1. Trang chủ
  2. » Giáo án - Bài giảng

Detection and quantification of trace airborne transfluthrin concentrations via air sampling and thermal desorption gas chromatography-mass spectrometry

5 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Detection and Quantification of Trace Airborne Transfluthrin Concentrations via Air Sampling and Thermal Desorption Gas Chromatography-Mass Spectrometry
Tác giả Michael W.C. Kwan, Jason P. Weisenseel, Nicholas Giel, Alexander Bosak, Christopher D. Batich, Bradley J. Willenberg
Trường học University of Central Florida College of Medicine
Chuyên ngành Environmental Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Orlando
Định dạng
Số trang 5
Dung lượng 527,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This efficient method allows for the remote collection of samples and rapid analysis of airborne transfluthrin from industrial applications, optimization studies of commercial products as well as domestic/household monitoring.

Trang 1

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Short communication

Michael W.C Kwana, Jason P Weisenseelb, Nicholas Giela, Alexander Bosaka,

Christopher D Batichc,d, Bradley J Willenberga,∗

a r t i c l e i n f o

Keywords:

GC–MS

Transfluthrin

Pyrethroids

a b s t r a c t

Arapidthermaldesorption-gaschromatography-electronionization-massspectrometry(TD-GC-EI-MS) methodforairbornetransfluthrindetectionisstudied.Activeairsamplingof9Lover1hat23◦Cthrougha Tenax®-loadedtuberesultedinefficientcaptureofairbornetransfluthrin.Subsequentthermaldesorption wasemployedtoachieveanLODof2.6ppqv(partsperquadrillionbyvolume).Aminimumprimary desorptiontemperatureof300◦CisnecessaryforoptimalrecoveryofsamplefromtheTenax®adsorbent Thematrixeffectsofindoorairleadtoanerrorof10.9%and10.5%recoveryofsample(10pgand100pg loadedtubes,respectively).Thelinearrangewas74–74,000ppqvwithacorrelationcoefficientof0.9981 Activeairsamplingofanovelpassivereleasedevicerevealeda∼150pg/Lairborneconcentrationgradient over1m,providingspatialcharacterizationofthedevice’sperformance.Thisefficientmethodallowsfor theremotecollectionofsamplesandrapidanalysisofairbornetransfluthrinfromindustrialapplications, optimizationstudiesofcommercialproductsaswellasdomestic/householdmonitoring

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Transfluthrin

((1R,3S)-3-(2,2-Dichlorovinyl)-2,2-dimethyl-1-cyclopropanecarboxylic acid (2,3,5,6-tetrafluorophenyl)methyl

ester)isasemi-volatileorganiccompoundofthepyrethroidclass

of insecticides that is routinely used as an indoor insecticide

Transfluthrin (TF) works as a potent dipteran sodium channel

agonist and can elicit effects such as repellency, restlessness,

knockdownanddeathin mosquitoes[1 Commercial useof TF

along with the inevitable exposure to humans has generated

interestinquantifyinglowlevelsofairborneTFwiththeultimate

goal of understanding what constitutes an effective airborne

concentrationagainst mosquitoes withoutplacing undue harm

onpeople[2–4] Previously,ourgrouphasdevelopeda passive

release devicethat releases airborneTF at a constant rateinto

the air over several hundred hours [5, unpublisheddata] The

precisequantificationofairborneTFemanatingfromthedevice

willprovideinsightintodeviceperformanceandmayhelpguide optimization Furthermore,the lower limit of efficacyfor each

of TF’s effects towards mosquitoes (i.e confusion, excitation, knockdownand death) arecurrently unknownwitha previous studysuggestingthatTFcaneffectivelyknockdownmosquitosat onepartspertrillionbyvolume(1pptv)[6 Properdissemination

ofTFisparamountasoverandunderexposureofinsecticideshave beenlinkedtospurringresistancedevelopment[7–10]

Gas chromatography-electron ionization-mass spectrometry (GC-EI-MS)isapowerfultoolinseparating,analyzingand quan-tifyingtheconstituentsofacomplexmixtureofvolatiles.Previous methods for monitoring TF airborne concentrations via

GC-EI-MSincludeairsamplingfollowedbyultrasound-assistedsolvent extraction[2 solid-phasemicroextraction[11]anddirectair mea-surementsusingProton-Transfer-ReactionMassSpectrometry[4

