This efficient method allows for the remote collection of samples and rapid analysis of airborne transfluthrin from industrial applications, optimization studies of commercial products as well as domestic/household monitoring.
Trang 1j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Short communication
Michael W.C Kwana, Jason P Weisenseelb, Nicholas Giela, Alexander Bosaka,
Christopher D Batichc,d, Bradley J Willenberga,∗
a r t i c l e i n f o
Keywords:
GC–MS
Transfluthrin
Pyrethroids
a b s t r a c t
Arapidthermaldesorption-gaschromatography-electronionization-massspectrometry(TD-GC-EI-MS) methodforairbornetransfluthrindetectionisstudied.Activeairsamplingof9Lover1hat23◦Cthrougha Tenax®-loadedtuberesultedinefficientcaptureofairbornetransfluthrin.Subsequentthermaldesorption wasemployedtoachieveanLODof2.6ppqv(partsperquadrillionbyvolume).Aminimumprimary desorptiontemperatureof300◦CisnecessaryforoptimalrecoveryofsamplefromtheTenax®adsorbent Thematrixeffectsofindoorairleadtoanerrorof10.9%and10.5%recoveryofsample(10pgand100pg loadedtubes,respectively).Thelinearrangewas74–74,000ppqvwithacorrelationcoefficientof0.9981 Activeairsamplingofanovelpassivereleasedevicerevealeda∼150pg/Lairborneconcentrationgradient over1m,providingspatialcharacterizationofthedevice’sperformance.Thisefficientmethodallowsfor theremotecollectionofsamplesandrapidanalysisofairbornetransfluthrinfromindustrialapplications, optimizationstudiesofcommercialproductsaswellasdomestic/householdmonitoring
©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Transfluthrin
((1R,3S)-3-(2,2-Dichlorovinyl)-2,2-dimethyl-1-cyclopropanecarboxylic acid (2,3,5,6-tetrafluorophenyl)methyl
ester)isasemi-volatileorganiccompoundofthepyrethroidclass
of insecticides that is routinely used as an indoor insecticide
Transfluthrin (TF) works as a potent dipteran sodium channel
agonist and can elicit effects such as repellency, restlessness,
knockdownanddeathin mosquitoes[1 Commercial useof TF
along with the inevitable exposure to humans has generated
interestinquantifyinglowlevelsofairborneTFwiththeultimate
goal of understanding what constitutes an effective airborne
concentrationagainst mosquitoes withoutplacing undue harm
onpeople[2–4] Previously,ourgrouphasdevelopeda passive
release devicethat releases airborneTF at a constant rateinto
the air over several hundred hours [5, unpublisheddata] The
precisequantificationofairborneTFemanatingfromthedevice
willprovideinsightintodeviceperformanceandmayhelpguide optimization Furthermore,the lower limit of efficacyfor each
of TF’s effects towards mosquitoes (i.e confusion, excitation, knockdownand death) arecurrently unknownwitha previous studysuggestingthatTFcaneffectivelyknockdownmosquitosat onepartspertrillionbyvolume(1pptv)[6 Properdissemination
ofTFisparamountasoverandunderexposureofinsecticideshave beenlinkedtospurringresistancedevelopment[7–10]
Gas chromatography-electron ionization-mass spectrometry (GC-EI-MS)isapowerfultoolinseparating,analyzingand quan-tifyingtheconstituentsofacomplexmixtureofvolatiles.Previous methods for monitoring TF airborne concentrations via
GC-EI-MSincludeairsamplingfollowedbyultrasound-assistedsolvent extraction[2 solid-phasemicroextraction[11]anddirectair mea-surementsusingProton-Transfer-ReactionMassSpectrometry[4
Thesemethodshavereportedairborneconcentrationsintherange
ofg/m3,pg/gramandsingle-digitng/m3,respectively
Theshifttowardsthereductioninextractionmass(aka microex-tractions),beitliquidorsolidphaseextraction,isattractiveasthe analytecanbeconcentratedfromtheadsorbentintomicrolitersof solventthatcanbeinjectedintothecolumn.However,thehandling
https://doi.org/10.1016/j.chroma.2018.08.066
Trang 2occur.Inthisregard,thermaldesorption(TD)isadvantageousover
microextractionsasthelackofextractionmatrixresultsinhigher
recoveryofthesample,reducedpotentialcontamination,andmore
rapidanalysis[12].Additionally,thisstudyusedanautomatedTD
systemwhichhelpedtoreducehumanerror.Althoughprevious
workshaveutilizedthismethod,nodetailedmethodologyforthe
quantificationofTFviaTD-GC-EI-MShasbeen,toourknowledge,
reported[6,13] Furthermore,theInternationalOrganizationfor
Standardization(ISO)standardonindoorairsamplingofvolatile
organiccompounds(VOCs)withTD-GC-EI-MS(ISO16000-6:2011)
isbroadinscopeasthechemicalandphysicalcharacteristicsof
VOCsencompassawiderange.Tothisend,wereportthe
quan-tification ofindoor airborneTF viaTD-GC-EI-MS and detailthe
instrumentalandexperimentalconditionsneededtoobtainsimilar
results.Thismethodwasthenusedtocharacterizetheemanations
ofanovelpassivereleasedevice
2 Materials and methods
2.1 Instrumentationandmaterials
TD-GC-EI-MSwasaccomplishedusingaPerkinElmerClarus®
SQ 8Cmass spectrometer,Clarus® 580gas chromatographand
TurboMatrixTM 650automatedthermal desorber(Waltham,MA,
USA) A PerkinElmer TurboMatrixTM TC 220conditioningoven
(Waltham,MA,USA)wasused toconditionthermal desorption
tubes.AnSKC, Inc.AirChek air samplerpumpModel 224-44XR
(Eighty Four, PA, USA) was used to collect air samples onto
MarkesInternational,Inc.thermaldesorptiontubes(Sacramento,
CA,USA)filledwiththeadsorbentTenax®35/60.AMesaLabsBios
Defender510airflowcalibratorwasusedtocalibratetheSKC,Inc
quadadjustablelowflowholder(SKC,Inc.,EightyFour,PA,USA)
ChromasolvTMmethanol(HPLCGrade)waspurchasedfromFisher
Scientific,Inc.(Hampton,NH,USA).Ultra-highpurityheliumwas
providedbyAirgas,Inc.(Radnor,PA,USA)andnitrogenwas
gener-atedin-housebyaParkerBalstonModelN2-35nitrogengenerator
(ParkerHannifinCorporation,Lancaster,NY)
2.2 Standardpreparation
StandardsofTFwerepreparedusingBayerTFobtainedfrom
United States Department of Agriculture-Agricultural Research
Service-Center for Medical, Agricultural and Veterinary
Ento-mology (USDA-ARS-CMAVE, Gainesville, FLDaniel L Kline, see
acknowledgements).Astocksolutionof10 mg/mLofTF in iso-propanolwasprepared volumetricallyand serial dilutionswith isopropanolwereusedtoprepareasetof4–8workingstandards rangingfrom10pg/Lto10ng/L.Standardtubeswerespikedat theinletwith0.5Lofliquid workingstandardandtransferred ontotheTenax® bedwithaflowofN2at100mL/minfor15min AllthermaldesorptiontubeswereconditionedwithN2 atarate
of100mL/minpriortospikingwithworkingstandards.The condi-tioningcyclewas250◦Cfor20min,followedby300◦Cfor20min andthen335◦Cfor30min.Theheatingrateforallrampperiods was10◦C/min
2.3 Parametersforquantitativeanalysis
To recovertheTF from thesample tubes, a two-stage ther-maldesorptionmethodwasused.Theprimarydesorptionfrom thesampletubewasperformedatvarioustemperaturesranging from200to335◦Cforthreeminutestoassesstheoptimum des-orptiontemperature.Priortosecondarydesorption,thesamples werecollectedonaTenax®concentratingtrapheldat-20◦Cviaa flowofhighpurityheliumatarateof75mL/min.Theheatedvalve
inthethermaldesorptioninstrumentwasmaintainedat300◦Cand transferlinetotheGCwasmaintainedat280◦Catalltimesto pre-ventcondensationoftheanalytesineitherthevalveortransferline
TodeliverthesampletotheGCcolumnforanalysis,secondary des-orptionofthesamplefromtheconcentratingtrapwasperformed
byheatingthetrapto335◦Catarateof40◦C/secwithahelium flowrateof2mL/min
ThetemperatureprogramfortheGCwastwominutesat55◦C followedbya20◦C/minrampto290◦Candthenaholdat290◦Cfor 4.25min.Heliumwasusedasthecarriergasandtheflowratewas
2mL/min.ThecolumnutilizedwasaPerkinElmerElite624(Cat
No.N9315068)midpolarcolumn(6%cyanopropylphenyl–94% dimethylpolysiloxane)withdimensions30mlength,0.25mmID and1.4mfilmthickness.ThetransferlinefromtheGCcolumnto theMSsourcewasmaintainedat250◦Candtheelectronionization (EI)sourcewasmaintainedat280◦C
The mass spectrum of TF wasidentified (positive ion mode – 70eV) forTF byidentifyingthetargetion atm/z 163andits fragmentation qualifyingpeak atm/z 91 (Fig.1 which is con-sistentwithpreviouslyobservedmassspectraofTF[14–19].For quantitativeanalysis,themassspectrometerwassettoselected ionrecording(SIR)modeat163m/zwiththeresultingSIR chro-matographintegratedandthepeakareaoftheTFpeakusedfor quantification
Trang 32.4 Statisticaldeterminationoflimitofdetection(LOD)andlimit
ofquantification(LOQ)
TheLODandLOQweredeterminedexperimentallybysignalto
noiseratio(SNR)aswellasthestandarderrorofestimates(SEE)
approach.FortheSNRmeasurement,theLODmusthaveanSNRof
atleastthreewhiletheLOQwasdeterminedattheSNRof10[20]
ThecalculationfortheLODfollowingtheSEEapproachisshown
inEq.(1)wheresy/xisthestandarderroroftheestimate,misthe
slopeofthefittedregressionlineandk-factoris3.3and10forthe
LODandLOQasnotedbypreviousauthors[21,22]
LOD=
k·sy/x
Eq.(2) shows thecalculationfor the standard error of
esti-mateswhereyiisthesampledataandyFisthevalueofthefitted
regressionlinefrommatrixspikedsamplesthatcorrespondstothe
concentrationofTFusedtoachievevalueyi.Concentrationsnear
thelowendofthelinearrangewasusedforSEEcalculations
sy/x=
Duetothelargebackgrounddrift(columnbleed),the
Euro-peanPharmacopoieachromatographicmethodofselectingalarge
backgroundregiontosamplethenoiseisnotachievablewithout
potentiallymisleadingbaselinecorrectiontechniques[20].Thus,
thebackgroundnoisewastaken0.1minawayfromtheanalyte
peakin eachdirection.Data wascompiled fromthreedifferent
experimentsoverdifferentdayswithsamplescollectedin
tripli-cate
2.5 Airsampling
AirsamplingofairborneTFwasaccomplishedusinganovel
pas-sivereleasedevicecreatedwiththesameTFsourceusedtocreate
thestandardsinSection2.2.Thisdevicewascomposedofa
cot-tonwickwithaninteriorreservoirofisopropanolandTFusingthe
sameBayerTFfromSection2.2[5 Thedevicewasactivatedand
subsequentlyallowedtoreleasevolatilesinthecenterofaroomof
5.2×3×2.7m.Theairsamplingoccurredwithin3cmofthedevice,
referredtohereasthepointofgeneration(POG),aswellasone
meterfromthedeviceatthesameheight(1m)abovethefloor
Boththeairsupply (∼0.17m3/s)andexhaust(∼0.21m3/s)were
continuouslyrunningandlocatedontheceilingoftheroom
Thermaldesorptiontubeswereplacedontoadjustablelowflow
holdersuspendedonemeteroffthegroundatbothPOGandone
meter.Flowrateforeachflowportwasadjustedto150mL/min
andvalidatedusingtheairflowcalibrator.Airsamplingwithouta
passivereleasedevicepresentwasaccomplishedtoestablishthe
backgroundsignal.Afterwards,adevicewasactivatedandplacedin
theroomandallowedtoemanatefor60minafterwhichairsamples
werecollectedonTenax®35/60providinganaverageof9Lof
sam-plevolumepassingthrougheachtube.Brasscapsequippedwith
polytetrafluoroethyleneferrulesweresecuredontotheseair
sam-pletubestoprotectthesamplefromcontaminationandpotential
samplelossbetweencollectionandanalysis
Airborne concentration of TF was recorded in parts per
quadrillionbyvolume(ppqv)usingthefollowingequation:
ppqv=
1015·molTF·24.6
WhereppqvisthepartsperquadrillionbyvolumeofTF,molTFisthe
molesofTFquantifiedbyTD-GC-EI-MS,24.6istheratiooflitersto
molesaccordingtotheidealgaslawat23◦Cand101,325PaandV
istheaveragevolume(9L)ofairsampledinliters
ThematrixeffectofindoorairontherecoveryofTFwasstudied
byexposingTF-spikedtubestoindoorairat150mL/minforone(1)
hourorthenitrogengeneratorforone(1)hourat100mL/min
3 Results and discussion
3.1 Optimizationofparametersandmethods
ToassesstheretentionofTFonthecolumn,blanktubeswere analyzedbetweeneachspikedtube.Themeasuredinstrumental transfluthrincarry overwastypicallyless than1%of thesignal intensityofthespikedsampleTF Thesmallmass ofTF onthe column(<10ng)allowedtheuseofasplitlesstransferfromthe secondarydesorption.TheretentiontimeofTFwas12.94min Primarydesorptiontemperatureswerevariedtoelucidatethe optimaltemperatureforrecoveryofTFfromthesampletube.The resultsindicatethata200◦Cdesorptiontemperatureonly recov-ers70.5%ofpotentialTFandthatadesorptiontemperatureabove
300◦Cisneededformaximumrecovery(Fig.2).Thesignal inten-sitywasnormalizedtothelargestsignalobtained,typicallyfrom the325◦treatedtubes.Therecoveryapproachesamaximumat
300◦Cwithanaveragerecoveryof92.9%.Sampletubeswere ana-lyzedtwicetocheckforanyTFcarryoverandnosignalwasdetected
onthesecondrunwhenhigher(+300◦C)desorptiontemperatures wereusedonthefirstrun.Thisexperimentwasrepeatedthree timeswithsamplescollectedintriplicate
3.2 Performanceofmethod/figuresofmeritlowerdetectionlimit, lowerquantificationlimit,accuracyandprecision
Thetotalionchromatograms(TIC) ofunspikedTenax® tubes didnotyieldanymeaningfulnoiseattheretentiontimeofTFdue
tothebackgroundfromthecolumnbleedconvolutinganynoise measurements.Therefore,noaccuratestandarddeviationofblank tubescouldbeascertainedforstatisticalLODorLOQdetermination withoutapplyinganypotentiallymisleadingbaselinecorrections Forexample,abaselinecorrectionmethodutilizingGram-Schmidt (GS)orthogonalizationwasadaptedfromaGC-IRstudy[23]butthe resultingchromatogramwasriddledwithartificialpeaks(datanot shown).Toavoidusingbaselinecorrection,amodifiedstatistical approachbasedontheSEEwasemployedasdescribedinSection
2.4[22]
Analytepeakareawasusedforquantitationsinceusingpeak heightgenerallyhadalargervariance.Thus,rootmeansquared (RMS)SNRwasusedtodeterminetheLODandLOQanddefinedas theTFquantitythatyieldsapeakareaof3and10timeslargerthan thenoise[24].Bothempirical(RMSSNR)andstatistical(SEE)values wereobtainedandreportedhereastheyprovidecomplimentary informationonthedetectionlimitofthismethod.Theempirical methodgivesinsightintothedetectionofaverylowsignalthatis distinctfromablankbackgroundandhelpstakeintoaccountthe instrumentalnoise;itismoreakintoaninstrumentaldetection limit.TheSEEprovidesinsightintothestatisticalvariationofthe
Trang 4Table 1
Compound SIM (Target, Qualifier) LOD via SEE
(pg, ppq v )
LOQ via SEE (pg, ppq v )
LOD via SNR (pg, ppq v )
LOQ via SNR (pg, ppq v )
Linear Range (pg, ppq v )
R 2, a
methodology(i.e.humanerror,samplepreparation,matrixeffects,
etc.)andmaybecomparedtothemethoddetectionlimit
TheLODandLOQobtainedfromtheSNRmethodwere2.16pg
(16ppqv)and10.3pg(76ppqv)respectively.TheSEEatthelowest
linearconcentrationyieldedanLODandLOQof7.60pg(56ppqv)
and23.0pg(170ppqv)respectively.SincethespikedTFstandards
werenotgeneratedusingactiveairsampling,thecorresponding
ppqvvaluesabovewerecalculatedusingEq.3basedona9Lvolume
tofacilitatecomparisonwiththeairsamplingexperiment.These
figuresofmeritwereobtainedfromaveragingfourexperimental
repeatswithsamplescollectedintriplicateandaresummarized
inTable1.PreviousworkonTD-GC-EI-MSdeterminationof
air-borneTFreportedadetectionlimitof2000pg/tubewhileherewe
reportthat10.28pg/tubecanbequantified[13].Whencompared
toultrasound-assistedsolventextractionofactivelysampledair,
theLODsreportedherewereasmuchasfivetimeslessthanthat
ofthepreviousauthors’LODwhenusingsimilarLODcalculations,
demonstratingasignificantimprovementinsensitivity[2
Theinstrumentusedherehadalinearrangeoffourordersof
magnitudewhenmeasuringTF.Athighconcentrations(20ngper
tube)theresponsebecamenonlinearduetodetectorsaturation
Therefore,thelinearrangeusedinthisstudywasfrom10pg–10ng
TFontube.Regressionwasperformedoverthisconcentrationrange
usingatleast3spikedstandardswithanormalizedslopeof0.9661,
intercept of 0.0005,standard errorof 0.01996 and R2 value of
0.9981.They-interceptwasnotforcedtozerobecausetheputative
criteriafordoingsoinvolvesastandarddeviationmeasurementof
theblankwhichwasnotcompatiblewiththismethod
The use of negative chemical ionization (NCI) may further
improvethedetectionofTFinGC-EI-MS[25] Apreviousstudy
ofTFusingliquid-liquidextractionGC-EI-MSreportedanLOQof
1ng/mL[26].Thisimprovementisattributedtothelarge
molec-ularionformedinNCI;thislargerionhaslessinterferencewhen
comparedtothesmallerfragmentsobtainedfromEI[25]
Elec-troncapturedetection(ECD)hasalsobeenshownpreviouslyto
improvedetectionofpyrethroidswhencomparedtoGC-EI-MS[2]
andtandemmassspectrometrysuchascollision-induced
dissoci-ation(CID-MS/MS)mayprovideyetanotherapproachtofurther
increasethesensitivity/detectionperformance
3.3 AirsamplingofTF
Totestthemethodwitharelevantmatrix,airwassampledin
thevicinityofapassivereleasedevice[5 Thisdevicepassively
releasesTFdissolvedinisopropanolviaawickandreservoirdesign
[5 Samplingnearthedeviceandonemeterawayrevealeda
gra-dientinreleasewith∼200pg/L(13.1ppb)beingadsorbednearthe
deviceand∼50pg/L(3.44ppb)atonemeter(Fig.3).Airsampling
withoutadevicepresentrevealedlowbackgroundsignal∼15pg/L
(∼1ppb).Airsamplingdatawererecordedoverthreeexperiments
andsampleswerereplicated4–8times.Oneoutlierwasrejected
fromthedatasetusingaDixon’sQ-testwithaconfidenceinterval
of99%.ThesourceofanomalousbehaviorissuspectedtobeaTF
contaminatedcap.Duringtheanalysis,nosignalwasobservedin
thesecondarybreakthroughtubessuggestingthatTenax® 35/60
effectivelycapturesalltheTF.Finally,theeffectofindoorairhad
a10%effectonrecoverywhencomparingspikedsamples
Table 2
Spike (pg) RSD with Standards (%) Matrix Effect on Recovery (%)
10 13.0 ± 10.1 10.90 ± 9.41
100 6.30 ± 1.25 10.5 ± 5.83
4 Conclusion
Herewedescribeamethodtoquantifyairborneconcentrations
of TFusing TD-GC-EI-MSwithactive airsampling.A two-stage desorption via a cryotrapwas employed toeliminate a typical microextractionstepthusimprovingtherecoveryofcollected sam-ple.Theuseofasplitlessinjectionensuresthatallthesamplewill reachthedetectortherebyincreasingtheaccuracyofthemethod Finally,activeairsamplingcanbeusedtocollectandanalyzelarge volumesofairforexceedinglytraceamountsofcompound– effec-tivelyincreasingthedetectabilityofthemethod
ThecolumnbleedfromthehightemperatureGCmethodwas notcircumventedwithaGram-Schmidtbaselinecorrection.Future studiesexploringhightemperaturecolumnsorasingularvalue decomposition(SVD)method[27]toeliminatethecolumnbleed backgroundmayfurtherimprovethismethod
TheISOforactiveairsamplingofVOCsusingTD-GC–MS sug-gestsarangeoftemperatures,flowratesandtimestosuccessfully desorptheanalyte(ISO16000-6:2011(E)).Herewereporthigh per-formanceTDwithvaluesforseveralparametersthatlieoutsidethe typicalrangeintheISO.Theuseofamoreaggressivedesorption methodwasneededtoachievea>90%recoveryofspikedsamples
Trang 5dis-playsuniqueeffects;atextremelylowairborneconcentrationsTF
hasbeenshowntobeanattractanttomosquitoswhileincreasing
concentrationseventuallyleadstodeath[1 Currently,the
concen-trationsatwhichtheseuniquebehaviorsarisearenotknownbut
apreviousstudyhassuggestedthataconcentrationof1pptvmay
beenoughtorepelmosquitos[6 WiththeLODandLOQreported
inthismethod,theairborneconcentrationsontheorderofsingle
digitpptvcanbequantified.Thislevelofdetectionmakesit
pos-sibletostudythevariousbehavioraleffectsoflowconcentrations
ofTFonmosquitobehavior.Themethodwastestedbymeasuring
theairborneconcentrationofTFemanatingfromanovelpassive
releasedevice,demonstratingthatlowlevelsofairborneTFcan
reliablybequantified
Disclaimer
Anyopinions,findings,andconclusions orrecommendations
expressedinthismaterialarethoseoftheauthor(s)anddonot
necessarilyreflectthepositionorpolicyoftheGovernmentandno
officialendorsementshouldbeinferred
Conflict of interest statement
BJWhasminorownershipinterestsinSustainedRelease
Tech-nologies,Inc andPestNatural,Inc.(«5%);theseentitiesdidnot
contributetothesupportofthisstudy
Acknowledgements
This project was sponsored in part by the Department of
the Army,U.S Army Contracting Command, Aberdeen Proving
Ground,Natick ContractingDivision, FtDetrick MDviaa grant
toCDBfromtheArmedForcesPestManagementBoard(AFPMB)
DeployedWarfighterProtectionResearchProgram(DWFP-Grant
No.:W911QY-15-1-0003) and by UCF PreeminentPostdoctoral
(P3) Program awardto MWCK Theauthors would also liketo
thankJedidiahKline(UniversityofFlorida)forassistancein
creat-ingthenovelpassivereleasedevices.Transfluthrin(TF)utilizedin
thisprojectwassuppliedtoUSDA-ARS-CMAVE(Gainesville,FL)by
BayerthroughaMaterialTransferandResearchAgreement(MTRa)
TheMTRaallows transferofTFtoathird partyparticipatingin
researchassociatedwithDWFP
References
http://dx.doi.org/10.1080/15216540701352042
01.093
1016/j.envint.2013.07.011
[5] B.J Willenberg, P.G Koehler, C Batich, G Georgiades, Methods and Devices
for Sustained Release of Substances USA 9,258,988, 2015, January 22.
[6] L.M Meyers, Mosquito Mortality and the Characterization of Airborne
Transfluthrin Concentrations in a Semi-Field Setting, Uniformed Services
University, School of Medicine, Bethesda, MD, USA, 2015.
dx.doi.org/10.1038/nbt1056
1098/rstb.1998.0329
2008.02.080
http://dx.doi.org/10.1371/journal.pntd.0005455
dx.doi.org/10.1021/jf1019592
doi.org/10.1365/s10337-006-0092-7
02772248.2012.729838
doi.org/10.1365/s10337-006-0092-70009-5893/06/12
1007/s00216-012-6003-x
[21] D.A Armbruster, M.D Tillman, L.M Hubbs, Limit of Detection (LOD)/Limit of Quantification (LOQ): comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs, Clin Chem 40 (1994) 1233–1238, PMID: 8013092.
2153-2435.1000355
http://dx.doi.org/10.1021/ac981179n
doi.org/10.1016/j.trac.2010.03.011