431/283 4.4 20–10,000 0.9990 1.0 3.2 Kaempferol 285/93 9.0 500–100,000 0.9994 7.0 23.4 Luteolin 285/151 7.5 200–100,000 0.9979 3.3 11.1 Luteolin-7-O-glucoside 447/285 4.6 20–10,000 0.9967 0.1 0.4 Maysin 575/411 5.5 200–100,000 0.9977 1.4 4.7 Naringenin 271/151 8.6 20–10,000 0.9992 1.8 6.1 Orientin 447/327 3.9 20–10,000 0.9962 0.1 0.4 Quercetin 301/151 7.7 200–50,000 0.9980 0.9 3.1 Rhamnosyl-isoorientin 593/298 3.5 200–100,000 0.9912 0.1 0.3 Vitexin * 431/311 4.4 20–10,000 0.9974 0.3 1.0 Limits of detection (LOD) and limit of quantification (LOQ) were obtained based on a signal-to-noise ratio of 3:1 and 10:1, respectively Retention time (RT), linearity range, and correlation coefficient (R 2 ) were also accessible using the current LC–MS/MS method.

* Isovitexin and vitexin were not resolved chromatographically and spectrometrically, even when different product ions were selected.

** LOD and LOQ for apigenin-7-O-glucoside were 1.5 and 5.0 amol, respectively.

(acetonitrile,methanol,water)withdifferentadditives(aceticacid

andformicacid)wasexaminedaswellastheimpactoftheflowrate

andtemperatureonto thecolumn Acetonitrile-waterwith0.1%

aceticacidoutperformedmethanol-waterandformicacidforthe

resolutionandthesensitivityoftheflavonoidandotherphenolic

isomersstudiedhere(datanotshown).Thegradientusedto

sepa-ratetheflavonoidsandotherphenolicsconsistedof0.1%(v/v)acetic

acidinacetonitrile(solventA),and0.1%(v/v)aceticacidinwater

(solventB).ThetotalUHPLC-MS/MSrunwas15minwithaflow

rateof800␮L/min.Thegradientappliedtoresolvethe

metabo-liteswasasfollows:A=0–1min15%,1–9min50%,9–9.1min80%,

9.1–12min80%,12–12.1min15%,12.1–15min15%.Amixtureof

methanol/water(50:50;v:v)wasusedtorinsetheauto-sampler

needleaftereachinjection.Togeneratethestandardcurves,the

injectedvolumesadoptedwere2,5,and10␮L

2.5 Triplequadruplemassspectrometer

Phenoliccompounds and polyphenols wereindividually and

directlyinfused intoa triple quadrupole AB SciexQTRAP5500

massspectrometerinordertooptimizetheirdetection

parame-ters.Thestandardsweredilutedto1␮Min50%(v/v)methanol

inultrapurewater.Eachmetabolitewasinjectedindividually,and

directlyintothemassspectrometerataflowrateof7␮L/min.First,

themetabolitesweretestedforbothnegativeandpositive

ioniza-tionmodesusingfullscandetectionsurvey(Q1).Then,aproduct

ionscansurvey(MS/MS)wasautomaticallyconductedinorderto

obtainthefivemostabundantfragmentsfromthemolecularionas

wellastheirassociatedMSparameters:i)thedeclusteringpotential

(DP),ii)thecollisionenergypotential(CE),andiii)thecollisioncell exitpotential(CXP).Theparametersforthemostabundant pre-cursor/productionscorrespondingtoaparticularcompoundare reportedinTable1

Followingflavonoidandotherphenolicanalyteoptimization,a flowinjectionanalysiswasperformedtooptimizetheparameters

ofthesource/gassuchaspositiveandnegativeionization, tem-perature,andcurtain,nebulizer,andheatinggases(Materialsand Methods).Ultimately,ionpolarityswitchingmodewasselectedto developrobustliquidchromatographicconditionsforthe phyto-chemicalsconsideredinthiswork

Mass spectra were acquired using electrospray ionization switching from negative (3000V) to positive mode (4000V) withasettlingtime of65msec.Flavonoidsandotherphenolics weresimultaneouslydetectedusingmultiplereactionmonitoring (MRM).Thesourceparameterssuchascurtaingas(30psi), tem-perature(650◦C),nebulizergas(65psi),heatinggas(60psi),and collisionactivateddissociation(Low)werekeptconstantduring MRM.Notethatthegas/sourceparameterscitedabovewere pre-viouslyoptimizedbydirectflowinjectionanalysis.Thedwelltime

inthemassspectrometerwassetto20msec.LC–MS/MSdatawere recordedandprocessedusingAnalyst1.6.1software(ABSciex) 2.6 Determinationofrecovery,matrixeffectandaccuracy intra-andinter-assay