Thesemethodshavereportedairborneconcentrationsintherange

of␮g/m3,pg/gramandsingle-digitng/m3,respectively

Theshifttowardsthereductioninextractionmass(aka microex-tractions),beitliquidorsolidphaseextraction,isattractiveasthe analytecanbeconcentratedfromtheadsorbentintomicrolitersof solventthatcanbeinjectedintothecolumn.However,thehandling

https://doi.org/10.1016/j.chroma.2018.08.066

Trang 2

occur.Inthisregard,thermaldesorption(TD)isadvantageousover

microextractionsasthelackofextractionmatrixresultsinhigher

recoveryofthesample,reducedpotentialcontamination,andmore

rapidanalysis[12].Additionally,thisstudyusedanautomatedTD

systemwhichhelpedtoreducehumanerror.Althoughprevious

workshaveutilizedthismethod,nodetailedmethodologyforthe

quantificationofTFviaTD-GC-EI-MShasbeen,toourknowledge,

reported[6,13] Furthermore,theInternationalOrganizationfor

Standardization(ISO)standardonindoorairsamplingofvolatile

organiccompounds(VOCs)withTD-GC-EI-MS(ISO16000-6:2011)

isbroadinscopeasthechemicalandphysicalcharacteristicsof

VOCsencompassawiderange.Tothisend,wereportthe

quan-tification ofindoor airborneTF viaTD-GC-EI-MS and detailthe

instrumentalandexperimentalconditionsneededtoobtainsimilar

results.Thismethodwasthenusedtocharacterizetheemanations

ofanovelpassivereleasedevice

2 Materials and methods

2.1 Instrumentationandmaterials

TD-GC-EI-MSwasaccomplishedusingaPerkinElmerClarus®

SQ 8Cmass spectrometer,Clarus® 580gas chromatographand

TurboMatrixTM 650automatedthermal desorber(Waltham,MA,

USA) A PerkinElmer TurboMatrixTM TC 220conditioningoven

(Waltham,MA,USA)wasused toconditionthermal desorption

tubes.AnSKC, Inc.AirChek air samplerpumpModel 224-44XR

(Eighty Four, PA, USA) was used to collect air samples onto

MarkesInternational,Inc.thermaldesorptiontubes(Sacramento,

CA,USA)filledwiththeadsorbentTenax®35/60.AMesaLabsBios

Defender510airflowcalibratorwasusedtocalibratetheSKC,Inc

quadadjustablelowflowholder(SKC,Inc.,EightyFour,PA,USA)

ChromasolvTMmethanol(HPLCGrade)waspurchasedfromFisher

Scientific,Inc.(Hampton,NH,USA).Ultra-highpurityheliumwas

providedbyAirgas,Inc.(Radnor,PA,USA)andnitrogenwas

gener-atedin-housebyaParkerBalstonModelN2-35nitrogengenerator

(ParkerHannifinCorporation,Lancaster,NY)

2.2 Standardpreparation

StandardsofTFwerepreparedusingBayerTFobtainedfrom

United States Department of Agriculture-Agricultural Research

Service-Center for Medical, Agricultural and Veterinary

Ento-mology (USDA-ARS-CMAVE, Gainesville, FLDaniel L Kline, see

acknowledgements).Astocksolutionof10 mg/mLofTF in iso-propanolwasprepared volumetricallyand serial dilutionswith isopropanolwereusedtoprepareasetof4–8workingstandards rangingfrom10pg/␮Lto10ng/␮L.Standardtubeswerespikedat theinletwith0.5␮Lofliquid workingstandardandtransferred ontotheTenax® bedwithaflowofN2at100mL/minfor15min AllthermaldesorptiontubeswereconditionedwithN2 atarate

of100mL/minpriortospikingwithworkingstandards.The condi-tioningcyclewas250◦Cfor20min,followedby300◦Cfor20min andthen335◦Cfor30min.Theheatingrateforallrampperiods was10◦C/min

2.3 Parametersforquantitativeanalysis

To recovertheTF from thesample tubes, a two-stage ther-maldesorptionmethodwasused.Theprimarydesorptionfrom thesampletubewasperformedatvarioustemperaturesranging from200to335◦Cforthreeminutestoassesstheoptimum des-orptiontemperature.Priortosecondarydesorption,thesamples werecollectedonaTenax®concentratingtrapheldat-20◦Cviaa flowofhighpurityheliumatarateof75mL/min.Theheatedvalve

inthethermaldesorptioninstrumentwasmaintainedat300◦Cand transferlinetotheGCwasmaintainedat280◦Catalltimesto pre-ventcondensationoftheanalytesineitherthevalveortransferline

TodeliverthesampletotheGCcolumnforanalysis,secondary des-orptionofthesamplefromtheconcentratingtrapwasperformed

byheatingthetrapto335◦Catarateof40◦C/secwithahelium flowrateof2mL/min

ThetemperatureprogramfortheGCwastwominutesat55◦C followedbya20◦C/minrampto290◦Candthenaholdat290◦Cfor 4.25min.Heliumwasusedasthecarriergasandtheflowratewas

2mL/min.ThecolumnutilizedwasaPerkinElmerElite624(Cat

No.N9315068)midpolarcolumn(6%cyanopropylphenyl–94% dimethylpolysiloxane)withdimensions30mlength,0.25mmID and1.4␮mfilmthickness.ThetransferlinefromtheGCcolumnto theMSsourcewasmaintainedat250◦Candtheelectronionization (EI)sourcewasmaintainedat280◦C

The mass spectrum of TF wasidentified (positive ion mode – 70eV) forTF byidentifyingthetargetion atm/z 163andits fragmentation qualifyingpeak atm/z 91 (Fig.1 which is con-sistentwithpreviouslyobservedmassspectraofTF[14–19].For quantitativeanalysis,themassspectrometerwassettoselected ionrecording(SIR)modeat163m/zwiththeresultingSIR chro-matographintegratedandthepeakareaoftheTFpeakusedfor quantification

Trang 3

2.4 Statisticaldeterminationoflimitofdetection(LOD)andlimit

ofquantification(LOQ)

TheLODandLOQweredeterminedexperimentallybysignalto

noiseratio(SNR)aswellasthestandarderrorofestimates(SEE)

approach.FortheSNRmeasurement,theLODmusthaveanSNRof

atleastthreewhiletheLOQwasdeterminedattheSNRof10[20]

ThecalculationfortheLODfollowingtheSEEapproachisshown

inEq.(1)wheresy/xisthestandarderroroftheestimate,misthe

slopeofthefittedregressionlineandk-factoris3.3and10forthe

LODandLOQasnotedbypreviousauthors[21,22]

LOD=

k·sy/x

Eq.(2) shows thecalculationfor the standard error of

esti-mateswhereyiisthesampledataandyFisthevalueofthefitted

regressionlinefrommatrixspikedsamplesthatcorrespondstothe

concentrationofTFusedtoachievevalueyi.Concentrationsnear

thelowendofthelinearrangewasusedforSEEcalculations

sy/x= 

Duetothelargebackgrounddrift(columnbleed),the

Euro-peanPharmacopoieachromatographicmethodofselectingalarge

backgroundregiontosamplethenoiseisnotachievablewithout

potentiallymisleadingbaselinecorrectiontechniques[20].Thus,

thebackgroundnoisewastaken0.1minawayfromtheanalyte

peakin eachdirection.Data wascompiled fromthreedifferent

experimentsoverdifferentdayswithsamplescollectedin

tripli-cate

2.5 Airsampling

AirsamplingofairborneTFwasaccomplishedusinganovel

pas-sivereleasedevicecreatedwiththesameTFsourceusedtocreate

thestandardsinSection2.2.Thisdevicewascomposedofa

cot-tonwickwithaninteriorreservoirofisopropanolandTFusingthe

sameBayerTFfromSection2.2[5 Thedevicewasactivatedand

subsequentlyallowedtoreleasevolatilesinthecenterofaroomof

5.2×3×2.7m.Theairsamplingoccurredwithin3cmofthedevice,

referredtohereasthepointofgeneration(POG),aswellasone

meterfromthedeviceatthesameheight(1m)abovethefloor

Boththeairsupply (∼0.17m3/s)andexhaust(∼0.21m3/s)were

continuouslyrunningandlocatedontheceilingoftheroom

Thermaldesorptiontubeswereplacedontoadjustablelowflow

holdersuspendedonemeteroffthegroundatbothPOGandone

meter.Flowrateforeachflowportwasadjustedto150mL/min

andvalidatedusingtheairflowcalibrator.Airsamplingwithouta

passivereleasedevicepresentwasaccomplishedtoestablishthe

backgroundsignal.Afterwards,adevicewasactivatedandplacedin

theroomandallowedtoemanatefor60minafterwhichairsamples

werecollectedonTenax®35/60providinganaverageof9Lof

sam-plevolumepassingthrougheachtube.Brasscapsequippedwith

polytetrafluoroethyleneferrulesweresecuredontotheseair

sam-pletubestoprotectthesamplefromcontaminationandpotential

samplelossbetweencollectionandanalysis

Airborne concentration of TF was recorded in parts per

quadrillionbyvolume(ppqv)usingthefollowingequation:

ppqv=

1015·molTF·24.6

WhereppqvisthepartsperquadrillionbyvolumeofTF,molTFisthe

molesofTFquantifiedbyTD-GC-EI-MS,24.6istheratiooflitersto

molesaccordingtotheidealgaslawat23◦Cand101,325PaandV

istheaveragevolume(9L)ofairsampledinliters

ThematrixeffectofindoorairontherecoveryofTFwasstudied

byexposingTF-spikedtubestoindoorairat150mL/minforone(1)

hourorthenitrogengeneratorforone(1)hourat100mL/min

3 Results and discussion

3.1 Optimizationofparametersandmethods

ToassesstheretentionofTFonthecolumn,blanktubeswere analyzedbetweeneachspikedtube.Themeasuredinstrumental transfluthrincarry overwastypicallyless than1%of thesignal intensityofthespikedsampleTF Thesmallmass ofTF onthe column(<10ng)allowedtheuseofasplitlesstransferfromthe secondarydesorption.TheretentiontimeofTFwas12.94min Primarydesorptiontemperatureswerevariedtoelucidatethe optimaltemperatureforrecoveryofTFfromthesampletube.The resultsindicatethata200◦Cdesorptiontemperatureonly recov-ers70.5%ofpotentialTFandthatadesorptiontemperatureabove

300◦Cisneededformaximumrecovery(Fig.2).Thesignal inten-sitywasnormalizedtothelargestsignalobtained,typicallyfrom the325◦treatedtubes.Therecoveryapproachesamaximumat

300◦Cwithanaveragerecoveryof92.9%.Sampletubeswere ana-lyzedtwicetocheckforanyTFcarryoverandnosignalwasdetected

onthesecondrunwhenhigher(+300◦C)desorptiontemperatures wereusedonthefirstrun.Thisexperimentwasrepeatedthree timeswithsamplescollectedintriplicate

3.2 Performanceofmethod/figuresofmeritlowerdetectionlimit, lowerquantificationlimit,accuracyandprecision

Thetotalionchromatograms(TIC) ofunspikedTenax® tubes didnotyieldanymeaningfulnoiseattheretentiontimeofTFdue

tothebackgroundfromthecolumnbleedconvolutinganynoise measurements.Therefore,noaccuratestandarddeviationofblank tubescouldbeascertainedforstatisticalLODorLOQdetermination withoutapplyinganypotentiallymisleadingbaselinecorrections Forexample,abaselinecorrectionmethodutilizingGram-Schmidt (GS)orthogonalizationwasadaptedfromaGC-IRstudy[23]butthe resultingchromatogramwasriddledwithartificialpeaks(datanot shown).Toavoidusingbaselinecorrection,amodifiedstatistical approachbasedontheSEEwasemployedasdescribedinSection

2.4[22]

Analytepeakareawasusedforquantitationsinceusingpeak heightgenerallyhadalargervariance.Thus,rootmeansquared (RMS)SNRwasusedtodeterminetheLODandLOQanddefinedas theTFquantitythatyieldsapeakareaof3and10timeslargerthan thenoise[24].Bothempirical(RMSSNR)andstatistical(SEE)values wereobtainedandreportedhereastheyprovidecomplimentary informationonthedetectionlimitofthismethod.Theempirical methodgivesinsightintothedetectionofaverylowsignalthatis distinctfromablankbackgroundandhelpstakeintoaccountthe instrumentalnoise;itismoreakintoaninstrumentaldetection limit.TheSEEprovidesinsightintothestatisticalvariationofthe

Trang 4

Table 1

Compound SIM (Target, Qualifier) LOD via SEE

(pg, ppq v )

LOQ via SEE (pg, ppq v )

LOD via SNR (pg, ppq v )

LOQ via SNR (pg, ppq v )

Linear Range (pg, ppq v )

R 2, a

methodology(i.e.humanerror,samplepreparation,matrixeffects,

etc.)andmaybecomparedtothemethoddetectionlimit

TheLODandLOQobtainedfromtheSNRmethodwere2.16pg

(16ppqv)and10.3pg(76ppqv)respectively.TheSEEatthelowest

linearconcentrationyieldedanLODandLOQof7.60pg(56ppqv)

and23.0pg(170ppqv)respectively.SincethespikedTFstandards

werenotgeneratedusingactiveairsampling,thecorresponding

ppqvvaluesabovewerecalculatedusingEq.3basedona9Lvolume

tofacilitatecomparisonwiththeairsamplingexperiment.These

figuresofmeritwereobtainedfromaveragingfourexperimental

repeatswithsamplescollectedintriplicateandaresummarized

inTable1.PreviousworkonTD-GC-EI-MSdeterminationof

air-borneTFreportedadetectionlimitof2000pg/tubewhileherewe

reportthat10.28pg/tubecanbequantified[13].Whencompared

toultrasound-assistedsolventextractionofactivelysampledair,

theLODsreportedherewereasmuchasfivetimeslessthanthat

ofthepreviousauthors’LODwhenusingsimilarLODcalculations,

demonstratingasignificantimprovementinsensitivity[2

Theinstrumentusedherehadalinearrangeoffourordersof

magnitudewhenmeasuringTF.Athighconcentrations(20ngper

tube)theresponsebecamenonlinearduetodetectorsaturation

Therefore,thelinearrangeusedinthisstudywasfrom10pg–10ng

TFontube.Regressionwasperformedoverthisconcentrationrange

usingatleast3spikedstandardswithanormalizedslopeof0.9661,

intercept of 0.0005,standard errorof 0.01996 and R2 value of

0.9981.They-interceptwasnotforcedtozerobecausetheputative

criteriafordoingsoinvolvesastandarddeviationmeasurementof

theblankwhichwasnotcompatiblewiththismethod

The use of negative chemical ionization (NCI) may further

improvethedetectionofTFinGC-EI-MS[25] Apreviousstudy

ofTFusingliquid-liquidextractionGC-EI-MSreportedanLOQof

1ng/mL[26].Thisimprovementisattributedtothelarge

molec-ularionformedinNCI;thislargerionhaslessinterferencewhen

comparedtothesmallerfragmentsobtainedfromEI[25]

Elec-troncapturedetection(ECD)hasalsobeenshownpreviouslyto

improvedetectionofpyrethroidswhencomparedtoGC-EI-MS[2]

andtandemmassspectrometrysuchascollision-induced

dissoci-ation(CID-MS/MS)mayprovideyetanotherapproachtofurther

increasethesensitivity/detectionperformance

3.3 AirsamplingofTF

Totestthemethodwitharelevantmatrix,airwassampledin

thevicinityofapassivereleasedevice[5 Thisdevicepassively

releasesTFdissolvedinisopropanolviaawickandreservoirdesign

[5 Samplingnearthedeviceandonemeterawayrevealeda

gra-dientinreleasewith∼200pg/L(13.1ppb)beingadsorbednearthe

deviceand∼50pg/L(3.44ppb)atonemeter(Fig.3).Airsampling

withoutadevicepresentrevealedlowbackgroundsignal∼15pg/L

(∼1ppb).Airsamplingdatawererecordedoverthreeexperiments

andsampleswerereplicated4–8times.Oneoutlierwasrejected

fromthedatasetusingaDixon’sQ-testwithaconfidenceinterval

of99%.ThesourceofanomalousbehaviorissuspectedtobeaTF

contaminatedcap.Duringtheanalysis,nosignalwasobservedin

thesecondarybreakthroughtubessuggestingthatTenax® 35/60

effectivelycapturesalltheTF.Finally,theeffectofindoorairhad

a10%effectonrecoverywhencomparingspikedsamples

Table 2

Spike (pg) RSD with Standards (%) Matrix Effect on Recovery (%)

10 13.0 ± 10.1 10.90 ± 9.41

100 6.30 ± 1.25 10.5 ± 5.83

4 Conclusion

Herewedescribeamethodtoquantifyairborneconcentrations

of TFusing TD-GC-EI-MSwithactive airsampling.A two-stage desorption via a cryotrapwas employed toeliminate a typical microextractionstepthusimprovingtherecoveryofcollected sam-ple.Theuseofasplitlessinjectionensuresthatallthesamplewill reachthedetectortherebyincreasingtheaccuracyofthemethod Finally,activeairsamplingcanbeusedtocollectandanalyzelarge volumesofairforexceedinglytraceamountsofcompound– effec-tivelyincreasingthedetectabilityofthemethod

ThecolumnbleedfromthehightemperatureGCmethodwas notcircumventedwithaGram-Schmidtbaselinecorrection.Future studiesexploringhightemperaturecolumnsorasingularvalue decomposition(SVD)method[27]toeliminatethecolumnbleed backgroundmayfurtherimprovethismethod

TheISOforactiveairsamplingofVOCsusingTD-GC–MS sug-gestsarangeoftemperatures,flowratesandtimestosuccessfully desorptheanalyte(ISO16000-6:2011(E)).Herewereporthigh per-formanceTDwithvaluesforseveralparametersthatlieoutsidethe typicalrangeintheISO.Theuseofamoreaggressivedesorption methodwasneededtoachievea>90%recoveryofspikedsamples

Trang 5

dis-playsuniqueeffects;atextremelylowairborneconcentrationsTF

hasbeenshowntobeanattractanttomosquitoswhileincreasing

concentrationseventuallyleadstodeath[1 Currently,the

concen-trationsatwhichtheseuniquebehaviorsarisearenotknownbut

apreviousstudyhassuggestedthataconcentrationof1pptvmay

beenoughtorepelmosquitos[6 WiththeLODandLOQreported

inthismethod,theairborneconcentrationsontheorderofsingle

digitpptvcanbequantified.Thislevelofdetectionmakesit

pos-sibletostudythevariousbehavioraleffectsoflowconcentrations

ofTFonmosquitobehavior.Themethodwastestedbymeasuring

theairborneconcentrationofTFemanatingfromanovelpassive

releasedevice,demonstratingthatlowlevelsofairborneTFcan

reliablybequantified

Disclaimer

Anyopinions,findings,andconclusions orrecommendations

expressedinthismaterialarethoseoftheauthor(s)anddonot

necessarilyreflectthepositionorpolicyoftheGovernmentandno

officialendorsementshouldbeinferred

Conflict of interest statement

BJWhasminorownershipinterestsinSustainedRelease

Tech-nologies,Inc andPestNatural,Inc.(«5%);theseentitiesdidnot

contributetothesupportofthisstudy

Acknowledgements

This project was sponsored in part by the Department of

the Army,U.S Army Contracting Command, Aberdeen Proving

Ground,Natick ContractingDivision, FtDetrick MDviaa grant

toCDBfromtheArmedForcesPestManagementBoard(AFPMB)

DeployedWarfighterProtectionResearchProgram(DWFP-Grant

No.:W911QY-15-1-0003) and by UCF PreeminentPostdoctoral

(P3) Program awardto MWCK Theauthors would also liketo

thankJedidiahKline(UniversityofFlorida)forassistancein

creat-ingthenovelpassivereleasedevices.Transfluthrin(TF)utilizedin

thisprojectwassuppliedtoUSDA-ARS-CMAVE(Gainesville,FL)by

BayerthroughaMaterialTransferandResearchAgreement(MTRa)

TheMTRaallows transferofTFtoathird partyparticipatingin

researchassociatedwithDWFP

References

http://dx.doi.org/10.1080/15216540701352042

01.093

1016/j.envint.2013.07.011

[5] B.J Willenberg, P.G Koehler, C Batich, G Georgiades, Methods and Devices

for Sustained Release of Substances USA 9,258,988, 2015, January 22.

[6] L.M Meyers, Mosquito Mortality and the Characterization of Airborne

Transfluthrin Concentrations in a Semi-Field Setting, Uniformed Services

University, School of Medicine, Bethesda, MD, USA, 2015.

dx.doi.org/10.1038/nbt1056

1098/rstb.1998.0329

2008.02.080

http://dx.doi.org/10.1371/journal.pntd.0005455

dx.doi.org/10.1021/jf1019592

doi.org/10.1365/s10337-006-0092-7

02772248.2012.729838

doi.org/10.1365/s10337-006-0092-70009-5893/06/12

1007/s00216-012-6003-x

[21] D.A Armbruster, M.D Tillman, L.M Hubbs, Limit of Detection (LOD)/Limit of Quantification (LOQ): comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs, Clin Chem 40 (1994) 1233–1238, PMID: 8013092.

2153-2435.1000355

http://dx.doi.org/10.1021/ac981179n

doi.org/10.1016/j.trac.2010.03.011

Ngày đăng: 31/12/2022, 09:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm