1. Trang chủ
  2. » Giáo án - Bài giảng

Comprehensive comparative compositional study of the vapour phase of cigarette mainstream tobacco smoke and tobacco heating product aerosol

11 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Comprehensive Comparative Compositional Study of the Vapour Phase of Cigarette Mainstream Tobacco Smoke and Tobacco Heating Product Aerosol
Tác giả Benjamin Savaree, Juan Escobar-Arnanz, Michał Brokl, Malcolm J. Saxton, Chris Wright, Chuan Liu, Jean-François Focant
Trường học University of Liege
Chuyên ngành Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Liège
Định dạng
Số trang 11
Dung lượng 1,79 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Asimple direct sample collection/dilution and introduction method was developed using quartz wool and Tenax/sulficarb sorbents for thermal desorption and comprehensive two-dimensional gas chromatography (TD-GC × GC) analyses of volatile organic compounds from vapour phase (VP) fractions of aerosol produced by tobacco heating products (THP1.0).

Trang 1

a Centre for Analytical Research and Technologies (CART), University of Liege, Belgium

b Research and Development, British American Tobacco, Southampton, UK

a r t i c l e i n f o

Article history:

Received 20 August 2018

Received in revised form 12 October 2018

Accepted 16 October 2018

Available online 19 October 2018

Keywords:

Mainstream tobacco smoke

Vapour phase

Tobacco heating (heat-not-burn tobacco)

product

Thermal desorption

Comprehensive two-dimensional gas

chromatography

High resolution time-of-flight mass

spectrometry

a b s t r a c t

Asimpledirectsamplecollection/dilutionandintroductionmethodwasdevelopedusingquartzwooland Tenax/sulficarbsorbentsforthermaldesorptionandcomprehensivetwo-dimensionalgas chromatogra-phy(TD-GC×GC)analysesofvolatileorganiccompoundsfromvapourphase(VP)fractionsofaerosol producedbytobaccoheatingproducts(THP1.0)and3R4Fmainstreamtobaccosmoke(MTS) Analy-seswerecarriedoutusingflameionisationdetection(FID)forsemi-quantificationandbothlowand highresolutiontime-of-flightmassspectrometry(LR/HR-TOFMS)forqualitativecomparisonandpeak assignment.Qualitativeanalysiswascarriedoutbycombiningidentificationdatabasedonlinear reten-tionindices(LRIs)withamatchwindowof±10indexunits,massspectralforwardandreverselibrary searches(fromLRandHRTOFMSspectra)withamatchfactorthresholdof>700(bothforwardand reverse),andaccuratemassvaluesof±3ppmforincreasedconfidenceinpeakidentification.Usingthis comprehensiveapproachofdatamining,atotalof79outof85compoundsandatotalof198outof202 compoundswereidentifiedinTHP1.0aerosolandin3R4FMTS,respectively.Amongtheidentified ana-lytes,asetof35compoundswasfoundinbothVPsampletypes.Semi-quantitativeanalyseswerecarried outusingachemicalclass-basedexternalcalibrationmethod.Acyclic,alicyclic,aromatichydrocarbons andketonesappearedtobeprominentin3R4FMTSVP,whereaslargeramountsofaldehydes,ketones, heterocyclichydrocarbonsandesterswerepresentinTHP1.0aerosolVP.Theresultsdemontsratethe capabilityandversatilityofthemethodforthecharacterizationandcomparisonofcomplexaerosol samplesandhighlightedtherelativechemicalsimplicityofTHP1.0aerosolincomparisontoMTS

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

夽 Selected paper from the 42nd International Symposium on Capillary

Chromatog-raphy and 15th GCxGC Symposium, 13–18th May 2018, Italy.

∗ Corresponding Author at: University of Liège, Chemistry Department – CART,

Organic & Biological Analytical Chemistry, Allée du 6 Aỏt B6c, B-4000, Liège,

Belgium.

E-mail address: JF.Focant@uliege.be (J.-F Focant).

https://doi.org/10.1016/j.chroma.2018.10.035

0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.

Trang 2

com-parison

[23–28] As GC×GC can now be more easily coupled to fast

2 Materials and methods

Trang 3

2.3.2 VPfractionrecollection/dilutionprocess

Trang 4

Fig 1. Repeatability of the recollection process based on average peak area obtained from direct TD injection (Black), recollection over one TD tube (Grey), and three tubes (White) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

3 Results and discussion

Trang 5

repro-Fig 2.Apex plot of vapour phase sample from 3R4F MTS and THP1.0 aerosol obtained from FID (top), LRTOFMS (middle) and HRTOFMS (bottom).

8,7%)

Trang 6

Table 1

Qualitative and semi-quantitative results of vapour phase fraction of THP1.0 aerosol.

formula

(␮g/stick)

a Mean ± SD

for-ward match

MS reverse match

for-ward match

MS reverse match

Mass accuracy (ppm)

Chemical class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Unknown

2-methyl-1-Penten-3-one

3-methyl-pyrazine

Unknown

1H-Pyrrole

3-Hexanone

Hexanal

2,4-Pentanedione

2,5-Furandione

2-Furancarboxaldehyde

519 545 555 565 573 588 595 600 609 618 626 638 652 662 685 694 706 706 713 715 725 727 734 735 739 741 743 746 748 752 757 767 771 776 785 790 794 800 804 808 810 816 831 832 835

509 536 549 561 567 595 598 606 614 – 627 643 652 662 681 698 707 706 711 711 725 722 736 736 735 743 – 746 746 755 754

770 776 784 790 791 800 795 809 802 821 830 826 833

trace

trace

964 952 899 967 962 885 966 929 762 – 856 865 952 953 899 945 941 885 907 838 886 927 826 958 726 948 – 959 960 926 900 748 917 708 935 783 971 905 880 947 773 892 726 909 957

964 960 944 967 962 891 966 934 785 – 856 878 952 953 899 948 962 892 907 856 893 959 879 958 766 948 – 963 961 949 900 757 927 814 935 805 971 905 915 947 783 892 906 959 957

886 963 960 933 940 963 832 960 799 – 849 744 942 944 720 953 959 973 959 952 928 958 903 967 – 936 – 969 967 948 875 806 949 801 950 903 935 810 757 954 777 906 737 883 950

899 963 989 933 940 974 929 960 884 – 897 864 942 947 764 958 959 980 967 952 930 958 911 967 – 940 – 969 967 954 875 815 958 818 952 903 945 837 768 954 789 906 879 924 950

1.4

−1.1

−1.5

−1.0

−0.4

−1.4

−1.0

−1.0

−0.7 –

−0.3

−0.3

−0.4

−0.6 0.0

−0.5

−0.4

−0.2

−0.7

−0.8

−0.1

−0.1

−0.3 1.2 0.3 –

−0.8

−2.5

−1.4

−0.6

−0.6

−0.2

−0.4

−0.2 1.0 0.2

−0.3

−0.4

−0.8

−0.1

−0.5

−1.8

8 9 11 7 7 8 8 3 3 13 9 1 7 7 8 8 3 8 9 3 3 9 6 3 8 3 13 3 11 3 7 12 4 3 8 8 8 7 8 9 3 3 9 3 7

Trang 7

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

5-(1,1dimethylethyl)-2,5-Diethylfuran

Bicyclo[3.1.0]hexan-2-one

Heptanal

2-Methyl-5-isopropenylfuran

6,8-Dioxabicyclo[3.2.1]octane

beta-Myrcene

2-pentyl-Unknown

Octanal

Unknown

1,2,3-trimethyl-Benzylamine

Benzeneacetaldehyde

4-tert-Butyltoluene

Unknown

Nonanal

1-Methoxyadamantane

Decanal

Unknown

Trimethyl-tetrahydronaphthalene

Triacetin

836 849 855 857 869 870 873 877 897 900 904 938 939 949 953 957 978 986 989 992 997 1008 1012 1017 1035 1035 1036 1039 1048 1052 1061 1067 1079 1113 1198 1216 1247 1279 1343 1385

783 839

854 865 867 873 881

893 901 933

944

953 971 984 991 993 – 1003 – 1011 1026 1033 1035 1030 1047 1049 1060 1066 – 1109

1214 –

1344 1385

trace trace

trace trace trace

trace

trace

trace

trace

755 777 854 864 758 772 907 936 763 797 730 854 834 786 855 753 936 941 929 924 – 831 – 850 874 776 753 860 759 812 808 802 – 766 786 – – 906 785 –

815 845 854 969 889 828 933 947 778 911 782 854 850 786 867 832 936 941 965 924 – 851 – 891 952 871 829 885 848 891 929 816 – 779 796 – – 940 902 –

765 863 777 918 880 864 931 953 831 889 892 847 796 782 812 931 898 919 873 909 – 894 – 847 950 923 855 880 815 – 952 – – 888 766 844 – 832 915 899

850 864 856 923 880 867 935 953 835 919 911 921 796 782 849 933 919 924 877 912 – 905 – 851 950 923 855 880 905 – 956 – – 888 786 875 – 845 915 899

0.1

−0.5

−0.0 0.2 0.3

−0.0

−0.1

−0.4 0.1

−0.4

−0.8

−0.2

−0.6

−0.7

−0.3

−0.2

−0.4 –

−0.5 0.0

−0.0

−0.5

−0.2 0.1 2.6

−0.7 0.9 –

1.3

– 1.0

−1.0

9 2 3 7 4 3 9 4 8 4 7 3 12 3 3 8 7 11 1 3 13 7 13 2 4 4 4 2 8 1 7 4 13 7 12 7 13 5 9 5

Trang 8

MTS

Tables1andS2,insomelimitedcases,eitherLRIdatawerenot

(outofthe85)(Table1)and198(outofthe202)compoundswere

Trang 9

Table 2

Summary of qualitative and semi-quantitative information for VP samples of THP1.0 aerosol and 3R4F cigarette smoke with their respective relative percentage.

Chemical

class

analytes

Relative

% of analyte

Amount (␮g/stick)

Relative

% of amount

No of analytes

Relative

% of analyte

Amount (␮g/stick)

Relative

% of amount 1

2

3

4

5

6

7

8

9

10

11

12

13

Acyclic hydrocarbons

Alicyclic hydrocarbons

Heterocyclic compounds

Monocyclic aromatic

hydrocarbons

Polycyclic aromatic

hydrocarbons

Alcohols

Aldehydes

Ketones

Esters

Nitriles

Organosulfur compounds

Miscellaneous compounds

Unknowns

3 3 18 9 2 1 14 14 9 ND 3 3 6

4 4 21 11 2 1 16 16 11 ND 4 4 7

1.4 2.8 11.9 1.1 1.6 0.1 48.3 37.9 9.5 0.0 2.8 0.2 0.1

1 2 10 1 1 0 41 32 8 0 2 0 0

70 41 17 33 3 ND 7 14 1 8 2 2 4

35 20 8 16 1 ND 3 7 0 4 1 1 2

496.8 173.1 69.4 119.0 2.4 0.0 57.6 264.4 2.5 36.8 4.7 1.2 1.0

40 14 6 10 0 0 5 22 0 3 0 0 0

ND-not detected.

Fig 3.TD-GC × GC-LRTOFMS two-dimensional apex bubble plot illustrating the difference in relative chemical complexity between 3R4F MTS (top) and THP1.0 aerosol (bot-tom) Bubble sizes are related to levels of analytes For data visualisation purpose, bubble sizes were rescaled based on concentration intervals: <0.1 ␮g = 1; 0.1-0.25 ␮g = 2.5; 0.25-0.5 ␮g = 5; 0.5–1 ␮g = 10; 1–2.5 ␮g = 15; 2.5–5 ␮g = 20; 5–10 ␮g = 25; 10–25 ␮g = 30; 25–50 ␮g = 35; 50–100 ␮g = 40; >100 ␮g = 60 (see Tables 1 and S2 for detailed values).

Fig 4.Illustrating the distribution of chemical concentration based on their chemical classes for compounds found in both THP1.0 V P and 3R4F MTS VP samples.

Trang 10

Fig 5.Differences of chemical concentration of 35 overlapping compounds found in both 3R4F MTS VP and THP1.0 V P samples Y-axis inserted as logarithmic scale for data visualisation purpose (actual values are provided in Tables 1 and S2).

(seeTables1andTableS2fordetailedvalues).Resultswerealso

4 Conclusions

products

Appendix A Supplementary data

10.035

References

[1] J.-P Schaller, D Keller, L Poget, P Pratte, E Kaelin, D McHugh, G Cudazzo, D Smart, A.R Tricker, L Gautier, M Yerly, R.R Pires, S Le Bouhellec, D Ghosh, I Hofer, E Garcia, P Vanscheeuwijck, S Maeder, Evaluation of the tobacco heating system 2.2 Part 2: chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol, Regul Toxicol Pharmacol 81 (2016) S27–S47.

[2] M Forster, S Fiebelkorn, C Yurteri, D Mariner, C Liu, C Wright, K McAdam, J Murphy, C Proctor, Assessment of novel tobacco heating product THP1.0 Part 3: Comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions, Regul Toxicol Pharmacol 93 (2018) 14–33.

[3] X Li, Y Luo, X Jiang, H Zhang, F Zhu, S Hu, H Hou, Q Hu, Y Pang, Chemical analysis and simulated pyrolysis of tobacco heating system 2.2 compared to conventional cigarettes, Nicotine Tob Res (2018) 1–8.

[4] B Savareear, R Lizak, M Brokl, C Wright, C Liu, J.-F Focant, Headspace solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of aerosol

Trang 11

[5] B Savareear, M Brokl, C Wright, J.-F Focant, Thermal desorption

comprehensive two-dimensional gas chromatography coupled to time of

flight mass spectrometry for vapour phase mainstream tobacco smoke

analysis, J Chromatogr A 1525 (2017) 126–137.

[6] M Brokl, L Bishop, C.G Wright, C Liu, K McAdam, J.F Focant, Multivariate

analysis of mainstream tobacco smoke particulate phase by headspace

solid-phase micro extraction coupled with comprehensive two-dimensional

gas chromatography-time-of-flight mass spectrometry, J Chromatogr A 1370

(2014) 216–229.

[7] Q Ye, Development of solid-phase microextraction followed by gas

chromatography-mass spectrometry for rapid analysis of volatile organic

chemicals in mainstream cigarette smoke, J Chromatogr A 1213 (2008)

239–244.

[8] E Simonavicius, A McNeill, L Shahab, L.S Brose, Heat-not-burn tobacco

products: a systematic literature review, Tob Control 0 (2018) 1–13.

[9] J.-Z Dong, J.N Glass, S.C Moldoveanu, A simple GC–MS technique for the

analysis of vapor phase mainstream cigarette smoke, J Microcolumn Sep 12

(3) (2000) 142–152.

[10] T Miyake, T Shibamoto, Quantitative analysis by gas chromatography of

volatile carbonyl compounds in cigarette smoke, J Chromatogr A 693 (1995)

376–381.

[11] K.G Darrall, J.A Figgins, R.D Brown, G.F Phillips, Determination of benzene

and associated volatile compounds in mainstream cigarette smoke, Analyst

123 (1998) 1095–1101.

[12] G Barrefors, G Petersson, Assessment of ambient volatile hydrocarbons from

tobacco smoke and from vehicle emissions, J Chromatogr A 643 (1993)

71–76.

[13] S.M Charles, S.A Batterman, C Jia, Composition and emissions of VOCs in

main- and side-stream smoke of research cigarettes, Atmos Environ 41

(2007) 5371–5384.

[14] S Uchiyama, T Tomizawa, Y Inaba, N Kunugita, Simultaneous determination

of volatile organic compounds and carbonyls in mainstream cigarette smoke

using a sorbent cartridge followed by two-step elution, J Chromatogr A 1314

(2013) 31–37.

[15] E Woolfenden, Sorbent-based sampling methods for volatile and

semi-volatile organic compounds in air Part 1: sorbent-based air monitoring

options, J Chromatogr A 1217 (2010) 2674–2684.

[16] P.-H Stefanuto, K Perrault, S Stadler, R Pesesse, M Brokl, S Forbes, J.-F.

Focant, Reading cadaveric decomposition chemistry with a new pair of

glasses, ChemPlusChem 79 (2014) 786–789.

[17] S Stadler, P.-H Stefanuto, M Brokl, S.L Forbes, J.-F Focant, Characterization

of volatile organic compounds from human analogue decomposition using

thermal desorption coupled to comprehensive two-dimensional gas

chromatography–time-of-flight mass spectrometry, Anal Chem 85 (2013)

998–1005.

[18] S.L Forbes, K.A Perrault, P.-H Stefanuto, K.D Nizio, J.-F Focant, Comparison

of the decomposition VOC profile during winter and summer in a moist,

mid-latitude (Cfb) climate, PLoS One 9 (2014).

[19] M Brokl, L Bishop, C.G Wright, C Liu, K McAdam, J.F Focant, Analysis of

mainstream tobacco smoke particulate phase using comprehensive

two-dimensional gas chromatography time-of-flight mass spectrometry, J.

Sep Sci 36 (2013) 1037–1044.

[20] J Dallüge, R.J.J Vreuls, J Beens, U.A.Th Brinkman, Optimization and

characterization of comprehensive two-dimensional gas chromatography

with time-of-flight mass spectrometric detection (GC×GC-TOF MS), J Sep Sci.

25 (2002) 201–214.

[21] R Shellie, P Marriott, P Morrison, Comprehensive two-dimensional gas

chromatography with flame ionization and time-of-flight mass spectrometry

detection : qualitative and quantitative analysis of west Australian

sandalwood oil, J Chromatogr Sci 42 (2004) 417–422.

[22] Z.L Cardeal, M.D.R Gomes da Silva, P.J Marriott, Comprehensive

two-dimensional gas chromatography/mass spectrometric analysis of pepper

volatiles, Rapid Commun Mass Spectrom 20 (2006) 2823–2836.

[23] T Dijkmans, M.R Djokic, K.M Van Geem, G.B Marin, Comprehensive

compositional analysis of sulfur and nitrogen containing compounds in shale

oil using GC×GC – FID/SCD/NCD/TOF-MS, Fuel 140 (2015) 398–406.

[24] L Nicolotti, C Cordero, D Bressanello, C Cagliero, E Liberto, F Magagna, P Rubiolo, B Sgorbini, C Bicchi, Parallel dual secondary column-dual detection:

a further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography, J Chromatogr A 1360 (2014) 264–274.

[25] D Bressanello, E Liberto, M Collino, S.E Reichenbach, E Benetti, F Chiazza, C Bicchi, C Cordero, Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by parallel dual secondary column-dual detection two-dimensional comprehensive gas chromatography, J Chromatogr A 1361 (2014) 265–276.

[26] P.Q Tranchida, S Salivo, I Bonaccorsi, A Rotondo, P Dugo, L Mondello, Analysis of the unsaponifiable fraction of lipids belonging to various milk-types by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection and with the support

of high resolution time-of-flight mass, J Chromatogr A 1313 (2013) 194–201.

[27] J Krupˇcík, R Gorovenko, I ˇSpánik, P Sandra, D.W Armstrong, Flow-modulated comprehensive two-dimensional gas chromatography with simultaneous flame ionization and quadrupole mass spectrometric detection,

J Chromatogr A 1280 (2013) 104–111.

[28] D Turner, G.H Morgan, B White, A matter of taste flavour profiling by GCxGC-qMS / FID, Chromatogr Today (2012) 40–43,

flavour profiling by gcxgc-qmsfid/1136/ (Accessed online on 12/04/2018)

http://www.chromatographytoday.com/articles/gc-mdgc-gc-ms/32/diane turner dr g.h morgan bryan white/a matter of taste

[29] P.-H Stefanuto, K.A Perrault, R.M Lloyd, B Stuart, T Rai, S.L Forbes, J.-F Focant, Exploring new dimensions in cadaveric decomposition odour analysis, Anal Methods 7 (2015) 2287–2294.

[30] Y Duan, F Zheng, H Chen, M Huang, J Xie, F Chen, B Sun, Analysis of volatiles in dezhou braised chicken by comprehensive two-dimensional gas chromatography/high resolution-time of flight mass spectrometry, LWT – Food Sci Technol 60 (2015) 1235–1242.

[31] J.D Byer, K Siek, K Jobst, Distinguishing the C3 vs SH4 mass split by comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry, Anal Chem 88 (2016) 6101–6104.

[32] D.D Yan, Y.F Wong, L Tedone, R.A Shellie, P.J Marriott, S.P Whittock, A Koutoulis, Chemotyping of new hop (Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight mass spectrometry, J Chromatogr A 1536 (2017) 110–121.

[33] J Gee, K Prasad, S Slayford, A Gray, K Nother, A Cunningham, E.

Mavropoulou, C Proctor, Assessment of tobacco heating product THP1.0 Part 8: study to determine puffing topography, mouth level exposure and consumption among Japanese users, Regul Toxicol Pharmacol 93 (2018) 84–91.

[34] ISO, 3308, Routine Analytical Smoking Machine-Definition and Standard Conditions, International Organisation for Standardisation, Geneva, 2000.

[35] T Kind, O Fiehn, Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm, BMC Bioinform 7 (2006) 1–10.

[36] Linear Retention Indices database onlines: https://www.ncbi.nlm.nih.gov/ pccompound?cmd=search (Accessed 20 March 2018).

[37] P Ausloos, C.L Clifton, S.G Lias, A.I Mikaya, S.E Stein, D.V Tchekhovskoi, O.D Sparkman, V Zaikin, D Zhu, The critical evaluation of a comprehensive mass spectral library, J Am Soc Mass Spectrom 10 (1999) 287–299.

[38] A Giri, M Coutriade, A Racaud, K Okuda, J Dane, R.B Cody, J.-F Focant, Molecular characterization of volatiles and petrochemical base oils by photo-ionization GC×GC-TOF-MS, Anal Chem 89 (2017) 5395–5403.

[39] E Rathahao-Paris, S Alves, C Junot, J.-C Tabet, High resolution massspectrometry for structural identification of metabolites in metabolomics, Metabolomics 12 (2016) 10.

[40] J Dallüge, L.L.P van Stee, X Xu, J Williams, J Beens, R.J.J Vreuls, U.A.Th Brinkman, Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry, J Chromatogr A 974 (2002) 169–184.

Ngày đăng: 31/12/2022, 09:55

🧩 Sản phẩm bạn có thể quan tâm

w