FourbiologicalmaizeextractsfromB73seedlingswereusedto assesstherecovery,matrixeffect,andintra-andinter-day accu-racy.Metaboliterecoverywasdeterminedaspreviouslydescribed

Trang 6

[ana-lytepeakarea(samplespikedbeforeextraction) –analytepeak

area(sample)]/[analyte peak area (sample spiked after

extrac-tion) – analyte peak area (samples)] Matrix effect (ME) and

intra-andinter-day accuracyforthedifferentcompoundswere

assessedfollowingtheprocedurepublished[27].Briefly,theME

wasdeterminedusingthefollowingequation:ME(%)=100x

[ana-lytepeakarea(samplespikedafterextraction)–analytepeakarea

(sample)]/averageanalytepeakarea(externalstandard).Inthese

terms,aMEcloseto100%depictsnoionsuppression.The

accu-racywasdeterminedastherelativemeanerror(RME)between

theconcentrationoftheanalyteinthespikedbiologicalsample

andthetheriticalconcentration(0.25,0.5,and 1␮M): RME(%)

=[average analyte concentration (samplespiked) – mean

ana-lyteconcentration(sample)–theoriticalconcentration]/theoritical

concentration

2.7 Histology

Themaizestemwasembeddedinhistologygradewaxbefore

sectioning to a thickness of approximately 1–1.5mm using a

handmicrotome Histochemical studieswere carried out using

phloroglucinol.A2%(w/v)solutionofphloroglucinoldissolvedin

a2:1mixtureofethanolandconcentratedHClwasappliedtothe

stemsectionsfor3minandrinsedwithwatertodetectlignin[28]

AllsectionswereimmediatelyobservedusinganSMZ1500

stere-omicroscope(Benz).ImageswereregisteredusingaDigitalSight

DS-Fi1camera(Nikon)

2.8 Extractionofsolublemetabolitefrombiologicalsamples

Thebiomassfromtwo-weekoldOh7BandCML333plantstems

wasusedtomeasuresolublephenolics.Stemswerefreeze-dried

andaportionwashomogenizedusingabeadbeaterwitha5mm

diametertungstenbeadfor5minat30Hz(RestchMM400).Ten

milligramsofstempowderweretransferredintoa1.5mL

micro-centrifugetubeand10nmol[1-13C1]-benzoicacidwasaddedas

aninternal standard at thetime of extraction 1mL100% (v/v)

methanolatroomtemperaturewasadded,mixedbyvortexingfor

30s,andcentrifugedfor5minat17,000gatroomtemperature.The

supernatantwasrecoveredandtheextractionstepwasrepeated

once.Asecondroundofextractionswasperformedtwiceusing

70%methanol(v/v)inultrapurewater.Thefoursupernatantsfrom

eachsamplewerepooledtogether,anddriedtocompletionusing

aSpeedVacuum

2.9 Extractionofcellwallboundphenolics

Thebiomassfromtwo-weekoldOh7BandCML333stemswas

usedtomeasurecellwall-boundphenolics.Thebiomassafter

solu-blemetabolitesextractionwasdriedtocompletioninaSpeedVac

10nmol[1-13C1]-benzoicacidwasthenaddedasaninternal

stan-dardtotheextractedbiomass(5mg),mixedwith500␮Lof2M

NaOH,andshakenat1400rpmfor24hat25◦C.Themixturewas

acidifiedwith100␮LofconcentratedHClandsubjectedtothree

ethylacetatepartitioningsteps.Ethylacetatefractionswerepooled

anddriedinaSpeedVacuum

2.10 LC–MS/MSquantificationofintracellularmetabolitesfrom

maizeseedlings

Forsolublephenolics,extractswerere-suspendedin500␮Lof

50%(v/v)methanolinultrapurewater,thenclearedby

centrifuga-tion(5min,20,000g),andfilteredusing0.2␮mcentrifugalfilter

(PallNanosep MFcentrifugal device withBio-Inert membrane;

Table 3

Matrix effect* (ME, %) and recovery efficiency** (RE, %) of methanol soluble flavonoids and other phenolics.

(n = 3)

RE (%) ** (n = 3) OTHER

PHENOLICS

4-O-Caffeoylquinic acid 97.6 ± 5.0 53.6

5-O-Caffeoylquinic acid 97.2 ± 6.0 94.7 Cinnamic acid 96.5 ± 1.8 90.5 Coniferyl aldehyde 95.2 ± 2.8 79.0 Coniferyl alcohol 93.7 ± 1.8 79.4 p-Coumaric acid 99.4 ± 2.0 98.6 Ferulic acid 97.4 ± 1.9 105.7 Salicylic acid 96.8 ± 0.8 87.3 Sinapaldehyde 95.8 ± 1.6 81.3 Sinapic acid 93.8 ± 1.9 97.3 Sinapyl alcohol 89.8 ± 3.0 97.2 Syringic acid 69.6±2.0 111.0 Vanillic acid 73.8 ± 0.9 116.4 Vanillin 100.8 ± 0.6 106.4 FLAVONOIDS Apigenin 99.0 ± 3.9 47.5

Apigenin-7-O-glucoside 101.1 ± 0.8 97.9 Dihydrokaempferol 102.2 ± 1.1 81.4 Dihydroquercetin 100.0 ± 1.8 85.7 Eriodictyol 98.7 ± 3.3 84.6 Isoorientin 66.6±2.9 87.4 Isovitexin * 101.1 ± 0.1 100.5 Kaempferol 99.3 ± 2.0 37.2

Luteolin 100.8 ± 0.4 42.9

Luteolin-7-O-glucoside 104.6 ± 1.1 98.6 Maysin 100.6 ± 0.6 95.3 Naringenin 97.2 ± 3.6 79.7 Orientin 98.7 ± 1.6 98.6 Quercetin 99.0 ± 2.0 33.5

Rhamnosyl-isoorientin 86.7 ± 2.0 96.6 Values of matrix effect ME < 70% and recovery efficiency RE < 75% are depicted in bold and italic.

3-O-Caffeoylquinic acid was highly abundant in maize seedling extract which was preventing the determination of the ME and RE This is depicted by the “ND” abbreviation for “not determined”.

Millipore-Sigma).A5␮Laliquotofsamplewasinjectedontothe column

Forcellwallboundphenolics,extractswerere-suspendedin

500␮L 50% (v/v) methanol in ultrapure water and filtered at 20,000gfor5minusing0.2␮mcentrifugalfilter.A50␮Laliquotof extractwasaddedtoavialcontaining450␮Lof50%(v/v)methanol

inultrapurewater,and1␮Lofthedilutedsamplewasinjectedonto thecolumn

The quantification of intracellular metabolites was accom-plished by UHPLC-MS/MS, using: i) [1-13C1]-benzoic acid as internalstandardtoaccountforanylossofmaterialduring sam-plepreparation;andii)phenolicexternalstandardsconsistingof knownconcentrationsofphenolics

2.11 Statisticalanalysis Foreachflavonoidandotherphenoliccompounds,themean andstandarddeviationwerecalculatedfromthreebiological repli-cates.Theprincipalcomponentanalysis(PCA)wasperformedusing MetaboAnalystv3.0[29]afterthedataforeachvariablewere nor-malizedusinglog2function,mean-centered,anddividedbythe standarddeviation.DifferencesbetweenCML333andOh7Bwere testedbytwo-sidedStudentt-test

Trang 7

Fig 3 Analysis of flavonoid standards using multiple reaction monitoring.The separation and the assignment of flavonoids were conducted as indicated in the Materials and Methods, Tables 1, and 2 Each individual LC–MS/MS chromatogram represents a transition precursor/product ion associated with one or more flavonoid(s) A transition with more than one peak depicts the existence of isomers (see ISO/ORI transition) Api-7-O-glc, apigenin-7-O-glucoside; DHK, dihydrokaempferol; DHQ, dihydroquercetin; ISO, isoorientin; ORI, orientin; Lut-7-O-glc, luteolin-7-O-glucoside; Rhm-ISO, rhamnosyl-isoorientin.

3.1 Optimizationofmassspectrometryparametersforthe

quantificationofplantphenoliccompounds

PhenoliccompoundspresentedinFig.1arecommonlyfound

incereals,fruitsandvegetables[6,30].Amongthose

phytochem-icals,asetof35commerciallyavailablemetaboliteswasselected

todevelopaselectiveandquantitativeLC MS/MSmethodusing multiple reaction monitoring (MRM) This group of phenolic compoundscomprised:i)phenolicacids(3,4-dimethoxycinnamic acid,4-hydroxybenzoicacid,benzoicacid,3-O-caffeoylquinicacid, 4-O-caffeoylquinicacid,5-O-caffeoylquinicacid,caffeicacid,

Trang 8

cin-Table 4

Intra- and inter-day accuracy (%) for methanol soluble flavonoids and other phenolics.

Accuracy (%)

OTHER

PHENOLICS

3,4-Dimethoxycinnamic acid −3.7 −0.5 1.4 −2.9 −0.4 0.2 4-Hydroxybenzoic acid −8.3 −6.9 −6.7 −10.2 −8.5 −7.3 Benzoic acid −10.8 −8.8 −5.7 −15.5 −9.7 −6.3 Caffeic acid −6.2 −3.5 1.4 −8.1 −4.5 −1.7 3-O-Caffeoylquinic acid * ND ND ND ND ND ND 4-O-Caffeoylquinic acid 1.7 5.9 7.5 4.9 5.6 2.8 5-O-Caffeoylquinic acid −1.5 0.9 6.1 0.2 0.6 1.0 Cinnamic acid −1.8 −1.2 2.4 −3.3 −0.5 1.5 Coniferyl aldehyde −0.4 −2.9 −0.4 −0.9 −1.3 −0.9 Coniferyl alcohol −23.0 −13.4 −3.6 −29.5 −10.8 −1.9 p-Coumaric acid −3.3 −5.4 −0.9 −7.4 −5.0 −0.1 Ferulic acid −4.1 −5.8 −1.0 −5.1 −2.4 −0.7 Salicylic acid 1.5 −0.2 0.4 0.7 −0.1 1.2 Sinapaldehyde −2.9 −2.9 −2.4 −2.1 −2.4 −2.5 Sinapic acid −0.9 0.8 −2.3 −2.7 −1.2 −0.8 Sinapyl alcohol −2.4 −0.5 −2.8 −5.5 −1.6 −2.9 Syringic acid −15.8 −11.6 −7.7 −18.3 −15.3 −9.8 Vanillic acid −28.6 −23.6 12.5 −27.6 −26.5 −3.4

Apigenin-7-O-glucoside −0.3 0.5 1.6 −1.1 −0.2 1.2 Dihydrokaempferol −1.0 0.8 3.5 0.4 1.5 3.1 Dihydroquercetin −0.2 1.5 0.5 −1.1 1.6 2.7 Eriodictyol −0.3 −1.4 −0.5 −1.1 −1.4 −0.8 Isoorientin −13.3 −6.8 −1.2 −13.8 −9.9 −5.4 Isovitexin −3.1 −2.8 1.8 −3.3 −1.6 3.0 Kaempferol 0.1 −1.8 −1.5 −1.1 −0.1 0.9

Luteolin-7-O-glucoside 2.6 2.9 4.2 1.8 4.8 6.8

Rhamnosyl-isoorientin −1.8 −1.3 −1.1 −1.8 −0.8 −2.2 Low accuracies ±20% are depicted in bold and italic.

* 3-O-Caffeoylquinic acid was highly abundant in maize seedling extract which was preventing the determination of the accuracies This is depicted by the “ND” abbreviation for “not determined”.

Metabolite concentration (␮M) added to maize seedling extract.

namic acid, p-coumaric acid, ferulic acid, salicylicacid, sinapic

acid, syringic acid, vanillic acid), ii) aldehyde forms of

pheno-licacids(vanillin,sinapaldehyde,coniferylaldehyde),iii)alcohol

formsofphenolicacids(coniferylalcohol,sinapylalcohol),andiv)

flavonoids(apigenin,apigenin-7-O-glucoside,dihydrokaempferol,

dihydroquercetin,eriodictyol,isoorientin,isovitexin,kaempferol,

luteolin, luteolin-7-O-glucoside, maysin, naringenin, orientin,

quercetin,rhamnosyl-isoorientin,vitexin)

Phenoliccompounds andpolyphenols were individually and

directlyinfused into a triple quadrupole ABSciex QTRAP5500

massspectrometer(MaterialsandMethods).Thebestsensitivity

forthemajorityofthephytochemicalswasachievedunder

nega-tiveionization,exceptforconiferylalcohol(Table1).13CThemost

abundantproduction(quantifierion)foreachphenoliccompound

is reportedin Table 1.The product ionsfor the phenolic acids

werecharacterizedbyaneutrallosscorrespondingto:i)oneCO2

(m/z=44amu)for4-hydroxybenzoic,benzoic,caffeic,cinnamic,

coumaric,salicylicacids,ii)oneCH3(m/z=15amu)andoneCO2

(m/z=44amu)forferulicandvanillicacids,iii)twomoleculesof

formaldehyde(m/z=60amu)plusoneCO2(m/z=44amu)for

3,4-dimethoxycinnamicacid,andiv)formicacid(m/z=46)plus

twoCH3 (m/z=30amu)forsyringicacid[31] Forchlorogenic

acids(3-CGA,4-CGA,5-CGA),theirproductionsconsistedof

de-protonatedquinicacid,whichwasinaccordancewithaprevious

workconducted[32].Neutrallossesofone(−15)ortwo(−30)CH3

groupswereobservedforconiferylaldehydeandvanillin,andfor

sinapaldehyde,respectively[33].Alossofwater(m/z=18amu) andtwoCH3 (m/z=30amu)wereobservedforsinapylalcohol, andalossofmethanol(m/z=32amu)wasdetectedforconiferyl alcohol.Theprecursorion[M-18]+ofconiferylalcoholwas posi-tivelyionizedinordertoachievethebestsensitivity

FlavonoidshavetheirbackbonemadeofthreeringsnamelyA,B, and–C,withthecleavageoftheC CbondoftheC-ringgiving struc-turalinformationonthechemicalgroupspresentontheA-and B-rings.Moreover,flavonoidscanbedecoratedwithsugarmoietyor moieties,andarecalledflavonoidglycosides.Nomenclatures pre-viouslyestablished[34–40]wereutilizedtoelucidatethestructure

oftheproductioncorrespondingtoeachflavonoidunder investiga-tion(Table1).Thesignificanceofthelettercodeanditsassociated superscript/subscript numbersmentioned herein aredefined in Fig.A.1(Supplementalmaterial)[34].Mostoftheflavonoid agly-coneshad cleavage ofthe C-ringbondsand generated product ion containing a part of theC-ring plus:i) the A-ring yielding

1,3A−(eriodictyol,naringenin,luteolin),1,4A-(dihydrokaempferol, dihydroquercetin), and1,2A- −CO(quercetin)fragments,and ii) theB-ringproducing1,3B-fragmentforapigenin.Kaempferolwas theonly flavonoidforwhich theselectedproduction (deproto-natedphenol)hadacleavageoccurringintheC Cbondbetween theB-andtheC-rings.FortheflavonoidO-glycosides (apigenin-7-O-glucoside,luteolin-7-O-glucoside),theproductionsdepicted

inTable1representedtheZ0-fragmentcontainingtheaglycone moiety.Ontheotherhand,theflavonoidC-monoglycosideswere

Trang 9

0,1X0-(isovitexin)and0,2X0-(isoorientin,orientin,vitexin)inthe

sugar moieties Rhamnosylisoorientin and maysin(flavonoid

C-diglycosides)had neutrallosses consistentwith0,1X0− andZ1−

fragmentations,respectively

3.2 LC–MS/MSmethoddevelopmentforthequantificationof

plantphenoliccompounds

AreversephaseC18Symmetrycolumn(4.6×75mm;3.5␮m)

wastestedwithdifferentsolvents,additives,flowratesand

tem-peraturesforitscapacitytoresolvethe35metabolitesofinterest

withinashortperiod oftime (MaterialandMethods).Thebest

performing method was able to resolve the 33 out of the 35

metabolitesovera totalanalyticalperiodof15minusinga

gra-dient of acetonitrile, while acetic acid remained at 0.1% The

initialconditionswere15%acetonitrileforoneminute,andthen

theacetonitrilewaslinearlyincreasedto50%foreightminutes,

whichpermittedtheelutionofalltheflavonoidsandother

phe-nolicsexceptsalicylicacid(Table2,Figs.2and3).Furthermore,

thesechromatographicsettings wereenablingtheresolution of

isobaricmetabolites,specifically3-,4-,and5-CGAs(353/191),

4-hydroxybenzoicacidand salicylicacid(137/93), isoorientinand

orientin(447/327),andluteolin(285/151)andkaempferol(285/93)

asdepictedinFigs.2and3.Unfortunately,theseparationofthepair

ofisomers isovitexin/vitexin(431/283)wasnot achievedunder

these conditions,which lead us toonly consider isovitexin for

theremainderofthestudy.However,apartialresolutionofthese

flavonoidscouldbeobtainedwith0.1%formicacidinsteadofacetic

acidasadditive(datanotshown)

Therewasa stronglinearityfor allthecalibrationcurves of

flavonoidandotherphenoliccompoundsfromlowfmoltohigh

pmolrangewithcorrelationcoefficientsabove0.99(Table2).The

sensitivityofthisLC–MS/MSapproachisdemonstratedbyitslimits

ofdetectionbetween1.5amolforapigenin-7-O-glucosideto300

fmolforsinapylalcohol,anditslimitsofquantificationbetween

5amolto1000fmol

InordertofurthervalidatetheapplicationofthisUHPLC–MS/MS

method to biological samples, the matrix effect (ME) for each

flavonoidandotherphenoliccompoundwasinvestigated,aswell

as therecovery efficiency (RE) from thesoluble and cell

wall-boundfractions(Tables3,andA.1,Supplementalmaterial).Overall,

therewasnoionsuppressionfromthebiologicalmatrix,exceptfor

syringicacidandisoorientinwhosesignalwasinhibitedby30.4

and33.4%,respectively.Theefficiencywithwhicheachcompound

wasrecoveredfromthebiologicalsolublefractionwasfoundtobe

above75%forthemajorityofthem,except4-O-Caffeoylquinicacid,

apigenin,kaempferol,luteolin,andquercetinforwhichthe

respec-tiveREswere53.6,47.5,37.2,42.9,and33,5%.Itisnoteworthythat

MEandREwerenotassessedfor3-O-caffeoylquinicacidduetoits

highabundanceinthebiologicalsamples.Thephenoliccompounds

boundtothecellwallwererecoveredwithahighefficiency,except

forcaffeicacid,coniferylaldehyde,andsynapaldehyde(TableA.1,

Supplementalmaterial).Forcellwallboundvanillin,therecovery

wasfoundtobe144%,whichmayindicateionizationenhancement

duetocoelutingsamplecoumpounds[41].Itisimportanttonote

thattheextractiontreatmentconsistingofsodiumhydroxide(2M)

andconcentratedhydrochloricacidiswidelyappliedinthefield

[42,43].Ourstudydemonstratesthatthistreatmentresultsinthe

degradationofcaffeicacid,aswellasapartiallossofthephenolic

aldehydes

Aspartofthevalidation procedure,theintra-and inter-day

accuracyoftheanalyticalmethodweredeterminedasdescribedby

[27]andreportedinTable4.Withtheexceptionofconiferylalcohol

Table 5

Quantitative analysis of methanol-soluble flavonoids and other phenolics in stems from two-week-old Oh7B and CML333 seedlings.

OTHER PHENOLICS

5-O-Caffeoylquinic acid c 415 ± 32 6,604 ± 770 Sinapyl alcohol 395 ± 42 394 ± 8 Coniferyl alcohol 81 ± 18 63 ± 9 Ferulic acid a 139 ± 50 28 ± 18 Salicylic acid 5 ± 2 6 ± 2 4-Hydroxybenzoic acid NQ NQ Sinapaldehyde 2.1 ± 0.5 2.0 ± 0.3 Sinapic acid 22 ± 4 11 ± 7 Syringic acid 0.9 ± 0.4 0.7 ± 0.1 Vanillin 51 ± 10 46 ± 1 Vanillic acid 9 ± 2 4 ± 3 FLAVONOIDS Naringenin b 3.3 ± 0.5 1.5 ± 0.4

Eriodictyol c 1.0 ± 0.1 0.1 ± 0.0 Apigenin b 14 ± 3 25 ± 1 Apigenin-7-O-glucoside c 0.2 ± 0.0 0.6 ± 0.0 Luteolin 1.0 ± 0.2 0.6 ± 0.0 Luteolin-7-O-glucoside 0.6 ± 0.1 0.3 ± 0.1 Dihydrokaempferol c 0.2 ± 0.1 2.5 ± 0.6 Dihydroquercetin NQ NQ Kaempferol a 5 ± 1 39 ± 33 Quercetin b 10 ± 1 5 ± 1 Orientin b 0.1 ± 0.0 0.0 ± 0.0 Isoorientin c 38 ± 5 4 ± 1 Isovitexin/Vitexin c 22 ± 3 4 ± 1 Rhamnosyl-isoorientin c 23 ± 5 1 ± 1 Maysin c 2,396 ± 465 1 ± 1 Values are means of three biological replicates (n = 3) NQ indicates not quantified, either due to absence of metabolite or values below the LOQ Letters next to each name indicate significant differences between Oh7B and CML333 using two-sided Student’s t-test.

a p-value below 0.05.

b p-value below 0.01.

c p-value below 0.001.

andvanillicacid,alltheflavonoidsandotherphenoliccompounds hadintra-andinter-dayaccuraciesina±20%range

3.3 ApplicationofthenovelLC–MS/MSmethodtothe quantificationofphenolicsinseedlingsfromtwomaizelineswith contrastinglignincontent

Apaneloftwenty-threemaizelineswasgrowntoobtain two-week-oldseedlings forselection byhistochemicalanalysiswith phloroglucinolstaining.Fromtheselines,CML333andOh7B pre-sentedthemostcontrastinglignincontentafterstaining(Fig.4)

