1. Trang chủ
  2. » Giáo án - Bài giảng

Application of steric exclusion chromatography on monoliths for separation and purification of RNA molecules

10 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Application of Steric Exclusion Chromatography on Monoliths for Separation and Purification of RNA Molecules
Tác giả Alesia Levanova, Minna M. Poranen
Trường học University of Helsinki
Chuyên ngành Molecular and Integrative Biosciences
Thể loại Research Article
Năm xuất bản 2018
Thành phố Helsinki
Định dạng
Số trang 10
Dung lượng 1,86 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules.

Trang 1

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Alesia Levanova, Minna M Poranen∗

Keywords:

RNA

a b s t r a c t

Stericexclusionchromatography(SXC)isamethodforseparationoflargetargetsolutesbasedontheir associationwithahydrophilicstationaryphasethroughmutualstericexclusionofpolyethyleneglycol (PEG).SelectivityinSXCisdeterminedbythesizeorshape(orboth)ofthesolutesalongsidethesizeand concentrationofPEGmolecules.ElutionisachievedbydecreasingthePEGconcentration.Inthisstudy, SXCapplicabilityfortheseparationandpurificationofsingle-stranded(ss)anddouble-stranded(ds) RNAmoleculeswasevaluatedforthefirsttime.TheretentionofssRNAanddsRNAmoleculesofdifferent lengthsonconvectiveinteractionmedia(CIM)monolithiccolumnswassystematicallystudiedunder variablePEG-6000andNaClconcentrations.Wedeterminedthatover90%oflongssRNAs(700–6374 nucleotides)andlongdsRNAs(500–6374basepairs)areretainedonthestationaryphasein15%

PEG-6000and≥0.4MNaCl.dsDNAanddsRNAmoleculesofthesamelengthwerepartiallyseparatedby SXC.SeparationofRNAmoleculesbelow100nucleotidesfromlongerRNAspeciesiseasilyachieved

bySXC.Furthermore,SXChasthepotentialtoseparatedsRNAsfromssRNAsofthesamelength.We alsodemonstratedthatSXCissuitablefortheenrichmentofssRNA(PRR1bacteriophage)anddsRNA (Phi6bacteriophage)viralgenomesfromcontaminatingcellularRNAspecies.Insummary,SXConCIM monolithiccolumnsisanappropriatetoolforrapidRNAseparationandconcentration

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Ribonucleicacid(RNA) and deoxyribonucleicacid(DNA) are

macromoleculesbuiltfromnucleotides,whichconsistofa

hete-rocyclicnitrogenousbase,a phosphate,and a pentosesugar In

aqueoussolutions, duplex DNA is primarily in B-conformation,

whileRNAismostlyasingle-strandedmoleculeadoptingcomplex

three-dimensionalstructures.WhenRNAduplexesareobserved,

theyare predominantly in anA-form [1 DNA and RNA differ

inoneoffourbases;DNAcontainsthymine,whileRNAcontains

uracil, a demethylated derivativeof thymine Furthermore,the

pentosesugarinRNAisribosebutdeoxyriboseinDNA,whichis

derivedfromribosebythelossofa2’oxygenatom[2 Thisloss

providesDNAwiththestabilitynecessarytofulfillitsmain

bio-logicalfunctionasakeeperofgeneticinformation[3 Oneofthe

numerousfunctionsofRNAmoleculesistoserveasa mediator

in the flow of genetic information fromDNA toproteins

Fur-thermore,RNAitselfcarriesgeneticinformationinmanyviruses

eitherasasingle-stranded(ssRNA)oradouble-stranded(dsRNA)

molecule.BiochemicalandstructuralstudiesofviralRNA biosyn-thesisrequirelargeamounts of pureRNA molecules.For some applications,ssRNAanddsRNAcanbesimplysynthesizedinvitro [4] and purified from thereaction components However,viral RNAsareheavilymodified[5 Accordingly,tostudytheeffectof thesemodificationsRNAspeciesmustbeisolateddirectlyfromhost cellswithsubsequentremovalofcellularRNA,separationofviral ssRNAfromdsRNA,andsize-separationofRNAmolecules Thereareanumberofbiochemicalmethodsandtheir modifi-cationsdevelopedforRNAisolation,purification,andseparation [6 However, all of these methods have certain limitations While isopycnic centrifugation yields RNA molecules of high purity [7 the method is laborious, time-consuming, requires expensive equipment, and hence is rarely used The most commonlyusedlaboratorymethodforRNAisolationisacid guani-diniumthiocyanate-phenol-chloroformextraction[8,9 whichis unsurpassed in terms of pure RNA yields and provides excel-lent protection from RNases due to protein denaturation by guanidiniumthiocyanate.However,themethodhasserious dis-advantagesasitistime-consumingandrequiresnoxiousreagents Althoughfastandeasy,solidphaseextractionbyimmobilizingRNA

ona specificsupport(silica,glass,magneticbeads, polysterene-latex)inthepresenceofchaotropicsaltsgenerallyresultsinlow

https://doi.org/10.1016/j.chroma.2018.08.063

Trang 2

yieldsof RNA and requires DNasetreatment[6 Recently, two

alternativemethodsofRNAisolationhavebeenproposed,namely

RNAsnap[10]andRNASwift[11].Bothmethodsdonotinvolvetoxic

reagentsandtotalRNAcanberecoveredbyisopropanol

precipita-tionafterasingleroundofdifferentialcentrifugationofcelllysates

Furthermore,amino-acidbasedaffinitychromatography(histidine

affinitychromatographyorarginineaffinitychromatography)can

besuccessfullyappliedtoisolatetotalRNAorcertainfractionsof

smallRNAs[12–14]

Allthe methods listedabove lead to isolation of total RNA,

whichisasubjectoffurtherfractionation.Preparative

polyacry-lamide gel electrophoresis (PAGE) allows RNA separation with

single-baseresolutionforssRNAmoleculesuptoapproximately

1000ntin denaturingconditions [15] However, themethod is

extremelylengthyandprovidesonlylowyieldsofRNAmolecules

withacrylamidecontaminants,whicharedifficulttoremovefrom

thesample.TheRNApurifiedunderdenaturingconditionsmustbe

refolded,whichisnotalwayspossibleormightresultin

unproduc-tiveconformationswiththelossofbiologicalactivity[16,17].LiCl

fractionationcanselectivelyseparatelongandshortRNAaswell

asssRNAanddsRNAmoleculesfromimpurities[18].However,the

procedureisnotveryefficientandmightrequireadditionalsteps

toobtainRNAofrequiredpurityandtoremoveLiCl,whichmight

interferewithdownstream applications.A separation ofdsRNA

fromssRNA and DNA can beachieved onCF11 cellulose using

ethanolintheelutionbuffer[19].Thischromatographicmethod

iscommonlyusedtoisolateviraldsRNAfromplantsand fungi

Nonetheless, the procedure is laborious, lengthy, and requires

considerableamountsofinitialsample.Furthermore,itdoesnot

provideseparationofviraldsRNAsegmentsofdifferentlengths

Fastprocessingand superiorresolution ofRNA moleculesof

differentlengthscanbeachievedbyion-pairreversed-phase

chro-matography[20,21].Inthischromatographymodeanion-pairing

reagentformsionpairswithphosphatesofnucleicacid.The

result-ingcomplexisstronglyretainedinthecolumnviahydrophobic

interactions[22].However,toachieveagoodseparationof

differ-entRNAspecies,thistechniquerequiresdenaturingconditionsthat

canresultinirreversiblelossofRNAsecondarystructure.While

ion-pairreversed-phase chromatographyis anexcellent

analyt-ical tool, its application for preparative purposes is limited as

someion-pairing reagentsandtoxicsolvents(acetonitrile)used

intheprocedurearedifficulttoremovefromthepurifiedsample

Furthermore,resinshaveonlymoderateloadingcapacity.Anion

exchangechromatography(AEX)isbasedprimarilyonreversible

electrostaticinteractionsbetweennegativelychargedphosphates

ofnucleicacidsandthepositivelychargedstationaryphase

Sta-tionary phasesare alsodesigned tohave somehydrophobicity,

whichcontributetotheseparation AEXis a robustandwidely

appliedpreparativemethodtoobtainpureRNAmolecules[23].In

ourlaboratory,wehavedevelopedanon-denaturingAEXprotocol

topurifyenzymaticallyproducedsiRNAmoleculesonamonolithic

stronganionexchangeQAcolumn[24].Accordingtoour

obser-vations[24],itwasnotpossibletoresolveRNAmoleculeslonger

than1000basepairs(bp)byAEX.SinceviralRNAgenomesrange

insizefrom1700nucleotides(nt;humanhepatitisDvirus[25])to

32000nt(coronoviruses[26]),wesoughtalternativemethodsto

separateRNAmoleculeslargerthan1000ntundernon-denaturing

conditions

A novel mode of steric exclusion chromatography (SXC)

was recently described as a tool to separate and purify large

biomolecules[27] It should benoted thatthe term“SXC”was

previouslyusedtorefertosizeexclusionchromatography(SEC)

[28].AlthoughbothSXCandSECdonotrelyonanydirect

chemi-calinteractionsandtheseparationofsamplecomponentsisbased

ondifferencesintheirsizeorshape (orboth),theSXCmethod

developed by Lee et al in 2012 substantially differs from SEC

sinceitissuitableonlyforlargesoluteswhoseretentionstrongly dependsonthemobilephasecompositionandisfeasibleonlyin hydrophilicstationaryphase.Inthisapproach,asampleismixed withaspecificsizeandconcentrationofpolyethyleneglycol(PEG) andisimmediatelyloadedontoahydroxyl-functionalized mono-lithiccolumn.ThemutualstericexclusionofPEGfromboththe largetargetsolutes(proteins,virusparticles)andthehydrophilic stationaryphaseresultsintheirassociationwithoutdirectchemical interactions,whilelowermolecularweightmoleculesarewashed away.TheelutionisachievedbyreducingPEGconcentration[27] Thismethodis mechanisticallysimilar tothesizefractionation

of nucleic acids[29] and proteins[30] withPEG, in which the effectivenessofPEGincreasesalongwiththesizeofthepolymer andlargermoleculesprecipitateatlowerPEGconcentrations.The phenomenonisbasedonthestericexclusionofchemically non-reactivesolutes[31,32].Accordingtothistheory,PEGandbiological solutesarestericallyexcludedfromeachother,whichresultsin theformationofaPEG-deficientzonearoundasoluteandcreates discontinuitybetweenthePEG-deficientzoneandhigh-PEGbulk solution.Thisdiscontinuityresultsinanunfavorableincreasein freeenergy.Groupingofthesolutesfollowedbytheir precipita-tionleadstoreductioninthecontactareabetweenPEG-deficient and high-PEGbulksolvents, andthusdecreasesthe discontinu-ityandfreeenergyofthesystem[27,31,32].In thecaseofSXC, biomoleculesaccretetotheinerthydrophilicsupportinsteadof formingprecipitates

Ithasbeendemonstratedthatmonolithiccolumnscanbe suc-cessfully appliedfor SXC since their performance is minimally affectedbyviscosity(duetothelargesizeoftheinterconnected pores)andconvectivemasstransfer[33].Thedescribedmodeof SXCwasappliedforthepurificationofimmunoglobulinM[27] andimmunoglobulinGmonoclonalantibodies[34],virusparticles [27,35],andfortheseparationofserumproteins[36].However,the potentialofSXCtoseparatenucleicacidmoleculeshasnotbeen investigated

Inthisstudy,weevaluatedthebindingandelutionbehaviorof nucleicacidmoleculesduringSXCwithafocusonRNA,we deter-minedtheconditionssuitableforseparationofssRNAanddsRNA moleculesofdifferentlengths,andpurifiedviralRNAgenomes

2 Material and methods

2.1 Stericexclusionchromatography

A Convective Interaction Media (CIM) OH 1ml tube mono-lithic column inpolypropylene housingwasobtained fromBIA Separations(Ajdovˇsˇcina,Slovenia).Thispolyglycidyl methacrylate-co-ethylenedimethacrylate-basedmonolithhasanaveragepore sizeof1.3␮m,outerdiameter18.6mm,innerdiameter6.7mm, length 4.2mm, and bed volume 1.0ml The matrix is highly hydrophilicduetothehighdensityofhydroxylgroupsthat origi-natefromhydrolysisofepoxyligands

Allchromatographyexperimentswereperformedatroom tem-perature usinganÄKTA Purifier10 UPCliquid chromatography system (GE Healthcare) operated by Unicorn 5.2 software (GE Healthcare).ThechromatographysystemconsistedofpumpP-900, mixerM-925,monitorUPC-900,andfractioncollectorFrac-920 Theabsorbanceat260nmwasmonitoredduringchromatography and0.5-mlfractionscorrespondingtopeakareaswerecollected automatically

Allreagentsusedinthisstudywereofanalyticalgrade

PEG-4000andPEG-8000werefromFlukaandPEG-6000waspurchased fromUbichem.Weobservedthattoobtainreproducibleresultsand minimizedatavariabilitybetweendifferentexperiments,it was required tousePEGfrom thesamemanufacturer Trizmabase,

Trang 3

Fig 1.Chromatography system setup for the in-line sample injection.

Tris-HCI,andNaCI werepurchasedfromSigma-Aldrich.Freshly

preparedautoclavedMilli-Q(Millipore)waterwasusedforbuffer

preparation.Thiswaterwasdeterminedtobenuclease-freebyour

internallaboratorytests

ThebufferAusedforchromatographywascomposedof50mM

Tris-HCl(pH8.0).BufferBcontaineddifferentconcentrationsofPEG

andNaClin50mMTris-HCl(pH8.0).Allbufferswerevacuum

fil-teredthrough0.22-␮mbottle-topfilters(ThermoFisherScientific)

anddegassedbysonicationfor18minpriortouse.Freshbuffers

werepreparedeveryweekandusedwithin4–5days

Abasicchromatographicprocedureusedpreviously[27]was

adaptedasdescribedbelow:(1)Systemequilibration.Thestandard

setupoftheÄKTA Purifierwaschanged tomakeit suitable for

SXCsothatonlybufferAflewtotheinjectorvalve,whilebuffer

Bbypasseditandwentdirectlytothemixer(Fig.1).Thecolumn

wasplacedin-lineandequilibratedwith20%bufferA:80%buffer

B.Unlessotherwiseindicated,thebufferA:bufferBratiowaskept

thesameforsimplicity,whiletheconcentrationsofPEGandNaCl

inbufferBwereoptimizedtoachievesufficientretentionofnucleic

acids.Furtherinthetext,onlythefinalconcentrationsoftwo

chem-icalsareindicated(i.e.thoseinamixtureof20%bufferAand80%

bufferB).TocalculatetheinitialconcentrationsofPEGandNaCl

inbufferB,thetargetfinal concentrationsweredivided by0.8

(2)Sampleloading.Samplesforchromatographyweredilutedwith

bufferAandcentrifuged(11,000×g,10min)toremove

particu-latematter.Theinjectionvolumewas0.25mlandflowratewas

2.5ml/minor3ml/mindependingonthesampleamountandPEG

concentrationinthesystem.Flowratesbelow2.5ml/minresulted

inpre-columnsampleprecipitationandchromatographyfailure

(3)Washing.ThesystemwaswasheduntiltheUVabsorbanceof

columneffluentreachedbaseline.(4)Elution.ThebufferA:bufferB

ratiowasreducedstepwiseorlinearly.(5)Cleaninginplace(CIP)

RemovalofresidualRNAfromthecolumnmatrixwasachievedby

washingwith1MNaOHsolutionfollowedby1MNaClin50mM

Tris-HCl(pH8.0).CIPwasperformedaftereachchromatography

experimenttoavoidcross-contaminationofsubsequentanalyses

Eachchromatographyexperimentwasrepeatedtwotosixtimes

TocalculatetheretentionofnucleicacidsontheCIM-OHmatrix,

the molecules were precipitated from the fractions and

flow-through(see2.5fordetails).Concentrationwasmeasuredwitha

NanoDrop2000c(ThermoFisherScientific)andthepercentageof

RNAorDNAelutedbythegradientwasthencalculatedusingthe

formula:NA,%= b

a+b×100,whereNAisthefractionofnucleicacid retainedinthecolumn(%);aistheamountofunboundsamplein

theflow-throughsolution(␮g),andbistheamountofthesample

elutedundergradientconditions(␮g).Therecoveryofnucleicacids

wascalculatedaccordingtotheformula:Recovery,%= Sl

Se×100%, whereSlistheamountofloadedsample(␮g)andSeistheamount

ofelutedsample(␮g).Theaveragerecovery±standarddeviation

(S.D.) wascalculated in Excel based onthedata frommultiple

experiments

2.2 Preparationofnucleicacidmoleculesforchromatography

Bacteriophage␭genomicDNA(48502bp)wasobtainedfrom

Fermentas and dissolved in nuclease-free Milli-Q water DNA

molecules ranging in length from 88 to 1800 bps were

pre-pared byPCR amplificationusing Phusion HFDNA polymerase (Finnzymes),deoxynucleotidetriphosphates(ThermoFisher Scien-tific),andpLM659plasmidcontainingacomplementaryDNAcopy

ofPseudomonasphagePhi6genomesegmentS[37].Theforward primersforPCRamplificationcontainedtheT7polymerase pro-motersequence(5’-TAATACGACTCACTATAGGG-3’)followedbya sequenceof17to21ntcomplementarytothePhi6S-segmentat positions80,100,200,500,700,or1800ntascountedfromthe3’ end.Thereverseprimerwascomplementarytothevery3’endof thePhi6 S-segment (5’-GGAAAAAAAGAGAGAGAGCCCCCGAAGG-3’)andcontainedthePhi6polymerasepromotersequenceatthe 5’end (underlined) A list of primer sequences has been pub-lished [38] Plasmids pLM659 [37], pLM656 [39], and pLM687 [40] were used as templates for the production of full-length complementaryDNAcopiesofphagePhi6S(2948bp),M(4065 bp),andL(6374bp)genomesegments,respectively.Thereverse primerwasthesameasdescribedaboveandtheforwardprimer containedtheT7polymerasepromoter sequence followedby a homologoussequence(5’-GGAAAAAAACTTTATATA-3’)presentat the5’-endofallthreegenomesegmentsofPhi6[41].PCR prod-uctsof thecorrectsize wereexcisedfromthe geland purified withNucleoSpinExtractIIkit(Macherey-Nagel)accordingtothe manufacturer’sinstructions.PureDNAmoleculeswereelutedin

30␮lMilli-Qwater.ThePCR-generatedDNAmoleculeswereused

astemplatesforRNAsynthesis.ssRNAswereproducedbyinvitro transcriptionwithT7RNApolymerase(ThermoFisherScientific)

as previously described [42] dsRNA molecules were also gen-eratedinvitro usinga single-tube transcriptionand replication reactioncatalyzed bytheT7 and Phi6 RNApolymerases [4,42] TherecombinantPhi6polymerasewasexpressedandpurifiedas described[42] Nucleoside5’-triphosphates wereobtainedfrom Thermo FisherScientific Enzymaticallysynthesized ssRNA and dsRNA molecules were isolated with TRIzure reagent (Bioline) andchloroform(Merck)accordingtothemanufacturer’s instruc-tions,followedbyprecipitationofT7-generatedtranscriptsin3M sodiumacetate(Merck)orstepwisefractionationofdsRNAwith LiCl(Merck)(seebelow).AllRNAswerewashedwith70%ethanol anddissolvedinsterilenuclease-freewater

2.3 LiClprecipitation ContaminatingssRNAmoleculeswereremovedfromthedsRNA synthesisreactionsbyLiCl precipitation.ssRNAmoleculeswere firstprecipitatedbyincubationat−20◦Cfor30minin2MLiCl

fol-lowedby20mincentrifugation at13,000×gat4◦C dsRNAwas collectedfromtheresultingsupernatantbyrepeatingthe proce-durein 4MLiCl.ThedsRNApelletwaswashedtwicewith70% ethanol and dissolvedin sterile nuclease-free water In case of unsatisfactoryseparationofdsRNAsfromssRNAs,theprocedure describedabovewasrepeated

2.4 Preparationofbacteriophagegenomesforchromatography PseudomonasphagePhi6[43]waspropagatedandpurifiedas previouslydescribed[44].Thesameprotocolwasusedtorecover PseudomonasphagePRR1[45].Briefly,virionswerecollectedfrom thelysatesofinfectedPseudomonassyringaeHB10YorPseudomonas aeruginosaPAO1byprecipitationwith10%PEG-6000and0.5M NaCl.Toopentheviralcapsids,halfoftheprecipitatewastreated withproteinaseK(ThermoFisherScientific)ataconcentrationof

1mg/mlin10mMTris-HCl(pH7.5)buffercontaining5mMEDTA (Merck)and1%sodiumdodecylsulfate(SDS,Merck)at50◦Cfor

1h.Fromtheremainderoftheprecipitate,totalRNAwasextracted usingTRIzurereagent(Bioline)accordingtothemanufacturer’s instructions

Trang 4

2.5 AnalysisofdsRNAintegrityandpurity

RNAwasrecoveredfromthecollected0.5-mlchromatography

fractionscorrespondingtothepeakareasonchromatogramsby

overnightprecipitationat−20◦Cin0.3Msodiumacetate(pH6.5)

and67%ethanol,followedbycentrifugationat10,000×gfor30min

TheRNApelletswerewashedwith70%ethanol,airdried,and

dis-solvedin10␮lofsterilenuclease-freewater.A5-␮lsamplewas

mixedwith2×Uloadingbuffer(10mMEDTA[pH8.0],0.2%SDS,

0.05%bromphenolblue,0.05%xylenecyanol,6%[v/v]glycerol,8M

urea).RNAmoleculeswereseparatedin an0.8%agarosegelby

electrophoresisinTris-borate-EDTA(TBE)buffer(6.6gTrizmabase,

3.9gboricacid,0.93gEDTA).Forelectrophoresis,anEPS301

elec-trophoresispowersupply(GEHealthcare)andanOwlEasyCastB2

minigelelectrophoresis system(ThermoFisherScientific)were

used.Adetailedprotocolhasbeendescribedpreviously[46]

2.6 TreatmentofthechromatographyfractionswithRNaseor

DNase

ThefractionscollectedaftertheseparationofDNAanddsRNA

onCIM-OHcolumn (Section2.1)wereprecipitatedasdescribed

(Section2.5).5.5␮lfromthecombinedfractions1and2;6␮lfrom

thecombinedfractions3and4;5␮lfromthecombinedfractions5

and6;and6.5␮lfromthecombinedfractions7to9were

sub-jectedtoRNase Atreatment, DNasetreatment, ornotreatment

(control).The reactionvolume was20␮l For RNase treatment,

1␮gofnucleicacidwasincubatedwith0.1␮gofRNase A

(Fer-mentas)in0.1×SSCbuffer(3Msodiumchloride,0.3Msodium

citrate[pH7.0])for15minatroomtemperature.DNasetreatment

wasperformedusingRQ1DNase(Promega;1unit/␮gnucleicacid)

at37◦Cfor30min.Allsamples(includingcontrols)weredesalted

withIllustra MicroSpinG25columnsaccordingtothe

manufac-turer’sinstructions(GEHealthcare)andresolvedwithagarosegel

electrophoresisinTBEbuffer(seeSection2.5)

3 Results and discussion

3.1 Setupforstericexclusionchromatographyfornucleicacid

molecules

Themonolithic chromatographic supportischaracterizedby

veryhighporosity,exceptionalchemicalstability,andflow

char-acteristics, which makes it a valuable tool for separation or

purificationoflargebiomolecules[47].CIMmonolithiccolumns,

atrademarkofBIASeparations(Slovenia),areavailablein

differ-entformatswiththesamestructureofthemonolithandligand

density,whichensurescalability.Inourwork,weusedaCIM-OH

columnwithacolumnvolumeof1ml.Achromatographic

proce-dureusedpreviouslyforproteinpurification[27]wasadoptedhere

forseparationofnucleicacidmolecules

To keep the pressure below 1.8MPa (the pressure limit for

theCIM-OH1ml column),weapplieda maximumflow rateof

3ml/minandthefinalconcentrationofPEGdidnottypicallyexceed

15%.TominimizePEG-inducedprecipitationofnucleicacidsbefore

entranceintothecolumn,weusedthein-linedilutiontechnique

wheresamplewasinjectedinbufferAfollowedbymixingwitha

PEG-containingbufferBdirectlyintheM-925mixer(Fig.1).The

gradientdelayvolume(the volumebetweenthemixerandthe

column)wasalsokeptaslowaspossible(here29␮l).Thus,ata

3ml/minflowrateittookonly34.8sforthesampletoenterthe

column

3.2 SuitabilityofCIM-OHcolumnfornucleicacidseparation High-capacitybindingofnucleicacidsunderSXCconditionshas notbeenobservedundertheconditionsusedpreviously[27]and suitabilityofthis chromatography modefor nucleicacid purifi-cationremainedunclear.Therefore,theinitialexperimentswere performedwithdsDNAmolecules,whicharemorerobustand eas-iertopreparethanRNAmolecules.WeusedthreedifferentdsDNA species,namely500bp,1800bp,and48502bpinlength(see2.2 fortheoriginofdsDNAs).Weestablishedthatretentionofnucleic acidsonthecolumnmatrixrequiredthepresenceofatleast0.4M NaCl(Fig.S1)andwasnegligible(0.5–3%)whenbufferBcontained onlyPEG-6000(upto20%PEG-6000wastested;datanotshown) ThisobservationisconsistentwiththePEGfractionationmethod,

inwhich15%PEG6000at0.55MNaClprecipitatesessentiallyall DNAinthesizerangeof100to46500bp[29].TheshorterdsDNA molecules(500bpand1800bp)wereelutedalmostcompletely fromthecolumnatreduced PEG-6000andNaClconcentrations However,about25%ofthe48502-bplongbacteriophage␭DNA wasirreversiblyretainedonthecolumn

TherequirementofNaClforefficientretentionofnucleicacids underSXC conditionsis likelyconnectedtothemodificationof stericeffectsbytherepulsiveforcesbetweennegativelycharged chemicalgroupsofthenucleicacidmolecules[31,48,49].Although PEGchangeselectrostaticinteractionsinsolutionsandthemolar conductivityofNaCl-containingbufferdecreaseswithincreasesin PEGconcentration,allnucleicacidmoleculesbecomehydrated.In thisaqueousphase,NaClionizesandformsionpairswith phos-phatesofnucleicacids.Therefore,toneutralizethenegativecharge andtodecreasetheelectrostaticrepulsionforcesbetweennucleic acidmolecules,weusedNaCl-containingbuffersinallsubsequent experiments.Thisresultedinsubstantiallybetterbindingofnucleic acidstothecolumnmatrix(seebelow).Therequirementto neu-tralize chargesfor optimalSXCperformance wasalsoobserved previously for protein samples; the bestresults were achieved whenproteinswereneartheirisoelectricpoint[27]

WealsoinitiallytestedPEGmoleculesofdifferentmolecular weights (4000,6000,and 8000g×mol−1).PEG-6000performed betterintermsofRNAbindingandelutionandingenerated back-pressure.Therefore,inoursubsequentexperimentsweusedonly PEG-6000

3.3 OptimizingSXCforssRNAanddsRNAmolecules 3.3.1 InfluenceofNaClconcentrationonRNAretentionin CIM-OHcolumnmatrix

AftersuccessfulexperimentswithdsDNA,wetestedthe pos-sibilitytouseSXC fortheseparationofRNAmoleculesand the influenceofNaClandPEG-6000concentrationsonRNAretention and subsequent elution.We used 300-bp, 1800-bp or 6374-bp dsRNAmoleculesand initiallykeptthePEG-6000concentration constant(15%)whilesystematicallyvaryingthesaltcontentofthe buffers(Fig.2A).SmallfractionsoftheappliedRNAswereretained

ontheCIM-OHcolumnmatrixinthepresenceof0.2MNaCl How-ever, about75% of the 300-bp dsRNAand 50%of the 1800-bp and6374-bpdsRNAselutedintheflow-through(Fig.2A).After increasingtheNaClconcentrationto0.4Morabove,noRNAwas detectedbyagarosegelelectrophoresisintheflow-through sam-plesofthe1800-bpand6374-bpdsRNAs.Forthe300-bpdsRNA,an evenhighersaltconcentration(0.8–1M)wasrequiredforefficient bindingtothecolumnmatrix.Athighersaltconcentrations,PEG moleculesareknowntoadoptamorecompact,coiledstructure [50].ThisdecreasesthehydrodynamicradiusofPEGand conse-quentlyitsstericexclusioneffects,whichshouldleadtoreduced retentionofnucleicacidsonthecolumnmatrix[50].Inprotein SXC[27],retentionofIgMdiminishedrapidlytozerowhentheNaCl

Trang 5

Fig 2.NaCl (A) and PEG-6000 (B, C) dependence of RNA binding to the CIM-OH

concentrationexceededcertainthresholdvalues(0.4MNaClat8%

PEG-6000or0.9MNaClat10%PEG-6000).However,inour

experi-mentsahigherPEG-6000concentrationandupto1MNaCldidnot

showasubstantialnegativeeffectonthenucleicacidretention

3.3.2 InfluenceofPEGconcentrationonssRNAanddsRNA

retentioninCIM-OHcolumnmatrix

Inthenextseries ofexperiments,wekepttheNaCl

concen-trationconstant (0.8M)andfollowedhowchangesinPEG-6000

concentrationaffectedthebindingandelutionbehaviorofssRNA

anddsRNAmolecules(Fig.2Band2C).IrrespectiveofthessRNAor

dsRNAlength,nobindingwasachievedwhenthePEG-6000

con-centrationwas7%orless.SincethevolumeofthePEG-deficient

zonemustbeproportionaltothesizeofthetargetbiomolecules

[31],largerspeciesofssRNAmoleculesboundatlowerPEG

con-centrations(Fig.2B).Accordingly,35%of6374-nt,20%of4065-nt,

and7%of2948-ntssRNAswereretainedonthecolumnin8%

PEG-6000.NoneoftheseRNAspeciesweredetectedintheflow-through

in11%or12%PEG-6000.ssRNAsof1800ntand700ntrequiredat

least10%PEG-6000forbindingtothecolumnmatrix.About95%of

thesessRNAspecieswereretainedin15%PEG-6000.Some

reten-tionoftheshorterssRNAmoleculesusedinthestudy(≤500nt)

wasobservedin11%PEG-6000.However,evenin15%PEG-6000, lessthan80%ofssRNAsof500to100ntwasretained

SmallpercentageofdsRNAmoleculesintherangeof700–6374

bpaccretedtothecolumnmatrixalreadyin8%PEG-6000,while retentionof86%–100%wasachievedin12%PEG-6000(Fig.2C) dsRNAmoleculesof500bpstartedtoaccretetothecolumnmatrix

in10%PEG-6000;fullretentionwasaccomplishedin15%PEG-6000 CompleteretentionofdsRNAshorterthan500bpwasnotachieved undertheconditionstested(Fig.2C)

InthecaseoflongerdsRNAmoleculescorrespondingtophage Phi6genome segments,wedidnot observea clearrelationship betweenmoleculesize and thePEG concentrationrequired for binding We calculated the lengths of these dsRNA molecules, assumingthat1bpofdsRNAcorrespondsto0.29nm[51].Thus, theestimatedlengthofPhi6L-,M-,andS-segments(6374,4065, and2948bp,respectively)wereapproximately1.8␮m,1.2␮m,and

854nm,respectively.Thestructure ofdsRNAmoleculesismore rigidcomparedtossRNAs,anddsRNAsmightnotcondensetothe sameextentasssRNAsofthesamelengthinPEG/NaClsolution.This couldhamperthemigrationofthelongdsRNAmoleculesthrough theporesofthecolumnmatrix,whichareonly1.3␮mindiameter Alternatively,cryogelmonoliths[36]withsuperporousstructures (10–100␮m)couldbetestedfortheseparationofthelongerdsRNA molecules

Thedynamicbindingcapacity forRNAsamplescouldnotbe determined,asuponloading>250␮gofdsRNAin13%PEG-6000the backpressureincreasedbeyondacceptablelimits.TheRNA recov-eryunderoptimalgradientconditionswas80±9%.Ourpreliminary experimentsdemonstratedthatforeffectiveelutionofRNAspecies,

ahigh-amplituderapidchangeinPEGconcentrationisrequired Converselywithlong lineargradients (>18CV), RNAmolecules werespread innumerous fractions,which resultedin low ulti-mateRNArecoveryandpoorseparation(Fig.S2).Thus,toachieve satisfactoryresultsashortlinearorastepwisegradientshould pref-erentiallybeapplied(seeFigs.3–6fortheexamplesofoptimized gradientconditions)

3.4 SeparationofDNAanddsRNAmolecules dsDNAanddsRNAspeciesofthesamelengthcouldbepartially resolvedbySXConaCIM-OHcolumn(Fig.3).dsDNAwaselutedfirst whilethemajorityofdsRNAmoleculeswereretainedlongerand elutedinthesecondpeak.Similarresultswereobtainedfornucleic acidmoleculesof1800bpand500bp.Dataontheseparationof 1800-bpdsRNAanddsDNAareshowninFig.3.Inadditiontothe sizeofthenucleicacidmolecule(Fig.2 differencesintheir con-figurationandchemistrymightplayanimportantroleinsample retention.ComparedtotheB-formofdsDNA,theA-formofdsRNA duplexisshorterandwiderwithadeepermajorgroove Monova-lentanddivalentcationspenetrateintothemajorgroovesofdsRNA, whichresultsinmoreefficientshieldingofdsRNAchargecompared withdsDNA[52].Intermolecularandintramolecularrepulsion van-ishesatalowercationconcentrationand,therefore,dsRNAmight associatewitheachotherandthecolumnmatrixmoreefficiently thandsDNA

3.5 SeparationofRNAmoleculesofdifferentsizes

WedidnotachieveanysatisfactoryseparationofRNAmolecules

ofdifferentsizes(eitherssRNAordsRNA)despitesignificant(2 timesorgreater)differencesinsize(datanotshown).Only sep-arationof RNAmolecules shorter than 100nt fromlongerRNA specieswaseasilyachievedbySXC(Fig.S3).Thisisbecausethe shortmoleculesarenotretainedonthecolumnmatrix,whereas thelongeronesareretainedundertheconditionsapplied(Fig.2)

Trang 6

Fig 3.Chromatographic separation of dsRNA and dsDNA molecules of 1800 bp using a CIM-OH column A sample containing 15 ␮g of dsRNA and 15 ␮g of dsDNA molecules of

3.6 SeparationofdsRNAandssRNAmoleculesofthesamelength

WehavedevelopedamethodforinvitroproductionofdsRNA

moleculesofdifferentlengthsandsequences[4 Forsubsequent

biochemicalapplications,thedsRNAmoleculesmustbepurified

from contaminating ssRNAs of the same length, abortive

tran-scripts,NTPs,andenzymes.AstepwiseLiClprecipitationcanbe

appliedforroutineuse However,thismethoddoesnotprovide

efficientremovalofssRNAs.WhenssRNAmoleculesinterferewith

a subsequentapplication, anAEXcan beused topurifydsRNA

[24].WeappliedSXCasanalternativemeanstoseparatedsRNA

fromcontaminatingssRNA.Sincethedifferenceinelectrophoretic

mobilitybetweenssRNAanddsRNAspeciesissubstantialonlyfor

longmolecules(inourstudy≥700nt),wetestedRNAmolecules

of700nt,1800nt,and4063nt(Fig.4)toverifytheefficiencyof

SXCseparationusingnon-denaturingagarosegelelectrophoresis

analysisofthesamples

Generally,theseparationofssRNAanddsRNAmoleculesbySXC

improvedasthesizeofthemoleculesincreased;thebest

separa-tionandhighestpuritywasobtainedfordsRNAsof1800bpand

4063bp,whereasafterSXCdsRNAof700bpcontaineda

substan-tialamountofssRNAof700nt.Inallexperiments,ssRNAmolecules

wereretainedonthecolumnmatrixmorestronglythandsRNAsof

equallength(Fig.4).Thus,onthebasisofagarosegel

electrophore-sisanalysisoftheelutionfractions,apurefractionofdsRNAwas

attainablefromamixtureofdsRNAandssRNAusingSXC.However,

subsequentfractionsalwayscontaineddsRNAmoleculesin

addi-tiontossRNA.ThismightbeduetothepresenceofdsRNAinthe

intersticesofthedenselypackedssRNAprecipitatesonthecolumn

stationaryphasesurface

The observed separation efficiency of SXC is comparable to

thatobtainedbyAEX[24].Moreover,thewholeprocesstookonly

30min(20minforsystempreparationand10minforsample

injec-tion and elution) Achievement of similar resolution with AEX

requirestheuseofsubstantiallylongergradients(100CV)[24]

Accordingly,fortheseparationoflongdsRNAmoleculesfroma

mixtureofssRNAanddsRNA,SXCisaneffectiveandefficient

alter-nativetoAEX

3.7 PurificationofssRNAanddsRNAvirusgenomesbySXC

3.7.1 PurificationofphagePRR1genomefromhostcelllysate

Weappliedbothlinearandstepwisegradientstoseparatethe

3574nt-longgenomicssRNAofPseudomonasphagePRR1directly

fromlysateofinfectedbacterialcells(Fig.5AandB).Short

bac-terialssRNAmolecules(<300nt)didnotbindtothecolumnand

wererecoveredintheflow-through.AdecreaseinPEG concen-trationresultedintheelutionofthephagegenometogetherwith contaminatinghostRNAs.HostplasmidDNAwasalsodetectedin someofthefractionscontainingthephagegenome(Fig.5Aand B).Moreover,someproteinsco-elutedwiththeviralRNA(Fig.S4), whichwasexpectedsincetheseparationissize-dependentand largeimpuritiescanco-precipitatewiththetargetmolecules.To increasethepurityoftheviralgenome,weextractedthetotalRNA fromthebacteriallysatebyTRIzurereagenttoremoveproteinsand cellularDNAmoleculesfromthesample(see2.4).Usingastepwise gradientofPEG-6000weobtained85%purephagePRR1genome,

asdeterminedbyagarosegelelectrophoresisanalysis(Fig.5C) TheCIM-OHcolumnconcentratedviralRNAmoleculessothat evenminorRNAspeciescouldbedetectedinsomeofthefractions

byagarosegelelectrophoresis(Fig.5A).Thisconfirmedprevious observations[27]thatunlikePEGprecipitation,bindingefficiency duringSXCisunaffectedbylowtargetconcentration.Thus,SXC couldpotentiallybeusedasananalyticaltoolforcharacterization

ofcomplexRNAmixtures

3.7.2 PurificationofphagePhi6genomefromhostcelllysate

APseudomonasphagePhi6-infectedbacteriallysatewasused

toevaluatethepossibilitytopurifyaviraldsRNAgenomefrom infectedcellsandtoseparatetheindividualgenomesegments.We firstappliedthelysatefromaPhi6-infectedbacterialcultureontoa CIM-OHcolumnafterproteinaseKandSDStreatment(see2.4).In thiscase,thebestseparationwasachievedwithastepwise gra-dient(Fig.6A).However,bacterialplasmidDNA co-eluted with both dsRNAandssRNA species.Withthisapproach itwas pos-sibletoobtainfractionssignificantlyenrichedwithPhi6genomic dsRNAdirectlyfromthehostlysatewithoutmajorprotein contami-nants(Fig.S4).However,wewereunabletoseparatecontaminating ssRNAmoleculesfromtheviralgenome.Wewerealsounableto separatethethreeviralgenomesegmentsfromeachother

ToimprovetheSXC-basedpurificationofthedsRNAgenome

ofbacteriophagePhi6,weisolatedthetotalRNAfromthelysateof Phi6-infectedbacteriausingTRIzurereagent.Alineargradient(12% PEG-6000,0.6MNaClto0%PEG-6000in10CV)providedgood sepa-rationofthedsRNAgenomefromcontaminatingssRNAmolecules (Fig.6B).PuredsRNAgenomewaselutedat7.5%PEG-6000and 0.38MNaCl

TherecoveryandefficiencyofdsRNApurificationwitha

CIM-OH columnwascompared withtheLiClfractionation routinely usedin ourlaboratory Sixidentical samplesoftotal RNA after phenol-chloroformextractionfromP.syringaelysates were pre-pared.ThreesampleswereappliedontoaCIM-OHcolumnandthe

Trang 7

Fig 4. Chromatographic separation of dsRNA from contaminating ssRNA of the same size using a CIM-OH column and a linear (A, C, E) or stepwise (B, D, F) PEG-6000 gradient.

Trang 8

Fig 5. Separation of Pseudomonas phage PRR1 ssRNA genome from contaminating cellular nucleic acid molecules Bacterial lysate containing PRR1 virions was treated with

remainingsampleswereprecipitatedwithLiCl.AfterLiCl

precipi-tation,7.05±1%ofthetotalRNAwasprecipitatedasdsRNA.While

slightlylessRNA(5.4±1.6%)wasrecoveredinthedsRNA-enriched

fractionselutedfromthecolumn,thepuritysignificantlysurpassed

thatobtainedusingasinglecycleofLiClfractionation(Fig.6B)

4 Conclusions

WeevaluatedthesuitabilityofSXCfortheseparationand

purifi-cation of ssRNA and dsRNA moleculesof different lengths We

determined theconditions under which efficient retention and

elutionofnucleicacids(bothDNA andRNA)couldbeachieved

(Fig.2,Fig.S1).Retentionofnucleicacidsrequiredupto1MNaCl

dependingonthemoleculelengthandabove7%PEG-6000.We

demonstratedthatSXConCIMmonolithiccolumnscanbeapplied

toseparatedsRNAfromssRNAandthattheresolutionisbetterfor

longer(>700bp)dsRNAmolecules(Fig.4).Nevertheless,theuse

ofSXCfortheseparationofRNAsofdifferentlengthsislimited, and onlyshortRNAmolecules(<100nts)canbeeasilyresolved fromlongerRNAspecies(Fig.S3).SXConaCIM-OHcolumnhas thepotentialtoseparatedsDNAanddsRNAmoleculesofthesame length (Fig 3) due tothe structural differences between these molecules

Although separation of viral genome segments was not achieved,SXCcouldseparateandpurifywholeviralssRNAand dsRNAgenomesfromcontaminatingcellularRNAs(Fig.5and6).In termsofrecovery,SXCsurpassedAEXonCIM-QA,CIM-DEAE,and Gen-PakFAXcolumnsbyatleast25%.Furthermore,SXCisof gen-eralutilityforconcentratingRNAvirusgenomes.Thisisespecially usefulfor low-abundanceRNA species,suchas viralreplicative formsandmutualisticviruses

Trang 9

Fig 6.Separation of Pseudomonas phage Phi6 dsRNA genome from contaminating cellular nucleic acid molecules (A) Bacterial lysate containing Phi6 virions was treated

Declarations of interest

None

Acknowledgements

WethankDr.SebastijanPeljhanforhisvaluableadviceonSXC

setupof a chromatography systemand Tanja Westerholm and

HirnouScottforexcellenttechnicalassistance.Thisworkwas

sup-portedbytheAcademyofFinland[grant272507],theSigridJusélius

Foundation,Helsinki,Finland,theJaneandAatosErkkoFoundation,

Helsinki,Finland(toM.M.P),andtheFinnishCulturalFoundation,

Helsinki,Finland(toA.L.).Theauthorsacknowledgetheuseofthe

UniversityofHelsinkiInstruct-HiLIFEBiocomplex unit(member

oftheBiocenterFinlandandInstruct-FI)andAcademyofFinland

support[grant1306833]fortheunit

Appendix A Supplementary data

Supplementarymaterialrelatedtothisarticlecanbefound,in

theonlineversion,at doi:https://doi.org/10.1016/j.chroma.2018

08.063

References

[1] A Sedova, N.K Banavali, RNA approaches the B-form in stacked single strand

[2] M.M Cox, D.L Nelson, Nucleotides and nucleic acids, in: Lehninger Principles

of Biochemistry, W.H Freeman and Company, New York, 2005, pp 273–305.

[3] A Travers, G Muskhelishvili, DNA structure and function, FEBS J 282 (2015) 2279–2295.

[4] A.P Aalto, L.P Sarin, A.A van Dijk, M Saarma, M.M Poranen, U Arumae, D.H Bamford, Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage ␸6 RNA-dependent RNA polymerase, RNA 13 (2007) 422–429.

[5] E.M Kennedy, D.G Courtney, K Tsai, B.R Cullen, Viral epitranscriptomics, J Virol (2017) 91.

[6] R Martins, J.A Queiroz, F Sousa, Ribonucleic acid purification, J Chromatogr.

A 1355 (2014) 1–14.

[7] V Glisin, R Crkvenjakov, C Byus, Ribonucleic acid isolated by cesium chloride centrifugation, Biochemistry 13 (1974) 2633–2637.

[8] P Chomczynski, N Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem 162 (1987) 156–159.

[9] P Chomczynski, N Sacchi, The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on, Nat Protoc 1 (2006) 581–585.

[10] M.B Stead, A Agrawal, K.E Bowden, R Nasir, B.K Mohanty, R.B Meagher, S.R Kushner, RNAsnap: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria, Nucleic Acids Res 40 (2012), e156.

[11] A.O Nwokeoji, P.M Kilby, D.E Portwood, M.J Dickman, RNASwift: a rapid, versatile RNA extraction method free from phenol and chloroform, Anal Biochem 512 (2016) 36–46.

[12] R Martins, C.J Maia, J.A Queiroz, F Sousa, A new strategy for RNA isolation from eukaryotic cells using arginine affinity chromatography, J Sep Sci 35 (2012) 3217–3226.

[13] R Martins, J.A Queiroz, F Sousa, A new affinity approach to isolate Escherichia coli 6S RNA with histidine-chromatography, J Mol Recogn 23 (2010) 519–524.

[14] R Martins, J.A Queiroz, F Sousa, Histidine affinity chromatography-based methodology for the simultaneous isolation of Escherichia coli small and ribosomal RNA, Biomed Chromatogr 26 (2012) 781–788.

Trang 10

[15] A Petrov, T Wu, E.V Puglisi, J.D Puglisi, RNA purification by preparative

polyacrylamide gel electrophoresis, Methods Enzymol 530 (2013) 315–330.

[16] J.S Kieft, R.T Batey, A general method for rapid and nondenaturing

purification of RNAs, RNA 10 (2004) 988–995.

[17] O.C Uhlenbeck, Keeping RNA happy, RNA 1 (1995) 4–6.

[18] J.R Diaz-Ruiz, J.M Kaper, Isolation of viral double-stranded RNAs using a LiCl

fractionation procedure, Prep Biochem 8 (1978) 1–17.

[19] R.M Franklin, Purification and properties of the replicative intermediate of

the RNA bacteriophage R17, Proc Natl Acad Sci U S A 55 (1966) 1504–1511.

[20] A Azarani, K.H Hecker, RNA analysis by ion-pair reversed-phase high

performance liquid chromatography, Nucleic Acids Res 29 (2001) E7.

[21] M.J Dickman, Effects of sequence and structure in the separation of nucleic

acids using ion pair reverse phase liquid chromatography, J Chromatogr A

1076 (2005) 83–89.

[22] J.A Thompson, R.D Wells, HPLC in nucleic acids research, Nature 334 (1988)

87–88.

[23] J Koubek, K.F Lin, Y.R Chen, R.P Cheng, J.J Huang, Strong anion-exchange

fast performance liquid chromatography as a versatile tool for preparation

and purification of RNA produced by in vitro transcription, RNA 19 (2013)

1449–1459.

[24] A Romanovskaya, L.P Sarin, D.H Bamford, M.M Poranen, High-throughput

purification of double-stranded RNA molecules using convective interaction

media monolithic anion exchange columns, J Chromatogr A 1278 (2013)

54–60.

[25] C.R Huang, S.J Lo, Evolution and diversity of the human hepatitis d virus

genome, Adv Bioinformatics (2010), 323654.

[26] A.E Gorbalenya, L Enjuanes, J Ziebuhr, E.J Snijder, Nidovirales: evolving the

largest RNA virus genome, Virus Res 117 (2006) 17–37.

[27] J Lee, H.T Gan, S.M Latiff, C Chuah, W.Y Lee, Y.S Yang, B Loo, S.K Ng, P.

Gagnon, Principles and applications of steric exclusion chromatography, J.

Chromatogr A 1270 (2012) 162–170.

[28] Steric exclusion chromatography, in: P N.A (Ed.), J Chromatogr Library, 1984,

pp 253–283.

[29] J.T Lis, R Schleif, Size fractionation of double-stranded DNA by precipitation

with polyethylene glycol, Nucleic Acids Res 2 (1975) 383–389.

[30] A Polson, G.M Potgieter, J.F Largier, G.E Mears, F.J Joubert, The fractionation

of protein mixtures by linear polymers of high molecular weight, Biochim.

Biophys Acta 82 (1964) 463–475.

[31] T Arakawa, S.N Timasheff, Mechanism of poly(ethylene glycol) interaction

with proteins, Biochemistry 24 (1985) 6756–6762.

[32] R Bhat, S.N Timasheff, Steric exclusion is the principal source of the

preferential hydration of proteins in the presence of polyethylene glycols,

Protein Sci 1 (1992) 1133–1143.

[33] A Strancar, P Koselj, H Schwinn, D Josic, Application of compact porous

disks for fast separations of biopolymers and in-process control in

biotechnology, Anal Chem 68 (1996) 3483–3488.

[34] P Gagnon, P Toh, J Lee, High productivity purification of immunoglobulin G

monoclonal antibodies on starch-coated magnetic nanoparticles by steric

exclusion of polyethylene glycol, J Chromatogr A 1324 (2014) 171–180.

[35] P Marichal-Gallardo, M.M Pieler, M.W Wolff, U Reichl, Steric exclusion

chromatography for purification of cell culture-derived influenza A virus

using regenerated cellulose membranes and polyethylene glycol, J.

Chromatogr A 1483 (2017) 110–119.

[36] C Wang, S Bai, S.P Tao, Y Sun, Evaluation of steric exclusion chromatography

on cryogel column for the separation of serum proteins, J Chromatogr A 1333 (2014) 54–59.

[37] P Gottlieb, J Strassman, X Qiao, M Frilander, A Frucht, L Mindich, In vitro packaging and replication of individual genomic segments of bacteriophage

␸6 RNA, J Virol 66 (1992) 2611–2616.

[38] M Jiang, P Osterlund, L.P Sarin, M.M Poranen, D.H Bamford, D Guo, I Julkunen, Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5’ phosphorylation of RNA molecules, J Immunol 187 (2011) 1713–1721.

[39] V.M Olkkonen, P Gottlieb, J Strassman, X.Y Qiao, D.H Bamford, L Mindich,

In vitro assembly of infectious nucleocapsids of bacteriophage ␸6: Formation

of a recombinant double-stranded RNA virus, Proc Natl Acad Sci U S A 87 (1990) 9173–9177.

[40] L Mindich, X Qiao, S Onodera, P Gottlieb, M Frilander, RNA structural requirements for stability and minus-strand synthesis in the dsRNA bacteriophage ␸6, Virology 202 (1994) 258–263.

[41] M Szekeres, B.H Brownstein, H.R Revel, R Haselkorn, Terminal sequences of the bacteriophage ␸6 segmented dsRNA genome and its messenger RNAs, Virology 142 (1985) 1–11.

[42] E.V Makeyev, D.H Bamford, Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage ␸6, EMBO J 19 (2000) 124–133.

[43] A.K Vidaver, R.K Koski, J.L Van Etten, Bacteriophage phi6: a lipid-containing virus of Pseudomonas phaseolicola, J Virol 11 (1973) 799–805.

[44] D.H Bamford, P.M Ojala, M Frilander, L Walin, J.K.H Bamford, Isolation, purification, and function of assembly intermediates and subviral particles of bacteriophages PRD1 and 6, in: K.W Adolph (Ed.), Methods in Molecular Genetics, Academic Press, San Diego, 1995, pp 455–474.

[45] R.H Olsen, D.D Thomas, Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid, J Virol 12 (1973) 1560–1567.

[46] D.C Rio, M Ares Jr., G.J Hannon, T.W Nilsen, Nondenaturing agarose gel electrophoresis of RNA, Cold Spring Harb Protoc (2010), pdb.prot5445.

[47] M Krajacic, M Ravnikar, A Strancar, I Gutierrez-Aguirre, Application of monolithic chromatographic supports in virus research, Electrophoresis 38 (2017) 2827–2836.

[48] A.P Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J Biol Chem.

276 (2001) 10577–10580.

[49] D.H Atha, K.C Ingham, Mechanism of precipitation of proteins by polyethylene glycols Analysis in terms of excluded volume, J Biol Chem 256 (1981) 12108–12117.

[50] C Tan, J.G Albright, O Annunziata, Determination of preferential interaction parameters by multicomponent diffusion Application to poly(ethylene glycol)-salt-water ternary mixtures, J Phys Chem B 112 (2008) 4967–4974.

[51] J.A Abels, F Moreno-Herrero, T van der Heijden, C Dekker, N.H Dekker, Single-molecule measurements of the persistence length of double-stranded RNA, Biophys J 88 (2005) 2737–2744.

[52] S.A Pabit, X Qiu, J.S Lamb, L Li, S.P Meisburger, L Pollack, Both helix topology and counterion distribution contribute to the more effective charge screening

in dsRNA compared with dsDNA, Nucleic Acids Res 37 (2009) 3887–3896.

Ngày đăng: 31/12/2022, 09:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w