1. Trang chủ
  2. » Giáo án - Bài giảng

Development and validation of a method for quantification of two tobacco-specific nitrosamines in indoor air

10 7 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Development and Validation of a Method for Quantification of Two Tobacco-Specific Nitrosamines in Indoor Air
Tác giả María Gómez Lueso, Maya I. Mitova, Nicolas Mottier, Mathieu Schaller, Michel Rotach, Catherine G. Goujon-Ginglinger
Trường học Philip Morris International R&D, Neuchâtel
Chuyên ngành Analytical Chemistry / Environmental Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Neuchâtel
Định dạng
Số trang 10
Dung lượng 1,14 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

A sensitive and accurate method for the quantification of 1 -Demethyl-1 -nitrosonicotine (NNN) and 4-(methylnitrosamino)-1-(3-Pyridyl)-1-butanone (NNK) in indoor air was developed and validated. To this aim, a novel approach for the collection of two tobacco-specific nitrosamines, using silica sorbent cartridges followed by simplified sample preparation and isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry, was applied.

Trang 1

María Gómez Luesoa, Maya I Mitovaa,∗, Nicolas Mottiera,b, Mathieu Schallera,

Michel Rotacha, Catherine G Goujon-Ginglingera

a PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland

b Service de la Consommation et des Affaires Vétérinaires, Chemin des Boveresses 155, 1066 Epalinges, Switzerland

a r t i c l e i n f o

Article history:

Received 13 July 2018

Received in revised form

28 September 2018

Accepted 17 October 2018

Available online 23 October 2018

Keywords:

Tobacco-specific nitrosamines

Validation

Accuracy profile

Environmental aerosol

Tobacco heating system

e-Cigarette

a b s t r a c t

Asensitiveandaccuratemethodforthequantificationof1-Demethyl-1-nitrosonicotine(NNN)and 4-(methylnitrosamino)-1-(3-Pyridyl)-1-butanone(NNK) inindoor airwasdeveloped and validated

Tothisaim, anovel approach forthecollection oftwo tobacco-specificnitrosamines, usingsilica sorbentcartridgesfollowedbysimplifiedsamplepreparationandisotopedilutionliquid chromatogra-phy/electrosprayionizationtandemmassspectrometry,wasapplied.Thisprocedureledtoasubstantial improvementintermsofsensitivityandsamplethroughputascomparedwithmethodsusing conven-tionaltrapping.Forthevalidation,amatrix-basedapproachusinganaccuracyprofileprocedurewas selected.Theevaluatedmatriceswerebackgroundairsamples,environmentalaerosolsofa heat-not-burntobaccoproduct(TobaccoHeatingSystem[THS]2.2,commercializedunderthebrandIQOS®),a rechargeableelectroniccigarette(Solaris®),andtheenvironmentaltobaccosmoke(ETS)ofa conven-tionalcigarette(MarlboroGold®).Themethodshowedexcellentrecoveries,sensitivity,andprecision.The limitsofdetectionofthemethodforNNNandNNKwere0.0108ng/m3and0.0136ng/m3,respectively Thecalibrationrangeoftheinstrumentspanned0.2–60ng/mL.Thecalculatedlowerworkingrangelimit (LWRL)ofthemethodforNNNwas0.126ng/m3,andtheLWRLforNNKwas0.195ng/m3.Themethodwas appliedtoevaluatesurrogateenvironmentalaerosolsgeneratedusingsmokingmachines.Thismodelis reliablebutgivesalargeoverestimationofthepossibleimpactofTHS2.2ande-cigarettesonindoorair, becausetheretentionofNNNandNNKinthebodyoftheconsumersisnottakenintoaccount.Asa con-sequence,thevaluesreporteddonotreflectareal-lifesetting.Thecontentsofthetwotargetcompounds

inthesurrogateenvironmentalaerosolswere0.0830±0.0153ng/m3ofNNNand0.0653±0.0138ng/m3

ofNNKforTHS2.2,0.0561±0.0296ng/m3ofNNNfore-cigarettes,and0.816±0.109ng/m3ofNNNand 4.13±1.04ng/m3NNKforcigarettes.Thesevaluescorrespondto10%ofthemeasuredETSconcentration forNNNinenvironmentalaerosolsofTHS2.2and7%forthoseofe-cigarettes.ForNNK,thevalueforthe environmentalaerosolofTHS2.2was2%oftheETSvalue

©2018PMIR&D,PhilipMorrisProductsS.A.,QuaiJeanrenaud5,2000Neuchâtel,Switzerland PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/)

1 Introduction

4-(methylnitrosamino)-1-(3-Pyridyl)-∗ Corresponding author.

E-mail address: Maya.Mitova@pmi.com (M.I Mitova).

grow-https://doi.org/10.1016/j.chroma.2018.10.037

0021-9673/© 2018 PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland Published by Elsevier B.V This is an open access article under the

Trang 2

[3,4] Thisprocess occursmostly during theprocessing, curing,

1–29ng/m3)[10–13]

anal-yses[13,24,34,36].Asaconsequence,methodswithLLOQabove

[13,36]

2 Material and methods

Trang 3

preparation

samples

3 Results and discussion

Trang 4

The instrument chosen for the analysis was an LC-20A

Fig 1. Typical chromatogram for NNN and NNK The blue trace represents the NNN transition used as quantifier (178/148) The red trace represents the NNN transition used as qualifier (178/120) The green trace represents the NNN-D 4 tran-sition (182/152) The grey trace represents the NNK transition used as quantifier (208.1/121.7) The light blue trace represents the NNK transition used as qualifier (208.1/79) The pink trace represents the NNK-D 4 transition (211.8/126).

Trang 5

recoveries

Trang 6

Table 1

Data used to build the accuracy profiles for NNN.

Matrix 1 Spiking level Spikingconcentration

[␮g/mL]

Trueness values per series

CV r CV R 80% Tolerance Interval

1 2 3 4 Average Lower limit Upper limit

BKG

Level 1 0.229 142 107 144 131 131 7 18 100 161 Level 2 0.514 107 101 126 113 112 4 11 93 131 Level 3 0.883 117 95 114 107 108 3 10 90 126 Level 4 1.66 109 109 106 105 107 2 2 104 111 Level 5 3.41 103 104 103 100 103 2 2 99 106 Level 6 4.97 103 101 103 100 102 2 2 99 105

EA of THS2.2

Level 1 0.229 131 30 135 90 96 14 50 7 186 Level 2 0.514 101 64 114 112 98 7 24 56 139 Level 3 0.883 113 70 113 100 99 4 20 62 136 Level 4 1.66 103 93 95 93 96 2 5 87 105 Level 5 3.41 103 94 96 95 97 2 5 90 105 Level 6 4.97 102 94 96 96 97 2 4 91 103

ETS

Level 1 0.989 89 119 103 130 110 9 20 78 143 Level 2 1.977 91 101 106 93 97 4 8 84 110 Level 3 4.945 98 95 99 90 95 2 4 88 103 Level 4 7.97 104 97 103 94 99 1 5 91 108 Level 5 15.93 106 99 98 99 101 2 4 94 107 Level 6 30.10 100 99 98 97 98 2 2 95 102

EA fo e-cig

Level 1 0.229 94 123 93 72 95 16 25 56 135 Level 2 0.514 96 118 103 96 103 10 14 83 124 Level 3 0.883 96 110 101 100 102 6 8 90 113 Level 4 1.66 106 109 105 105 106 3 3 102 111 Level 5 3.41 103 103 101 104 103 3 3 99 107 Level 6 4.97 104 105 102 105 104 2 2 101 107

1 BKG: Background, EA: Environmental Aerosol, ETS: Environmental Tobacco Smoke.

[44,45]

[44–46].Thelowerworkingrangelimit(LWRL)andupperworking

Table1containsthedatausedtobuildtheaccuracyprofiles

Table2containsthedatausedtobuildtheaccuracyprofiles

Trang 7

Table 2

Data used to build the accuracy profiles for NNK.

Matrix 1 Spiking level Spikingconcentration

[␮g/mL]

Trueness values per series

CV r CV R 80% Tolerance Interval

1 BKG: Background, EA: Environmental Aerosol, ETS: Environmental Tobacco Smoke.

Table 3

Lower Working Range Limits (LWRL) and Upper Working Range Limits (UWRL) for

NNN and NNK.

Matrix 1 Target

compound

LWRL 2 UWRL 2

ng/mL ng/m 3 ng/mL ng/m 3

BKG NNN 0.919 0.255 60.2 16.7

NNK 1.30 0.362 60.6 16.8

EA of THS2.2 NNN 1.16 0.322 60.2 16.7

NNK 0.702 0.195 60.6 16.8

ETS NNN 1.37 0.379 60.2 16.7

NNK 5.24 1.46 60.6 16.8

EA of e-cig NNN 0.453 0.126 60.2 16.7

NNK 0.994 0.276 60.6 16.8

Min NNN 0.453 0.126 60.2 16.7

Max NNK 0.702 0.195 60.6 16.8

1 BKG: Background, EA: Environmental Aerosol, ETS: Environmental Tobacco

Smoke.

2 Conversion from ng/mL to ng/m 3 using 1.5 L/min sampling flow-rate and four

hours of collection (0.36 m 3 ), and final solution volume of 0.1 mL.

Table3presentstheLWRLandUWRLforthetwotarget

e-cigarettes

Table4presentstheaverageNNNandNNKmatrixendogenous

[12,13,22,23,34]aswellasinreal-lifeconditions[12].In

Trang 8

Table 4

Average content of NNN and NNK in Background, environmental aerosol of THS 2.2 and e-cigarette, and environmental tobacco smoke (smoking machine model).

Matrix 1

Average endogenous content

in homogenized matrix

Average endogenous content

in non- homogenized matrix

Average endogenous content per matrix type (all values)

ng/m 3 ng/m 3 ng/m 3 ng/m 3 ng/m 3 ng/m 3

BKG Average <0.0108 3 <0.0136 3 <0.0108 3 <0.0136 3 <0.0108 3 <0.0136 3

EA of THS2.2 Average 0.0849 2 0.0683 2 0.0792 2 0.0593 2 0.0830 2 0.0653 2

STDEV 0.0155 0.0136 0.0149 0.0125 0.0153 0.0138

EA of e-cig Average 0.0557 2 <0.0136 3 0.0570 2 <0.0136 3 0.0561 2 <0.0136 3

ETS Average 0.819 4.121 0.811 4.140 0.816 4.127

STDEV 0.108 0.941 0.114 1.253 0.109 1.042

1 BKG: Background, EA: Environmental Aerosol, ETS: Environmental Tobacco Smoke.

2 Average values are between the LLOQ and the LWRL of the method, accuracy outside ±25% threshold.

3 Average values under LOD (the displayed value corresponds to the LOD).

Fig 2.Accuracy profiles obtained for NNN in a) the background air sample, b) EA of

THS 2.2, c) EA of e-cig, and d) ETS of Marlboro Gold samples Legend: average

recov-ered concentration per spiking level (black circle), trueness expressed as recoveries

(orange spots line), upper and lower ␤-expectation tolerance intervals (blue

contin-uous lines), upper and lower acceptance limits set at 25% (red dashed lines), average

NNK nominal concentration (green square), LWRL (green vertical dashed line).

Fig 3. Accuracy profiles obtained for NNK in a) the background air sample, b) EA of THS 2.2, c) EA of e-cig, and d) ETS of Marlboro Gold samples Legend: average recov-ered concentration per spiking level (black circle), trueness expressed as recoveries (orange spots line), upper and lower ␤-expectation tolerance intervals (blue contin-uous lines), upper and lower acceptance limits set at 25% (red dashed lines), average NNK nominal concentration (green square), LWRL (green vertical dashed line).

Trang 9

theexperimentsofAdlkoferetal.[22] runina45m3 office for

(Table4).Theseconcentrationscorrespondedtovaluesbetween

4 Conclusions

cigarettes

Conflict of interest

Funding

Appendix A Supplementary data

037

References

[1] S.S Hecht, D Hoffmann, Tobacco-specific nitrosamines, an important group

of carcinogens in tobacco and tobacco smoke, Carcinogenesis 9 (6) (1988) 875–884, http://dx.doi.org/10.1093/carcin/9.6.875

[2] S.S Hecht, Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines, Chem Res Toxicol 11 (6) (1998) 559–603, http://dx.doi.org/ 10.1021/tx980005y

[3] S Fisher, B Spiegelhalder, J Eisenbarth, R Preussmann, Investigations on the origin of tobacco-specific nitrosamines in mainstream smoke of cigarettes, Carcinogenesis 11 (5) (1990) 723–730, http://dx.doi.org/10.1093/carcin/11.5.

723 [4] S.S Hecht, C.B Chen, R.M Ornaf, D Hoffman, Chemical studies on tobacco smoke LVI Tobacco specific nitrosamines: origins: carcinogenicity and metabolism, IARC Sci Publ 19 (1978) 395–413.

[5] Harmful and potentially harmful constituents in tobacco products and tobacco smoke; established list., federal register 77 FR 20034, Food Drug Adm.

77 (64) (2012) 20034–20037 (Accessed 31 May 2018) https://www federalregister.gov/d/2012-7727

[6] International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risk to Humans List of Classifications 1–120.

http://monographs.iarc.fr/ENG/Classification/latest classif.php , 2018 (Accessed 31 May 2018).

[7] Centers for Disease Control and Prevention (US); 2010 Surgeon General’s Report—How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease, 3 Chemistry and Toxicology of Cigarette Smoke and Biomarkers of Exposure and Harm https://www.ncbi nlm.nih.gov/books/NBK53014/ (Accessed 31 May 2018).

[8] S.C Moldoveanu, M Borgerding, Formation of tobacco specific nitrosamines

in mainstream cigarette smoke; part 1, FTC Smoking, Contrib Tobacco Res 23 (1) (2008) 19–31, http://dx.doi.org/10.2478/cttr-2013-0845

[9] G Lang, A Vuarnoz, Matrix-bound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in tobacco: quantification and evidence for an origin from lignin-Incorporated alkaloids, J Nat Prod 78 (1) (2014) 85–92, http://dx.doi.org/10.1021/np500725a

[10] K.D Brunnemann, B Prokopczyk, M.V Djordjevic, D Hoffmann, Formation and analysis of tobacco-specific N-nitrosamines, Crit Rev in Toxicol 26 (2) (1996) 121–137, http://dx.doi.org/10.3109/10408449609017926 [11] R.A Jenkins, M.R Guerin, B.A Tomkins, The Chemistry of Environmental Tobacco Smoke: Composition and Measurements, second ed., CRC Press LLC, Boca Raton, 2000.

[12] K.D Brunnemann, J.E Cox, D Hoffmann, Analysis of tobacco-specific N-nitrosamines in indoor air, Carcinogenesis 13 (12) (1992) 2415–2418,

http://dx.doi.org/10.1093/carcin/13.12.2415 [13] A.R Tricker, M.K Schorp, H.J Urban, D Leyden, H.W Hagedorn, J Engl, M Urban, K Riedel, G Gilch, D Janket, G Scherer, Comparison of environmental tobacco smoke (ETS) concentrations generated by an electrically heated cigarette smoking system and a conventional cigarette, Inhal Toxicol 21 (1) (2009) 62–77, http://dx.doi.org/10.1080/08958370802207334

[14] K.D Brunnemann, D Hoffmann, Analytical studies on tobacco-specific N-nitrosamines in tobacco and tobacco smoke, Crit Rev Toxicol 21 (4) (2008) 235–240, http://dx.doi.org/10.3109/10408449109017910

[15] J.A Mathis, P.Y Yeung, TSNA Method Comparison Using UHPLC-MS/MS, Poster from Global Laboratory Services Inc., Wilson, NC, TSRC (Toronto Science Research Conference), 2009 http://www.globallaboratory.com/forms/ uhplc tsna.pdf

[16] W Wu, D.L Ashley, C.H Watson, Simultaneous determination of five tobacco-specific nitrosamines in mainstream cigarette smoke by isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry, Anal Chem 75 (18) (2003) 4827–4832, http://dx.doi.org/10 1021/ac030135y

[17] K.A Wagner, N.H Finkel, J.E Fossett, I.G Gillman, Development of a quantitative method for the analysis of tobacco-specific nitrosamines in mainstream cigarette smoke using isotope dilution liquid

chromatography/electrospray ionization tandem mass spectrometry, Anal Chem 77 (4) (2005) 1001–1006, http://dx.doi.org/10.1021/ac048887v [18] J Wu, P Joza, M Sharifi, W.S Rickert, J.H Lauterbach, Quantitative method for the analysis of tobacco-specific nitrosamines in cigarette tobacco and mainstream cigarette smoke by use of isotope dilution liquid chromatography tandem mass spectrometry, Anal Chem 80 (4) (2008) 1341–1345, http://dx.doi.org/10.1021/ac702100c

[19] M Intorp, S Purkis, W Wagstaff, Determination of tobacco specific nitrosamines in cigarette mainstream smoke: the CORESTA 2011 collaborative study, Contrib Tobacco Res 25 (4) (2011) 2012, http://dx.doi org/10.2478/cttr-2013-0926

[20] D Hoffmann, J.D Adams, K.D Brunnemann, S.S Hecht, Assessment of tobacco-specific N-nitrosamines in tobacco products, Cancer Res 39 (7)

Trang 10

[21] ISO 19290:2016: Cigarettes–Determination of Tobacco Specific Nitrosamines

in Mainstream Cigarette Smoke by LC-MS/MS International Organization for

Standardization, 2016.

[22] F Adlkofer, G Scherer, C Conze, J Angerer, G Lehnert, Significance of

exposure to benzen and other toxic compounds through environmental

tobacco smoke, J Cancer Res Clin Oncol 116 (6) (1990) 591–598, http://dx.

doi.org/10.1007/BF01637079

[23] H Klus, H Begutter, G Scherer, A.R Tricker, F Adlkofer, Tobacco-specific and

volatile N-nitrosamines in environmental tobacco smoke of offices, Indoor

Environ 1 (6) (1992) 348–350, http://dx.doi.org/10.1177/

1420326x9200100606

[24] G O’Connell, S Colard, X Cahours, J.D Pritchard, An assessment of indoor air

quality before, during and after unrestricted use of E-cigarettes in a small

room, Int J Environ Res Public Health 12 (2015) 4889–4907, http://dx.doi.

org/10.3390/ijerph120504889

[25] J Czogala, M.L Goniewicz, B Fidelus, W Zielinska-Danch, M.J Travers, A.

Sobczak, Secondhand exposure to vapors from electronic cigarettes, Nicotine.

Tob Res 16 (6) (2014) 655–662, http://dx.doi.org/10.1093/ntr/ntt203

[26] O Geiss, I Bianchi, F Barahona, J Barrero-Moreno, Characterization of

mainstream and passive vapours emitted by selected electronic cigarettes,

Int J Hyg Environ Health 218 (2015) 169–180, http://dx.doi.org/10.1016/j.

ijheh.2014.10.001

[27] J Liu, Q Liang, M.J Oldham, A.A Rostami, K.A Wagner, I.G Gillman, P Patel, R.

Savioz, M Sarkar, Determination of selected chemical levels in room air and

on surfaces after the use of cartridge- and tank-based e-vapor products or

conventional cigarettes, Int J Environ Res Public Health 14 (9) (2017) 969,

http://dx.doi.org/10.3390/ijerph14090969

[28] T.R McAuley, P.K Hopke, J Zhao, S Babaian, Comparison of the effects of

e-cigarette vapor and cigarette smoke on indoor air quality, Inhal Toxicol 24

(12) (2012) 850–857, http://dx.doi.org/10.3109/08958378.2012.724728

[29] W Schober, K Szendrei, W Matzen, H Osiander-Fuchs, D Heitmann, R.A.

Th.Schettgen, H Fromme Joerres, Use of electronic cigarettes (e-cigarettes)

impairs indoor air quality and increases FeNO levels of e-cigarette consumers,

Int J Hyg Environ Health 217 (2014) 628–637, http://dx.doi.org/10.1016/j.

ijheh.2013.11.003

[30] T Schripp, D Markewitz, E Uhde, T Salthammer, Does e-cigarette

consumption cause passive vaping? Indoor Air 23 (2013) 25–31, http://dx.doi.

org/10.1111/j.1600-0668.2012.00792.x

[31] N Mottier, M Tharin, C Cluse, J.-R Crudo, M Gómez Lueso, C.G.

Goujon-Ginglinger, A Jaquier, M.I Mitova, E.G.-R Rouget, M Schaller, J.

Solioz, Validation of selected analytical methods using accuracy profiles to

assess the impact of a Tobacco Heating System on indoor air quality, Talanta

158 (2016) 165–178, http://dx.doi.org/10.1016/j.talanta.2016.05.022

[32] M.I Mitova, P.B Campelos, C.G Goujon-Ginglinger, S Maeder, N Mottier,

E.G.R Rouget, M Tharin, A.R Tricker, Comparison of the impact of the Tobacco

Heating System 2.2 and a cigarette on indoor air quality, Regul Toxicol.

Pharmacol 80 (2016) 91–101, http://dx.doi.org/10.1016/j.yrtph.2016.06.005

[33] A.A Ruprecht, C De Marco, A Saffari, P Pozzi, R Mazza, C Veronese, G.

Angellotti, E Munarini, A.C Ogliari, D Westerdahl, S Hasheminassab, M.M.

Shafer, J.J Schauer, J Repace, C Sioutas, R Boffi, Environmental pollution and

emission factors of electronic cigarettes, heat-not-burn tobacco products, and

conventional cigarettes, Aerosol Sci Technol 51 (6) (2017) 674–684, http://

dx.doi.org/10.1080/02786826.2017.1300231

[34] M Forster, J McAughey, K Prasad, E Mavropoulou, C Proctor, Assessment of

tobacco heating product THP1 0 Part 4: Characterization of indoor air quality

and odour, Regul Toxicol Pharmacol 93 (2018) 34–51, http://dx.doi.org/10.

1016/j.yrtph.2017.09.017

[35] RIVM, RIVM Report 2016-0036, The health risks of e-cigarettes for bystanders,

W., Visser, L., Geraets, P., Bos, R., Ramlal, P., Fokkens, W., Klerx, H., Cremers, P.,

Schwillens, R Talhout, https://www.rivm.nl/en/Documents and publications/

Scientific/Reports/2016/juli/The health risks of e cigarettes to bystanders ,

2016.

[36] K.A Moon, H Magid, C Torrey, A.M Rule, J Ferguson, J Susan, Z Sun, S Abubaker, V Levshin, A C¸ arkoglu, G.N Radwan, M El-Rabbat, J Cohen, P Strickland, A Navas-Acien, P.N Breysse, Secondhand smoke in waterpipe tobacco venues in Istanbul, Moscow, and Cairo, Environ Res 142 (2015) 568–574, http://dx.doi.org/10.1016/j.envres.2015.08.012

[37] J.P Schaller, D Keller, L Poget, P Pratte, E Kaelin, D McHugh, G Cudazzo, D Smart, A.R Tricker, L Gautier, M Yerly, R Reis Pires, S Le Bouhellec, D Ghosh,

I Hofer, E Garcia, P Vanscheeuwijck, S Maeder Evaluation of the Tobacco Heating System 2.2 Part 2: chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol, Regul Toxicol and Pharmacol., 81, (2), (2016), s27–s47, 10.1016/j.yrtph.2016.10.001.

[38] M.L Goniewicz, J Knysak, M Gawron, L Kosmider, A Sobczak, J Kurek, A Prokopòwicz, M Jablonska-Czapla, C Rosik-Dulewska, C Havel, P Jacob III, N Benowitz, Levels of selected carcinogens and toxicants in vapour from electronic cigarettes, Tob Control 23 (2) (2014) 133–139, http://dx.doi.org/ 10.1136/tobaccocontrol-2012-050859

[39] M.R Smith, B Clark, F Luedicke, J.P Schaller, P Vanscheeuwijck, J Hoeng, M.C Peitsch, Evaluation of the Tobacco Heating System 2 2 Part 1: Description of the system and the scientific assessment program, Regul Toxicol Pharmacol.

81 (2) (2016) s17–s26, http://dx.doi.org/10.1016/j.yrtph.2016.07.006 [40] EN 15251–2007: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, Comité Européen de

Normalisation, 2007.

[41] Health Canada Method: Method T-115 Determination of “Tar, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke, Health Canada, Ottawa, 1999.

[42] CORESTA, Reference Method 81:Routine Analytical Machine for E-cigarette Aerosol Generation Collection − Definitions Standard Conditions, CORESTA, 2015.

[43] J.M Daisey, Tracers for assessing exposure to environmental tobacco smoke: what are they tracing? Environ Health Perspect 107 (2) (1999) 319–327,

http://dx.doi.org/10.1289/ehp.99107s2319 [44] FDA, Guidelines for the validation of chemical methods for the FDA FVM Program, 2nd Ed., https://www.fda.gov/downloads/ScienceResearch/ FieldScience/UCM273418.pdf , 2015 (Accessed 31 May 2018).

[45] AFNOR, NF V03-110: Analyse des produits agricoles et alimentaires − Protocole de caractérisation en vue de la validation d’une méthode d’analyse quantitative par construction du profil d’exactitude AFNOR 2010.

[46] M Feinberg, Validation of analytical methods based on accuracy profiles, J Chromatogr A, 1158, (1–2), (2007), 174–183, 10.1016/j.chroma.2007.02.021 [47] Some Tobacco-specific N-Nitrosamines, in: IARC Monograph on the evaluation of carcinogenic risks to Humans; 89, Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines IARC, Lyon, 2007, pp 419–592 https:// monographs.iarc.fr/wp-content/uploads/2018/06/mono89.pdf [48] S.S Hecht, Progress and challenges in selected areas of tobacco carcinogenesis, Chem Res Toxicol 21 (2008) 160–171, http://dx.doi.org/10.1021/tx7002068 [49] World Health Organization: The scientific basis of tobacco product regulation, Second Report of a WHO Study Group (TobReg), WHO Technical Report Series

951, http://www.who.int/tobacco/global interaction/tobreg/publications/ 9789241209519.pdf , 2008 (Accessed 31 May 2018).

[50] F.K St Charles, J McAughey, C.J Shepperd, Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data, Inhal Toxicol 25 (2013) 383–397, http://dx doi.org/10.3109/08958378.2013.794177

[51] J.P Schaller, J.P.M Pijnenburg, A Ajithkumar, A.R Tricker, Evaluation of the Tobacco Heating System 2 2 Part 3: influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2 2 aerosol, Regul Toxicol Pharmacol 8 (2) (2016) s48–s58,

http://dx.doi.org/10.1016/j.yrtph.2016.10.016

Ngày đăng: 31/12/2022, 09:56

🧩 Sản phẩm bạn có thể quan tâm