Weusedournewmethodologytotestifthisdifferenceinlignin wascorrelatedwithavariationinthelevelsofintermediate com-poundsfromthephenylpropanoidpathway.Overthe34flavonoids andotherphenolicsmonitored,30and16werewithinthe quan-tification range in the soluble and cell-wall bound fractions, respectively(Tables5and6).Principalcomponentanalysis(PCA)of thecompletedatasetoftheintermediariesofthephenylpropanoid pathwayshowedthatdifferencesinthelevelsofthesemetabolites separatedOh7BfromCML333samples(Fig.5).Principal compo-nent 1 (PC1)explained 60.3%of thevariance, and theloadings foreachcompoundarereportedinTableA.2.Thevariablesthat contributedthemost(positivelyornegatively)totheseparation weretheonesthatwerefoundsignificantlydifferentbetweenthe

Trang 10

Fig 4 Histochemical staining of CML333 and Oh7B stems.Stem cross-sections of two-week old seedlings analyzed by phloroglucinol staining under light microscope Panels A and C correspond to the maize line CML333, and panels B and D to Oh7B Vb, vascular bundles Scale bars represent 500 ␮m.

Fig 5 Principal component analysis of the flavonoid and other phenolic

com-pounds in CML333 and Oh7B seedlings.The shaded red and green ellipses in the

PCA plot represent 95 % confidence intervals for the two maize lines CML333 and

Oh7B, respectively Three biological replicates (n = 3) were used for the analyses.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

twomaizelines(Tables5and6;ap-value<0.05;bp-value<0.01;c p-value<0.001)

Inthesolublefraction,thelevelsofthreephenolicacidswere foundtobesignificantlydifferent:4-CGAand5-CGAwerehigherin CML333whereasferulicacidwasreducedincomparisontoOh7B (Table5).However,nosignificantreductionwasobservedforthe contentofseveralothermetabolitesderivedfromthelignin path-way,includingferulicandsinapicacids(Table5).Althoughmost

ofthefreephenolicsinthecytosolaresimilar,thedifferencein thetransportofmonolignolstotheapoplastfor polymerization

ofligninand/ortheglycosylationfortransfertothevacuolemay causethedifferenceinligninaccumulationofthetwo lines.All theflavonoidsquantifiedwiththeexceptionofluteolin, luteolin-7-O-glucosideanddihydroquercetinwerestatisticallysignificantly differentbetweenCML333andOh7B(Table5).Itcanbeinferred fromTable5thattheC-glycosylflavonepathwayleadingtomaysin accumulationishighlyactive,giventhehighvaluesofthis metabo-liteinstems,itremainstobedeterminedifthisis thecase for apimaysin(Table5)

Withregardstothecellwallboundcompounds,wedidobserve highlevelsofcaffeic,coumaric,vanillicandferulicacidsreleased afterbasichydrolysis.Inaddition,4-hydroxybenzoicacidand caf-feicacidwerestatisticallysignificantlydifferentbetweenOh7Band CML333(Table6).However,itisimportanttonotethattherecovery

ofcellwallboundcaffeicacidwasverylow(TableA.1, Supplemen-talmaterial),andthereforethedifferencebetweenthetwolines maynotberelevant.Allflavonoidswiththeexceptionof rham-nosylisoorientinwere‘not quantified’eitherbecausetheywere absentorthelevelsdetectedwerebelowthelimitofquantification (Table6)

Ngày đăng: 31/12/2022, 09:58

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[28] J. Nakano, G. Meshitsuka, The detection of lignin, in: S.Y. Lin, C.W. Dence (Eds.), Methods in Ligning Chemistry, Springer, Berlin, Heidelberg, 1992, pp Sách, tạp chí
Tiêu đề: Methods in Ligning Chemistry
Tác giả: J. Nakano, G. Meshitsuka
Nhà XB: Springer, Berlin, Heidelberg
Năm: 1992
[35] H.J. Dias, N.I. de Melo, A.E. Miller Crotti, in: Jeevan Prasain (Ed.), Electrospray Ionization Tandem Mass Spectrometry as a Tool for the Structural Elucidation and Dereplication of Natural Products: an Overview, Tandem Mass Spectrometry - Applications and Principles, InTech, 2012, pp. 595–618, ISBN:978-953-51-0141-3 Sách, tạp chí
Tiêu đề: Tandem Mass Spectrometry - Applications and Principles
Tác giả: H.J. Dias, N.I. de Melo, A.E. Miller Crotti
Nhà XB: InTech
Năm: 2012
[40] P.F. Pinheiro, G.C. Justino, in: Venketeshwer Rao (Ed.), Structural Analysis of Flavonoids and Related Compounds–A Review of Spectroscopic Applications, Phytochemicals–A Global Perspective of Their Role in Nutrition and Health, InTech, 2012, pp. 33–56, ISBN: 978-953-52-0296-0 Sách, tạp chí
Tiêu đề: Structural Analysis of Flavonoids and Related Compounds–A Review of Spectroscopic Applications, Phytochemicals–A Global Perspective of Their Role in Nutrition and Health
Tác giả: P.F. Pinheiro, G.C. Justino
Nhà XB: InTech
Năm: 2012
[10] P. Mattila, J. Kumpulainen, Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection, J. Agric. Food Chem.50 (2002) 3660–3667 Khác
[11] G. Haghi, A. Hatami, Simultaneous quantification of flavonoids and phenolic acids in plant materials by a newly developed isocratic high-performance liquid chromatography approach, J. Agric. Food Chem. 58 (2010) 10812–10816 Khác
[12] R. Santiago, A. Lopez-Malvar, C. Souto, J. Barros-Rios, Methods for determining cell wall-bound phenolics in maize stem tissues, J. Agric. Food Chem. 66 (2018) 1279–1284 Khác
[13] G.A. Garzon, C.E. Narvaez-Cuenca, J.P. Vincken, H. Gruppen, Polyphenolic composition and antioxidant activity of acai (Euterpe oleracea Mart.) from Colombia, Food Chem. 217 (2017) 364–372 Khác
[14] M. Ramirez-Ambrosi, B. Abad-Garcia, M. Viloria-Bernal, S. Garmon-Lobato, L.A. Berrueta, B. Gallo, A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products, J.Chromatogr. A 1316 (2013) 78–91 Khác
[15] M.J. Simirgiotis, C. Quispe, J. Borquez, C. Areche, B. Sepulveda, Fast detection of phenolic compounds in extracts of easter pears (Pyrus communis) from the Atacama desert by ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-Q/Orbitrap/MS/MS), Molecules 21 (2016) Khác
[16] M. Vagiri, A. Ekholm, S.C. Andersson, E. Johansson, K. Rumpunen, An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.), J. Agric. Food Chem. 60 (2012) 10501–10510 Khác
[17] A. Frolov, A. Henning, C. Bottcher, A. Tissier, D. Strack, An UPLC–MS/MS method for the simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds, J. Agric. Food Chem. 61 (2013) 1219–1227 Khác
[18] R. Jaini, P. Wang, N. Dudareva, C. Chapple, J.A. Morgan, Targetedmetabolomics of the phenylpropanoid pathway in Arabidopsis thaliana using reversed phase liquid chromatography coupled with tandem mass spectrometry, Phytochem. Anal. 28 (2017) 267–276 Khác
[19] M.I. Casas, S. Duarte, A.I. Doseff, E. Grotewold, Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop, Front. Plant Sci. 5 (2014) 440 Khác
[20] Y. Chen, H. Yu, H. Wu, Y. Pan, K. Wang, L. Liu, Y. Jin, C. Zhang, A novel reduplicate strategy for tracing hemostatic compounds from heating products of the flavonoid extract in Platycladi cacumen by spectrum-effectrelationships and column chromatography, Molecules 20 (2015) 16970–16986 Khác
[21] G.A. Bataglion, F.M.A. da Silva, M.N. Eberlin, H.H.F. Koolen, Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS, Food Chem. 180 (2015) 280–287 Khác
[22] Y. Lin, W. Xu, M. Huang, W. Xu, H. Li, M. Ye, X. Zhang, K. Chu, Qualitative and quantitative analysis of phenolic acids, flavonoids and iridoid glycosides in Yinhua Kanggan Tablet by UPLC–QqQ-MS/MS, Molecules 20 (2015) 12209–12228 Khác
[23] D. Orcic, M. Franciskovic, K. Bekvalac, E. Svircev, I. Beara, M. Lesjak, N.Mimica-Dukic, Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection, Food Chem. 143 (2014) 48–53 Khác
[24] D. Sun, L. Dong, P. Guo, X. Shi, J. Gao, Y. Ren, X. Jiang, W. Li, C. Wang, Q. Wang, Simultaneous detection of flavonoids and phenolic acids in HerbaLysimachiae and Herba Desmodii Styracifolii using liquid chromatography tandem mass spectrometry, Food Chem. 138 (2013) 139–147 Khác
[25] A.P. Alonso, R.J. Piasecki, Y. Wang, R.W. LaClair, Y. Shachar-Hill, Quantifying the labeling and the levels of plant cell wall precursors using ion chromatography tandem mass spectrometry, Plant Physiol. 153 (2010) 915–924 Khác
[26] J.C. Cocuron, B. Anderson, A. Boyd, A.P. Alonso, Targeted metabolomics of Physaria fendleri, an industrial crop producing hydroxy fatty acids, Plant Cell Physiol. 55 (2014) 620–633 Khác

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm