1. Trang chủ
  2. » Giáo án - Bài giảng

A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies

10 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies
Tác giả C. Rỹhl, M. Knửdler, P. Opdensteinen, J.F. Buyel
Trường học Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany
Chuyên ngành Biotechnology, Molecular Biology
Thể loại Research article
Năm xuất bản 2018
Thành phố Aachen
Định dạng
Số trang 10
Dung lượng 2,47 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Monoclonal antibodies (mAbs) dominate themarketfor biopharmaceutical proteins because they provide active and passive immunotherapies for many different diseases. However, for most mAbs,two expensive manufacturing platforms are required.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

C Rühla, M Knödlera, P Opdensteinena, J.F Buyela,b,∗

a Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany

b Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany

Article history:

Received 3 June 2018

Received in revised form 19 July 2018

Accepted 5 August 2018

Available online 7 August 2018

Keywords:

Affinity chromatography

Design of experiments

Fluorescent protein carrier

HIV-neutralizing monoclonal antibody

Plant molecular farming

Transient protein production

Monoclonalantibodies(mAbs)dominatethemarketforbiopharmaceuticalproteinsbecausetheyprovide activeandpassiveimmunotherapiesformanydifferentdiseases.However,formostmAbs,twoexpensive manufacturingplatformsarerequired.Thesearemammaliancellculturesforupstreamproductionand ProteinAchromatographyforproductcaptureduringdownstreamprocessing.Herewedescribeanovel affinityligandbasedonthefluorescentproteinDsRedasacarrierforthelinearepitopeELDKWA,which cancapturetheHIV-neutralizingantibody2F5.WeproducedtheDsRed-2F5-Epitope(DFE)intransgenic tobacco(Nicotianatabacum)plantsandpurifieditusingacombinationofheattreatmentandimmobilized metal-ionaffinitychromatography,resultinginayieldof24mgkg−1at90%purity.Usinga design-of-experimentsapproach,wecoupledupto15mgDFEpermLSepharose.Theresultingaffinityresinwas abletocapture2F5fromtheclarifiedextractofN.benthamianaplants,achievingapurityof97%,a recoveryof>95%andaninitialdynamicbindingcapacityat10%productbreakthroughof4mgmL−1after

acontacttimeof2min.Theresincapacitydeclinedto15%ofthestartingvaluewithin25cycleswhen 1.25Mmagnesiumchloridewasusedforelution.Weconfirmedthebindingactivityofthe2F5product

bysurfaceplasmonresonancespectroscopy.DFEisnotyetoptimized,andacostanalysisrevealedthat boostingDFEexpressionandincreasingitscapacitybyfourfoldwillmaketheresincost-competitivewith someProteinAcounterparts.Theaffinityresincanalsobeexploitedtopurifyidiotype-specificmAbs

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

Antibodiesdominatethebiopharmaceuticalmarket,withmore

than50approvedproductsandmorethan300candidatesinthe

developmentpipeline[1 Thetotalsalesvolumewasmorethan

D40billionin2013,whichisabout33%ofallbiopharmaceutical

proteinsales.Mostproductsaremonoclonalantibodies(mAbs)that

aretypicallyproducedinmammaliancells,suchasChinesehamster

ovary(CHO)cells,withtitersregularlyexceeding∼5gL−1 inthe

culturesupernatant[2 Despitethesehighproducttiters,upstream

Abbreviations: CV, column volume; DoE, design of experiments; IMAC,

immobi-lized metal-ion affinity chromatography; SPR, surface plasmon resonance; TSP, total

soluble protein.

∗ Corresponding author at: Fraunhofer Institute for Molecular Biology and Applied

Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.

E-mail addresses: clemens.ruehl@gmail.com (C Rühl),

johannes.buyel@rwth-aachen.de , matthias.knoedler@ime.fraunhofer.de

(M Knödler), patrick.opdensteinen@ime.fraunhofer.de (P Opdensteinen),

johannes.buyel@ime.fraunhofer.de (J.F Buyel).

productioninmammaliancellsisexpensiveduetothecostofmedia andtheneedforsterileconditions.Alternativeexpressionsystems arethereforebeinginvestigated,includingyeastsuchasPichia pas-toris[3]andplants,thelatterofferingascalableandsafeproduction platform[4 Plant-derivedmAbshavealreadybeentestedin clin-icaltrials,includingtheHIV-neutralizingmAb2G12[5

Regardlessoftheexpressionhost,anothermajorcostdriverfor mAbmanufacturingistherelianceofmostprocessesonaProteinA capturestep,whichhasbecomethegoldstandardforinitial purifi-cation[6 Althoughtheproductionofthisprotein-basedaffinity ligandinbacterialsystemsiscost-effective,theresinis neverthe-less expensivegiven theneed forqualificationbeforeitsusein processesthatcomplywithgoodmanufacturingpractices(GMP) and alsothesubstantialmarginwhich reflectsthelacksuitable alternatives.Dependingontheproductionscale,thecostsforthe resinalonecanamountto10millioneuros(assuming6×15,000-L bioreactors,anda10-tonoutputofmAbproductperyear)[7 This correspondstomorethan25%ofthetotalprocesscosts[8 The impactoftheProteinAresinonthecostofgoodsisonereasonfor thehighmarketprices,oftenexceeding2000eurospergpurified

https://doi.org/10.1016/j.chroma.2018.08.014

0021-9673/© 2018 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/

Trang 2

mAb[9 Suchpricesareamajorburdenforhealthcaresystemsand

canbeprohibitiveindevelopingcountries,especiallyiflargedoses

ofproductarerequired.Forexample,upto12gofmAbperpatient

isrequiredforalymphomatherapy[10],andupto3gannuallyper

personforaprophylacticanti-HIVtreatment[5 Therefore,several

inexpensivenon-proteinligandshavebeendevelopedthatcouldin

principlereplaceProteinA[11].Manyofthempreferentially

tar-gettheconstantregionsofmAbs,e.g.theMEPligandbindstothe

CH2domain[12],facilitatingrapidprocessdevelopmentduetothe

uniformelutionconditions[13].However,theperformanceofsuch

alternativeresinsintermsofrecoveryandpurityhasbeen

incon-sistentcomparedtoProteinA,e.g.bothhighandlowpuritieshave

beenreportedfollowingmAbelutionfromMEP[14–16],whereas

>95%purityistypicallyachievedwhenusingProteinA[17,18]

Herewehavedevelopedanalternativeapproachforthe

affin-itypurificationofmAbsbasedontheuseoflinearepitopes,inthis

caseELDKWA(one-letteraminoacidcode)fortheHIV-neutralizing

antibody2F5 [19,20] We fused this epitope tothe fluorescent

protein DsRed [21] as a carrier, generating the fusion protein

DsRed-2F5-Epitope(DFE) We thenproduced DFE intransgenic

tobacco (Nicotiana tabacum) plants and purified it by

single-stepimmobilizedmetal-ionaffinitychromatography(IMAC).We

optimizedthecouplingofDFEtoaSepharoseresinusinga

design-of-experiments(DoE)approach,resultinginanovelaffinityresin

whichweusedtopurifymAb2F5(transientlyexpressedinN

ben-thamiana)fromclarifiedleafextracts.Wediscusstheoptimization

ofelutionconditionsandprovideaninitialcostevaluation,

com-paredwithaProteinA-basedprocesscounterpart

2 Materials and methods

2.1 Designofexperiments

DesignExpertv10(Stat-Ease,Minneapolis,MN,USA)wasused

tosetupandevaluateallexperimentaldesigns.Thefactorsand

levelsarepresentedinthesupplementarydata(TableS1),andthe

detailedDoEmethodisdiscussedelsewhere[22]

2.2 Expressionvectorsandbacterialcultures

Thenucleotidesequence ofDsRed(a redfluorescentprotein

fromDiscosomasp.[23]) wasextended byPCR using

appropri-ateprimerstoadd thesequenceencoding theELDKWA epitope

(towhichmAb2F5binds)atthe3 end.Theresultingconstruct

wastransferredtovectorpTRAforexpression[24],yieldingthe

DFEfusionproteinconsistingofDsRed,the2F5epitope,aHis6tag

andaKDELsequenceforretentionintheendoplasmicreticulum

(Fig.S1).Thecodingsequencesfortheheavyandlightchainsof

mAb2F5[19]wereclonedasindividualexpressioncassettesand

werealsointroducedintopTRA[25].Accordingly,theexpression

ofallpolypeptideswasdrivenbythedoubleenhancedCauliflower

mosaic virus35S promoter The vectorsfor DFE and mAb 2F5

wereintroducedseparatelyintoAgrobacteriumtumefaciensstrain

GV3101:pMP90RKbyelectroporation.TheDFEconstructwasused

togeneratetransgenictobacco(N.tabacum)plantsandthe2F5

con-structwasusedfortransientexpressioninN.benthamianaleaves

asdescribedbelow.Ahomologymodelofthe3DstructureofDFE

basedon1ZGO[26]wasbuiltusing3D-JIGSAW(https://bmm.crick

ac.uk/∼populus/)[27]

2.3 Plantmaterial,infiltrationandexpression

TransgenictobaccoplantsexpressingDFEweregenerated as

previouslydescribed[28].Fortransientexpression,N

benthami-anaplantswereinfiltrated withA.tumefacienscarryingthe2F5

constructusingeitherthevacuuminfiltrationmethod[29]or man-ualinjectionintoleaves[30].Wholeplantsorleafsectionswere infiltratedwithA.tumefaciens(OD600nm=1.0)ininfiltrationbuffer (0.5gL−1FertilizerMEGA2(PlantaDüngemittelGmbH,Regenstauf, Germany),200␮M acetosyringone,pH5.6)andcultivated fora further5daysbeforeharvesting[30]

2.4 Proteinextractionandclarification Proteinswere extractedfromplants byblade-based homog-enization in 3mL extractionbuffer (50mM sodium phosphate,

500mMsodiumchloride,10mMsodiumbisulfite,pH8.0)pergram wetbiomass,followed byclarification usinga sequenceof bag, depthandsterilefilters[31].TobaccoextractscontainingDFEwere heattreatedbeforeclarification[28]

2.5 Immobilizedmetal-ionaffinitychromatography DFEwaspurifiedbyimmobilizedmetal-ionaffinity chromatog-raphy (IMAC) on an ÄKTApure system (GE Healthcare, Little Chalfont,UK)usinganXK-26columncontaining53mLof chelat-ingSepharosefastflowIMACresinloadedwithnickelions.After loadingtheclarifiedextractontoaconditionedcolumn(extraction bufferwithoutsodiumbisulfite),theresinwaswashedwith10 col-umnvolumes(CVs)ofbufferwithoutimidazolefollowedbyelution

inbuffercontaining300mMimidazoleataflowrateof50cmh−1 Theconcentrationsofproteinandnucleicacidweremonitoredat

280and260nm,respectively

2.6 CouplingDFEtoSepharoseresin The purified DFE affinityligand wasimmobilized onHiTrap NHS-activated[32]SepharoseHPcolumns(GEHealthcare)witha bedvolumeof1mL.Beforecoupling,thecolumnswerewashed with 6mL ice-cold 1mM hydrochloric acid at a flow rate of

<1mLmin−1.Immediatelyafterwashing,1.5CVsofaffinity lig-andsolution(0.15–15mgmL−1)wereinjectedusinga2-mLsyringe (Braun, Melsungen, Germany), and the flow-through fractions weremonitoredusingaTE6101precisionscale(Sartorius, Göttin-gen,Germany).Thecolumnswerethensealedandincubatedfor 15–45minat22◦C,followedbythoroughwashingtoremove resid-ualNHSesters.Thisinvolvedthree cyclesofwashing,firstwith

6mLofdeactivationsolution(0.5Methanolamine,0.5Msodium chloride,pH8.3)injectedataflowrateof<1mLmin−1followed

by6mLofalow-pHsolution(0.1Msodiumacetate,0.5Msodium chloride,pH4.0).Thecolumnswereleftfor15minafterthethird washingcycleandwerethenstoredin0.05Mdisodiumphosphate containing0.1%(m/v)sodiumazide(pH7.0)at4◦C.Forthe simul-taneouswashingofmultiplecolumns,anIsmatecIPC24-channel peristalticpump(Cole-ParmerGmbH,Wertheim,Germany) was usedataconstantflowrateof0.6mLmin−1.Thecoupling proce-durerequired∼2hintotal

2.7 AffinityresincharacterizationandpurificationofmAb2F5 DFE-coupledcolumnsweremountedonanÄKTApuresystem andequilibratedwith5CVsofequilibrationbufferataflowrate

of1mLmin−1.Upto80mLofextractcontaining2F5wasloaded ontothecolumnatarateof0.5mLmin-1ensuringacontacttimeof

2min.Thecolumnswerewashedwith6CVsofequilibrationbuffer beforeeluting2F5in5CVsofelutionbufferwithlowpH(0.05M citrate,0.05Msodiumchloride,pH4.0–3.25)orslightlyalkalinepH (1.0–4.0Mmagnesiumchloride,0.1MHEPES,pH8.0).The

Trang 3

ontheimmobilizedamountofDFEusingEq.(1)

SBCtheor.=Mw,mAb

Mw,DFE ×mDFE

whereSBCtheor isthetheoreticalstaticbindingcapacity[gL−1],

Mw,mAb isthemolarmassofmAb2F5(154.6kDa),Mw,DFE ishe

molarmassoftheDFEmonomer (28.4kDa),mDFEis the

immo-bilizedmassofDFE (3–10mg),andVresin isthecolumnvolume

(1mL)

Approximately80mLofclarifiedplantextractcontaining2F5

wasloadedunderthesameconditionsasabovetoobtainsigmoidal

breakthroughcurves.Thevolumeatwhich10%oftheplateau

prod-uctconcentrationwasdetectedintheflow-throughfractionwas

multipliedbytheproductconcentrationintheloadtodetermine

thedynamicbindingcapacityat10%productbreakthrough

2.8 Proteinquantitationandactivitytesting

Theconcentrationoftotalsolubleprotein(TSP)wasdetermined

usinga microtiterversion oftheBradford methodas described

before [33] and thesample protein composition was analyzed

bystaininglithiumdodecylsulfate(LDS)polyacrylamidegelswith

Coomassie Brilliant Blue [29] DFE and 2F5 werequantified by

fluorescencespectroscopyandsurfaceplasmon resonance(SPR)

spectroscopy,respectively[34].Theamountofproteinpergram

wet biomass was calculated as described elsewhere [35] The

bindingofDFE-purified 2F5(elutedbypHshiftortheaddition

of magnesium chloride)to the 13.5-kDa trimeric HIV-1 fusion

inhibitorFuzeon(enfuvirtid)containingthe2F5epitope(Roche,

Basel,Switzerland)wasusedtoassessthebindingactivityof2F5

Approximately270responseunits(RU)of2F5werecapturedona

ProteinAchipusingaBIAcoreT200instrument(GEHealthcare)at

25◦CinHEPES-bufferedsalinecontaining0.05%(v/v)Tween-20as

arunningbuffer.EightdilutionsofFuzeoninthe0.16–20.00nM

rangewereinjected individuallyand capturedby2F5boundto

ProteinA.Thekineticbindingconstantska,kdandkDwere

calcu-latedbasedona1:1stoichiometricmodelusingtheBIAevaluation

software(GEHealthcare)

3 Results and discussion

3.1 TheDFEfusionproteinisexpressedathighlevelsinplants

andcanbepurifiedeasily

The28.4-kDafusionproteinDFE(Fig.S1)wasexpressedwith

a yieldof ∼120mgkg−1 leafbiomass, equivalentto∼42mgL−1

extract (Fig 1A), which is in the middle range compared to

otherrecombinantproteinsexpressedintransgenictobacco,e.g

0.9mgkg−1 formAbCO17-1A[36],∼500mgkg−1 formAbM12,

and∼400mgkg−1ofunmodifiedDsRed[31].ThepurityofDFEin

thecrudeextractwas<5%ofTSP,butourDoEapproachrevealed

thatblanchingthetobaccoleavesat70◦Cfor1.5minbefore

extrac-tionincreasedthepuritytoalmost40%becausemostofthehost

cellproteins(HCPs)wereprecipitated(Fig.1B,Fig.S2,TableS2)

Approximately 50% of the product was lost, regardless of the

blanchingtemperature,resultingintherecoveryof∼65mgkg−1

(∼22mgL−1).Theseresultswereingoodagreementwith

previ-ous studiesusing heat precipitation, indicating that more than

90%oftheTSPcanberemovedbyblanchingpriorto

chromatog-raphy [28,37] Removing HCPs early in a process can prevent

productdegradation,asshownforotherfusionproteinstransiently

expressedinN.benthamiana[29].Wethereforeusedblanchingfor

allsubsequentDFEpurificationsdespitetheproductlossandthe

availabilityofanaffinity-basedpurificationstep(IMAC),giventhe

lattercanalsocapturenonspecificplantHCPs[35,38].After homog-enizationandtheremovalofcoarseparticlesusingapolypropylene needle-feltbagfilter,aPDH4two-layerdepthfilter(nominalpore sizesof∼10␮mand∼1␮m)wasusedtoclarifytheplantextract, achievinganaveragecapacityof135±36Lm-2(±SD,n=3)anda productrecoveryof∼70%uptothisstep,whichwasequivalentto

45mgkg−1biomass(15mgL−1).Thesevalueswereingood agree-mentwithpreviousstudies,whichreportedcapacitiesof∼70Lm-2

andrecoveriesof∼75%[31].Theuseoffilterlayerslacking diatoma-ceousearthmayimproveDFErecovery,aspreviouslyshownfor

amulti-domainfusionprotein[39].SubsequentDFEpurification

byIMAConaresincontainingNi2+increasedthepurityofDFEto almost90%(Fig.1A),atypicalpurityachievedforplant-derived recombinantproteinswhenusingthistechnique[40–42].The tar-getproteinconcentrationintheelutionfractionwas20-foldhigher thanintheload,buttherecovery(basedonfluorescenceanalysis) wasonly55%,correspondingtoanoverallyieldof23.5mgkg−1and substantialfluorescencewasobservedin theflow-through frac-tions.However,westernblotsofthesefractions(Fig.1B)didnot revealdetectableamountsofDFEwhenusingaprimaryantibody directedagainsttheC-terminalHis6tagofthefusionprotein.We speculatethatatleasttheC-terminalHis6andKDELpartsofthe fusionproteinwerecleavedoffeitherinplantaorafterextraction, whichexplainsthepresenceofDFEvariantsintheflow-through fractionsbecausetheywillnothavebeenabletobindtheIMAC resin.SimilardegradationeffectshavebeenreportedformAbsand vaccinecandidatesexpressedinplants[29,39,43]andweare cur-rentlyinvestigatingthisphenomenoninmoredetail

3.2 DFEcanbecoupledtoSepharoseresinataloadingofupto

7mgmL-11

Inaninitialscreen,wedeterminedthequantityofDFEthatcan

becoupledtoNHS-activatedHiTrapcolumnsandfoundthatthe couplingefficiencydeclinedfrom80to90%to<70%whenweused morethan15mgDFEpermilliliterresin(Fig.1C).Interestingly,

wefoundthatHEPESbuffer,insteadofthebicarbonatebuffer rec-ommendedbythemanufacturer,increasedtheaveragecoupling efficiencyfrom78±9%(±SD,n=3)to89±6(±SD,n=3)atpH8.3

Wealsoobservedamoreintenseredcoloratthetopofthe col-umnwhenHEPESwasusedinsteadofbicarbonate,indicatingthat thecouplingcapacitybecamesaturatedwithlessDFEligandinthe presenceofbicarbonate(Fig.S3A).Thepkavaluesofcarbonicacid are3.6and10.3[44],implyingthatatpH8.3mostofthebicarbonate buffermoleculesshouldbepresentinthehydrogencarbonateform (HCO3–)andonlyasmallamountinthecarbonateform(CO32–)

Wespeculatethatthefreeelectronpairsinthesespeciesmayallow themtoactasnucleophiles,whichcompetewiththeaminogroups

oftheproteinforinteractionwiththeactivatedNHSestersas pre-viouslyreportedforotherfunctionalgroups[45].HEPESbufferwas thereforeusedinallsubsequentexperiments

WethenusedaDoEapproachtooptimizetheconditionsforDFE coupling(TableS1)andfoundthattheamountoffusionprotein boundtothecolumnincreasedasmoreDFEwasbroughtinto con-tactwiththeresin,reachingaplateauat∼15mgDFEpermilliliter resinandresultingin∼10mgofboundDFE,or∼0.35␮molmL−1 (Fig.2A).However,ifmorethan10mgDFEwasbroughtinto con-tactwiththeresin, thecouplingefficiencydropped from∼90%

tolessthan50%,dependingonthepH(Fig.2B).Also,increasing theamountofcoupledDFEincreasedthecostpercolumnbecause morepurifiedfusionproteinwasconsumed(Fig.2C).Wetherefore usedthenumericaloptimizationtoolbuiltintotheDoEsoftware

toidentifytheidealconditionsforDFEcoupling,i.e.theconditions combininghighcouplingefficiency,thegreatestquantityof cou-pledDFEandthelowestcosts,givingeachoptimizationcriterion

anequalweighting.Theseconditionswerebestmetbycoupling

Trang 4

Fig 1. DFE expression, purification and coupling (A) DFE concentration and purity as a fraction of the total soluble protein in untreated plant extracts (control) and after blanching of the leaf material (Hom, homogenate) as well as in the subsequent clarification and purification steps (Adj – pH adjusted, Bag – bag filtrate, DF – depth filtrate, Load – filter-sterilized extract loaded onto the IMAC column, FT start – initial flow-through fraction, FT pool – pooled flow-through fractions) (B) LDS-PAGE analysis (top) and western blot (bottom) of samples from panel A The dominant plant host cell proteins (RuBisCO large and small subunits) are highlighted by green arrows whereas the DFE product is indicated by red arrows Note the apparent oligomerization of DFE despite the denaturing and reducing conditions (C) Coupling efficiency of DFE to NHS-activated Sepharose HP as a function of the injected amount of purified DFE DFE concentrations were determined based on fluorescence analysis (circles) and Bradford assay (diamonds) results for verification purposes.

7.0mgofDFEatpH9.0for45min.Weidentifiedabroadandlargely

pH-independentdesirabilityplateauin therange 6–12mgmL−1

resinDFEloading(Fig.2D),whichmadethecouplingarobust

pro-cess.Interestingly,thefusionproteinretaineditsredcoloreven

aftercouplingandtheinactivationofunusedinteractionsites,and

thecolorcorrelatedwiththeabsoluteamountofDFEboundtothe

resin(Fig.2E).ThisindicatedthatDFEwaspresentinthenative

tetrameric stateof DsRed despitethe low-pH inactivation step

(pH4.0)whichwaspreviouslyfoundtocausethedenaturationof

DsRedandanearpermanentlossoffluorescence[46].Thecolorof

theresincouldthereforebeusedforqualitycontrolduringlater

manufacturingstages

BasedonthetetramericstructureofDFE[21],itsmolecularmass

of28,411gmol−1andthecoupledmassofupto∼10gL−1resin,we

calculatedtheliganddensityoftheresultingaffinityresinusing

Eq.(1).Thepredictedvalueof0.35␮molmL−1wasabout0.4%of

the50–250␮molmL−1reportedforion-exchangeresins[47],but

wassimilarinmagnitudetootheraffinityresinssuchasProteinA

(2–11gL−1)[48].Theeffectivenumberof2F5-epitopedomainson

thefusionproteinthatareavailablefor2F5bindingmaybelower

dueto(i)sterichindranceresultingfromthebindingorientation

ofthecoupledDFEmolecules,(ii)thedirectinvolvementofthe

epitope’slysineresidueinthecouplingreaction,and(iii)shielding

oftheepitopesbymAbsboundtoadjacentligands

Oneoption to reduce column costsin the future, especially

whenhighconcentrationsofDFEareneededforcouplingto

NHS-activatedresin,istherecyclingofuncoupledDFErecoveredduring

resininactivationaftercoupling.Forexamplewerecovered∼2mg

(∼13%) of DFE when loading 15mg of the fusion protein per milliliterresin

3.3 Magnesiumchlorideisasuitablereplacementforthelow-pH elutionof2F5

WeusedDFEcolumnswith∼7mgcoupledfusion proteinto capturemAb2F5fromaclarifiedplantextract(Fig.S3B).Wethen testedalow-pHelutionapproachasusedwithProteinAandfound thatgreaterquantitiesof2F5werereleasedasthepHfellbelow 4.5(Fig.3A).Thehighestantibodyrecoveryof∼35%(91%purity) wasachievedatpH3.25accordingtowesternblotanalysisand densitometry,but whenweanalyzed thesamesamplesbySPR spectroscopywefoundthatthemAbelutedatthispHwasunable

tobindtotheProteinAsurfaceofthesensorchip.Weconcluded that2F5wasprobablyirreversiblydenaturedduringelutionatpH 3.25butthathigher-pHelutionconditionswereuneconomicaldue

totheevenlowermAbrecovery.Furthermore,weobservedthat thedistinctredcolorofthecolumnresultingfromDFEcoupling fadedastheelutionpHfellbelow5.0(Fig.3B).Weattributedthis effecttothedenaturationofthefusionprotein,whichhasbeen reportedforDsRedatpH<4.0[21,49].Althoughthe2F5epitope

islinear[19]andshouldthereforebedetectedby2F5evenafter denaturation,wespeculatethattheconformationalchangemight reducethebindingcapacityoftheresinbecausepolypeptidechains

oftheDFEtetramerthathadnotbeencovalentlylinkedtotheresin matrixmaydissociateintotheliquidphase,reducingthenumber

ofepitopeligandsinthecolumn.Indeedwefoundthattheresin capacityfelltozeroafterthreecyclesofelutionatpH3.0

Trang 5

Fig 2. DFE coupling efficiency to NHS-activated Sepharose resin (A) Absolute amount of coupled DFE, showing the dependence on pH and the DFE mass brought in contact with the activated resin (B) Coupling yield of DFE calculated as the fraction of fluorescence remaining on the column, showing the dependence on pH and the DFE mass brought in contact with the activated resin (C) Column costs based on the amount of immobilized DFE and the manufacturing costs for the affinity ligand as well as the activated resin (D) Desirability of coupling conditions, showing the dependence on pH and the DFE mass The optimization target was a combination of a large quantity

of coupled DFE, a high coupling efficiency, and low costs, with each optimization criterion given equal weighting The optimal condition is highlighted by a red dot (E) Photographs of columns containing the DFE affinity resin after coupling The numbers beneath the photographs correspond to the conditions highlighted in panels A C.

Table 1

Kinetic parameters and absolute binding capacity of mAb 2F5 transiently expressed in N benthamiana and purified by DFE or Protein A affinity chromatography.

M r,mAb [Da] 154,600 154,600 154,600 159,383 150,814

M r,Fuzeon [Da] 13,476

a values according to [ 25 ].

Wethereforetestedmagnesiumchlorideasanalternative

elu-tionagentbecauseithasbeenusedtoeluteantibodiesfromother

affinityresins[50–52].Inaninitialtest,wefoundthat1.0M

mag-nesiumchloridepredominantlyelutednonspecificallyboundHCPs,

whereas2.0Mmagnesiumchloridewassufficientforthecomplete

elutionof2F5(Fig.3C).Interestingly,4.0Mmagnesiumchloride

forelutioncausedsimilarcolorfadingasobservedfor the

low-pHelution(Fig.3D).Inasubsequentrefinementweobservedthat

even1.25Mmagnesiumchloridewassufficienttoelute2F5from

theDFEcolumnsandtheantibodywasconsistentlydetectedby

westernblottingandSPRspectroscopy(Fig.4A).Underthese

con-ditions,weachieved105±11%recovery(±SD,n=3)and97±3%

purity(±SD,n=3)(Fig.S3C).Althoughweachievedasimilarpurity

(∼96%)usingProteinA,therecoveryof2F5droppedtoonly∼50%

whenitwaselutedincitratebufferatpH3.0.However,recoveries

of∼90%[53]andpuritiesof>95%[17]havebeenreportedforother

antibodies.Weassumedthat2F5issensitivetoacidicdenaturation, andthereforedeterminedthebindingconstantsforthe interac-tionbetween2F5andthesynthetictrimericpeptideFuzeon,which containsthe2F5epitope[25],followingthepurificationof2F5by conventionalProteinAchromatography,DFEaffinity chromatogra-phywithelutionatpH4.0,andthesametechniquewithelutionin 1.25Mmagnesiumchloride.Theabsoluteactivityinallthree prepa-rationswashigh(Table1)andsimilartothosereportedpreviously [25].Valuesaboveunitymayreflectproteinglycosylation,which

wedidnotinvestigateinthisstudy,hencetheirexclusionfromour calculations.Incontrast,thekonweobservedwasonlyhalfofthat reportedformAb2F5expressedineitherCHOcellsortobacco, pos-siblyreflectingthedifferenthostspeciesandexpressionplatform However,allthreepreparationsshowedsimilarkinetic parame-ters,soweconcludedthatthepurificationmethodsdidnothavea negativeimpactonthefunctionalityof2F5

Trang 6

Fig 3. Elution of 2F5 from the DFE affinity resin using low-pH buffer or magnesium chloride (A) Total soluble protein and 2F5 concentrations in pH elution fractions after DFE affinity purification as determined using the Bradford assay and SPR spectroscopy, respectively (B) Photographs of DFE columns following exposure to different pH buffers and for repeated bind-and-elute cycles (C) Total soluble protein and 2F5 concentrations in magnesium chloride elution fractions after DFE affinity purification as determined using the Bradford assay and SPR spectroscopy, respectively (D) Photographs of DFE columns after exposure to different magnesium chloride concentrations and for repeated bind-and-elute cycles.

DFEaffinitycapturealsoachievedalogreductionvalueof∼3for

HCPs,similartothevaluereportedforProteinA[53].Thismay

indi-catethatDFEandProteinAresinshavesimilarlevelsofselectivity

However,theHCPconcentrationinourloadwas59mgmg−1mAb

andthus200-foldhigherthanfortypicalCHO-basedprocessesfor

themanufacturingofmAbs[17]

3.4 Thedynamicbindingcapacityremainsat15%after25

bind-and-elutecycles

TheinitialspecificDBC10%oftheaffinityresinformAb2F5was

0.70mg2F5perimmobilizedmgofDFE,or∼4mgmL−1resin.This

wasdeterminedusingoptimizedelutionconditionscombinedwith

loadingatpH7.5 in0.05Mphosphatebuffer, a conductivityof

∼48mScm−1,aresidencetimeof2min,andalinearflowrateof

75cmh−1.TheDBC10%valuecorrespondedto∼12.5%ofthe

the-oreticalstaticbindingcapacitycalculatedbasedontheamountof

coupledDFE(Fig.4B)andwas∼13%ofthe25–60mgmL−1recently

reportedfornovelProteinAresinsundersimilarconditions[17,48]

butsimilartothe0.76–4.80mgmL−1 observedforothercustom

resins[54] Overthecourseof25cycles,theDBC10%oftheDFE

resindeclinedlinearly(adj.R2=0.99)to0.10mgmg−1(∼15%ofthe

initialvalue)(Fig.4C)

WespeculatethattheobservedlossinDBC10%wasduetothe

lossofDFEmoleculesthatwerenotcovalentlyboundtothebase

matrixbut were onlyretained onthecolumn through

associa-tionwithotherDFEmoleculesformingthecharacteristicDsRed

tetramer[21].Thislimitationcouldthereforebeaddressedbyusing

amonomericderivativeofDsRedasanepitopecarrier

3.5 Thepotentialbenefitsoflinearepitopeligandscanoutweigh thecurrentdrawbackscomparedtoProteinA

We used our DFE expression levels and the simple one-steppurificationprocedureasinputparametersforapreviously reportedcostmodel[34]toestimatetheproductioneffortforDFE, andcombinedtheseresultswiththecostsofaffinityresin manufac-turingtoenableacostcomparisonwithProteinA.Thecurrentcost perrunfortheDFEaffinityresinwasfoundtobe∼170-foldhigher thanaconventionalProteinAresin,particularlyreflectingthelower DBC10%andfewerre-usecycles(Table2).However,theProteinA resinselectedfor comparisonrepresentsmorethan45 yearsof intensivedevelopment[55,56].Wethereforeperformedaneffect analysisfortheDFEresincostsincludingpotentialimprovements

totheresinthatseemedwithinreachgiventhecurrentbodyofdata Basedonthelatestreportsofhighlevelproteinexpressioninplants [57],wepredictthatDFEexpressioncanbeincreasedto2.0gkg−1 biomass,whichwillreducetheproductioncostsfortheligandby morethan85%perunitmass.Thecostscanalsobereducedthrough

anincreaseinDFErecoveryduringpurification,whichcouldbe achievedbyoptimizingtheblanching proceduretoreduce pro-teolyticdegradationorthermaldenaturation[39],bothofwhich

we observed for DFE (Fig 1) We predict that thesemeasures wouldincreasetheDFErecoveryfactorfrom0.5to0.7 Further-more,increasingtheliganddensitycaninsomecasesimprovethe DBC10%asshownforion-exchangeresins[58,59].However,when

weinvestigatedthesizeoftheDFE–2F5complexcomparedtothe typicalporediameterof∼80nmreportedforSepharoseHPresin [60],wefoundthatthecomplexis∼29nmindiameterinitsmost

Trang 7

Fig 4.DFE resin characteristics (A) Typical chromatogram of a bind-and-elute cycle for a DFE affinity column used to capture mAb 2F5 from a clarified plant extract The axis dimensions of the inset are the same as in the main panel (B) Breakthrough curves of mAb 2F5 using DFE affinity resin after multiple bind-and-elute cycles (C) Dynamic binding capacity for 10% product breakthrough compared to the load referring to the amount of immobilized DFE (D) Schematic representation of the DFE (red) 2F5 (green) complex at full extension in an idealized pore with circular perimeter and a pore radius (r pore ) of 40 nm The 2F5 epitope (orange) is indicated by an orange arrow, and the theoretical minimal effective remaining pore radius (r min,eff ) is shown by a size bar The resulting minimal pore size is shown as a gray circle.

Table 2

Calculation of DFE affinity resin costs compared to Protein A, including two hypothetical scenarios for feasible improvements of the DFE setup assuming the immobilization

of 7 mg DFE per milliliter of resin.

Setup

a Values according to [ 69 ].

b DBC 10% – dynamic binding capacity at 10% product breakthrough.

extendedstate,leaving onlyaneffectiveminimalporeradiusof

∼11nmforproteindiffusionintoandoutoftheresinpores,which

wouldbetoosmallforadditionalantibodiestopass(Fig.4D).Even

thoughtheorientationofthecomplexisflexibleandnotall

com-plexeswillbepresentinthemostextendedform,thismaylimitthe

effectivebindingcapacity.Othershavereporteda poreblocking

effectforion-exchangeliganddensitiesexceeding400␮molg−1

[59] and we assume that such an effect would occurat lower

densitiesforDFEduetothelargersizeoftheaffinityligand

Fur-thermore,increasingtheliganddensityabove50␮molmL−1does

notimprovetheDBC [47].Therefore,densitiesinthe2–11gL−1

rangeasforProteinAaremorelikelytobeeffective[48]and matri-ceswithlargerporesizesforDFEaffinityresinpreparationmay helptoimproveligandaccessandthusthebindingcapacity.The useofrecently-developedmonomericvariantsoftheDsRed car-rierprotein[61,62] mightreducethelossofDFEligandsdue to thewash-outofnon-covalentlyboundmoleculesfromtetrameric DFE,whichwespeculateisonereasonforthedecliningcapacity

weobservedoverseveralbind-and-elutecycles.Thesemonomeric variantsoftheDsRedcarrierhavealsobeendesignedforminimal cytotoxicity,enablingthemtobeusedwidelyfortheanalysisof proteinlocalizationandinteractioninlivingcells,sotheyshould

Trang 8

impurities[63,64].Proteinengineeringmayalsofacilitaterational

increasesinthestabilityofDFE,asachievedforProteinA[65,66],

andmayalterthepreferredcouplingorientationoftheDFEligand

[67].Thelattercanincreasethelikelihoodthatthe2F5epitopeis

exposedtothecenteroftheresinporesand maythusfacilitate

antibodybinding,resultinginahigherbindingcapacity.A

simi-lareffectcouldbeachievedbyincreasingthenumberofrepeats

ofthe2F5epitopeontheDFEC-terminus,asdemonstrated for

ProteinA[53].Furthermore,increasingthecurrentcontacttime

from2to4mincoulddoubletheDBC10%asreportedforseveral

ProteinAresins[68].Wespeculatethatthesemodificationscould

cumulativelyincreasetheDBC10%fromcurrently4gL−1to15gL−1

(whichisabouthalfoftheDBC10%ofProteinA[69])andfacilitate

50insteadof6cyclesoftheaffinityresin.Bygradually

incorporat-ingthesemodificationsinourcostcalculations,wefindthatthe

DFEresincanbecomecompetitivewithaProteinA-based

counter-part(Table2).EvenwithmoderateDFEproductioncostsavingsand

smallincreasesincolumnperformance,thepriceforthebaseresin

wasthemajorcostdriver(Fig.S4).Wepredictthatbulk

produc-tionoftheaffinityresinwouldreducethebasematrixpricebyup

to75%,whichwouldreducethecostofgoodsfortheDFEresinto

D35pergramofantibodyforthemoderateimprovementscenario

andto<D5pergramofantibodyforthesubstantialimprovement

scenario,thelatterrepresentinga12%savingcomparedtoProtein

A.Inadditiontothedirectresincosts,DFEmayalsobe

economi-callyadvantageousbecausetheamountof2F5recoveredwasabout

twicethatachievedduringconventionalProteinA

chromatogra-phy

Costbenefitsaside,theDFE resinhasthegeneraladvantage

that only mAbs specific for the epitope will be purified This

feature could be exploited to facilitate the purification of

cer-tainidiotype-specificantibodiesfromapolyclonalmixtureorto

improvein-processquality byensuringthatonlymAbisoforms

witha functionalantigen-bindingmoietyareenriched

Further-more,antibodyderivativesthatlacktheFccomponent(e.g.the

scFv, Faband diabodyformats) can bepurified using this new

approach,andbycombiningtwoepitope-basedaffinityligandsina

two-stagebind-and-eluteprocess,bispecificantibodiescouldalso

bepurifiedfromabulkextractorcellculturesupernatant

contain-ingamixtureofmonospecificandbispecificmAbs.Additionally,

mAbscontainingFcdomainswhichexhibitonlyaweak

interac-tionwithProteinAordonotbindtotheresin(e.g.humanIgAand

IgG3ormouseIgG1)caneasilybepurifiedusingDFEorsimilar

ligandscarryingtheaccordingepitope

Sofar,wehaveshownthatDFEhasthepotentialcompetewith

ProteinAorprovidenovelpurificationmodes.Itwillbeinteresting

toinvestigatehowwelltheepitope-fusionapproachcanbe

trans-ferredtoothermAbswithlinearepitopes,giventhattheexpression

levelsofnewaffinityligandproteinsmayvarydependingonthe

natureoftheepitopesequence.However,wehaveworkedwith

severalDsRedfusionproteinsinthepast20years,andhave

reg-ularlyachievedexpressionlevelsexceeding100mgkg−1biomass

[70], makingit likely that novelepitope fusion proteinscanbe

expressedatsimilarlyhighlevels.Furthermore,giventhat

tran-sientproteinexpressioninplantshasagene-to-producttimescale

ofonly2–4weeks[71],itshouldbepossibletoprepare

individ-ualresinsformAbsbindingtodifferentepitopes.Thesequenceof

thelinearepitopemustbeknowninordertogeneratesuchnovel

affinity–ligandfusionproteins,butthisshouldnotrequirefurther

workbecausesequence characterizationistypically requiredas

partofregularproduct andprocess development,notonly due

toregulatoryrequirementsbutalsotoensurefreedomtooperate

andtopreventlegalissues[72,73].Evenifepitopecharacterization

isnotpartoftheprocessdevelopment,a DsRed–epitopefusion

proteinlibrarycanbegeneratedrapidlyusingtechniquessuchas

random-primerPCRcombinedwithappropriatescaffoldsto iden-tifysuitableaffinityligands

4 Conclusions

We have shown that the fluorescent protein DsRed can be usedasacarrierforantibodyepitopes,resultinginfusionprotein expressionlevels exceeding0.1gkg−1 biomass Thesubsequent purificationofDFEwassimplifiedbytheincorporationof blanch-ingandIMACsteps,facilitatingthecost-effectiveproductionofa novelaffinityligand.Theoptimizedcouplingprocedureensured

aDBC10% thatwasonlyoneorderofmagnitudelowerthanthe well-establishedindustrystandardProteinA.Moderate improve-mentsinexpression, purificationandcouplingcouldmake DFE economicallycompetitivewithProteinA,anditsengagementwith epitope-specificcontacts(paratopes)ontheantibodymeansthat DFE and similarligands would be particularlybeneficial when dealingwithmixturesofdifferentantibodies,suchasthose encoun-teredduringthemanufacturingofbispecificmAbs.Ourfuturework willfocusonthefurtherimprovementof DFEstability, epitope densityandbindingaffinity

Acknowledgements

TheauthorsacknowledgeIbrahimAlAmediforcultivatingthe plantsusedinthisinvestigationandDr.ThomasRademacherfor providingthepTRAvector.WearegratefultoMarkusSackfor fruit-fuldiscussionsontheDFEligandstructure.WewishtothankDr RichardMTwymanforeditorialassistance.Thisworkwasfunded

bytheFraunhofer-GesellschaftInternalPrograms,Germanyunder Grant No.Attract125-600164.Theauthorshave noconflictsof interesttodeclare

Appendix A Supplementary data

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion, atdoi:https://doi.org/10.1016/j.chroma.2018 08.014

References

[1] D.M Ecker, S.D Jones, H.L Levine, The therapeutic monoclonal antibody market, mAbs 7 (2015) 9–14.

[2] R.A Rader, E.S Langer, 30 years of upstream productivity improvements, Bioprocess Int 13 (2015) 10–14.

[3] O Purcell, P Opdensteinen, W Chen, K Lowenhaupt, A Brown, M Hermann,

J Cao, N Tenhaef, E Kallweit, R Kastilan, A.J Sinskey, P Perez-Pinera, J.F Buyel, T.K Lu, Production of functional anti-ebola antibodies in pichia pastoris, ACS Synth Biol 6 (2017) 2183–2190.

[4] J.F Buyel, R.M Twyman, R Fischer, Very-large-scale production of antibodies

in plants: the biologization of manufacturing, Biotechnol Adv 35 (2017) 458–465.

[5] J.K Ma, J Drossard, D Lewis, F Altmann, J Boyle, P Christou, T Cole, P Dale, C.J van Dolleweerd, V Isitt, D Katinger, M Lobedan, H Mertens, M.J Paul, T Rademacher, M Sack, P.A Hundleby, G Stiegler, E Stoger, R.M Twyman, B Vcelar, R Fischer, Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants, Plant Biotechnol J 13 (2015) 1106–1120.

[6] C.M.C The, Biotech Working, Group, A-Mab: a case study in bioprocess development, A-Mab: a Case Study in Bioprocess Development, CASSS - An International Separation Science Society (2009) 1–278.

[7] B Kelley, Very large scale monoclonal antibody purification: the case for conventional unit operations, Biotechnol Prog 23 (2007) 995–1008.

[8] M Pathak, G Ma, D.G Bracewell, A.S Rathore, Re-use of protein a resin fouling and economics, BioPharm International, BioPharm Int 28 (2015) 28–33.

[9] B Kelley, Industrialization of mAb production technology: the bioprocessing industry at a crossroads, mAbs 1 (2009) 443–452.

[10] P Chames, M Van Regenmortel, E Weiss, D Baty, Therapeutic antibodies: successes, limitations and hopes for the future, Br J Pharmacol 157 (2009) 220–233.

[11] S Kabir, Immunoglobulin purification by affinity chromatography using protein a mimetic ligands prepared by combinatorial chemical synthesis, Immunol Invest 31 (2002) 263–278.

Trang 9

[12] D.Q Lin, H.F Tong, H.Y Wang, S.J Yao, Molecular insight into the ligand-IgG

interactions for 4-mercaptoethyl-pyridine based hydrophobic

charge-induction chromatography, J Phys Chem B 116 (2012) 1393–1400.

[13] S Ghose, M Allen, B Hubbard, C Brooks, S.M Cramer, Antibody variable

region interactions with Protein A: implications for the development of

generic purification processes, Biotechnol Bioeng 92 (2005) 665–673.

[14] V.B Brochier, V Ravault, High throughput development of a non protein A

monoclonal antibody purification process using mini-columns and bio-layer

interferometry, Eng Life Sci 16 (2015) 152–159.

[15] T Arakawa, M Futatsumori-Sugai, K Tsumoto, Y Kita, H Sato, D Ejima, MEP

HyperCel chromatography II: binding, washing and elution, Protein Express.

Purif 71 (2010) 168–173.

[16] S Ghose, B Hubbard, S.M Cramer, Evaluation and comparison of alternatives

to Protein A chromatography Mimetic and hydrophobic charge induction

chromatographic stationary phases, J Chromatogr A 1122 (2006) 144–152.

[17] T.M Pabst, R Palmgren, A Forss, J Vasic, M Fonseca, C Thompson, W.K.

Wang, X Wang, A.K Hunter, Engineering of novel Staphylococcal Protein A

ligands to enable milder elution pH and high dynamic binding capacity, J.

Chromatogr A 1362 (2014) 180–185.

[18] R.L Fahrner, D.H Whitney, M Vanderlaan, G.S Blank, Performance

comparison of protein A affinity-chromatography sorbents for purifying

recombinant monoclonal antibodies, Biotechnol Appl Biochem 30 (Pt 2)

(1999) 121–128.

[19] T Muster, F Steindl, M Purtscher, A Trkola, A Klima, G Himmler, F Rüker, H.

Katinger, A conserved neutralizing epitope on gp41 of human

immunodeficiency virus type 1, J Virol 67 (1993) 6642–6647.

[20] C.E Parker, L.J Deterding, C Hager-Braun, J.M Binley, N Schulke, H Katinger,

J.P Moore, K.B Tomer, Fine definition of the epitope on the gp41 glycoprotein

of human immunodeficiency virus type 1 for the neutralizing monoclonal

antibody 2F5, J Virol 75 (2001) 10906–10911.

[21] G.S Baird, D.A Zacharias, R.Y Tsien, Biochemistry, mutagenesis, and

oligomerization of DsRed, a red fluorescent protein from coral, Proc Natl.

Acad Sci U S A 97 (2000) 11984–11989.

[22] J.F Buyel, R Fischer, Characterization of complex systems using the design of

experiments approach: transient protein expression in tobacco as a case

study, J Vis Exp 1 (2014) e51216.

[23] M.V Matz, A.F Fradkov, Y.A Labas, A.P Savitsky, A.G Zaraisky, M.L Markelov,

S.A Lukyanov, Fluorescent proteins from nonbioluminescent Anthozoa

species, Nat Biotechnol 17 (1999) 969–973.

[24] M Sack, T Rademacher, H Spiegel, A Boes, S Hellwig, J Drossard, E Stoger, R.

Fischer, From gene to harvest: insights into upstream process development

for the GMP production of a monoclonal antibody in transgenic tobacco

plants, Plant Biotechnol J 13 (2015) 1094–1105.

[25] D.M Floss, M Sack, J Stadlmann, T Rademacher, J Scheller, E Stoger, R.

Fischer, U Conrad, Biochemical and functional characterization of anti-HIV

antibody-ELP fusion proteins from transgenic plants, Plant Biotechnol J 6

(2008) 379–391.

[26] J.L Tubbs, J.A Tainer, E.D Getzoff, Crystallographic structures of Discosoma

red fluorescent protein with immature and mature chromophores: linking

peptide bond trans-cis isomerization and acylimine formation in

chromophore maturation, Biochemistry-Us 44 (2005) 9833–9840.

[27] P.A Bates, L.A Kelley, R.M MacCallum, M.J Sternberg, Enhancement of

protein modeling by human intervention in applying the automatic programs

3D-JIGSAW and 3D-PSSM, Proteins (Suppl 5) (2001) 39–46.

[28] J.F Buyel, H.M Gruchow, A Boes, R Fischer, Rational design of a host cell

protein heat precipitation step simplifies the subsequent purification of

recombinant proteins from tobacco, Biochem Eng J 88 (2014) 162–170.

[29] S Menzel, T Holland, A Boes, H Spiegel, J Bolzenius, R Fischer, J.F Buyel,

Optimized blanching reduces the host cell protein content and substantially

enhances the recovery and stability of two plant-derived malaria vaccine

candidates, Front Plant Sci 7 (2016) 1–15.

[30] J.F Buyel, T Kaever, J.J Buyel, R Fischer, Predictive models for the

accumulation of a fluorescent marker protein in tobacco leaves according to

the promoter/5’UTR combination, Biotechnol Bioeng 110 (2013) 471–482.

[31] J.F Buyel, R Fischer, Scale-down models to optimize a filter train for the

downstream purification of recombinant pharmaceutical proteins produced

in tobacco leaves, Biotechnol J 9 (2014) 415–425.

[32] P Cuatrecasas, I Parikh, Adsorbents for affinity chromatography Use of

N-hydroxysuccinimide esters of agarose, Biochemistry-Us 11 (1972)

2291–2299.

[33] J.F Buyel, R Fischer, Flocculation increases the efficacy of depth filtration

during the downstream processing of recombinant pharmaceutical proteins

produced in tobacco, Plant Biotechnol J 12 (2014) 240–252.

[34] J.F Buyel, R Fischer, Predictive models for transient protein expression in

tobacco (Nicotiana tabacum L.) can optimize process time, yield, and

downstream costs, Biotechnol Bioeng 109 (2012) 2575–2588.

[35] B.B Gengenbach, C.R Müschen, J.F Buyel, Expression and purification of

human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems,

Protein Express Purif 151 (2018) 46–55.

[36] K Ko, Z Steplewski, M Glogowska, H Koprowski, Inhibition of tumor growth

by plant-derived mAb, Proc Natl Acad Sci U S A 102 (2005) 7026–7030.

[37] J.F Buyel, J Hubbuch, R Fischer, Comparison of tobacco host cell protein

removal methods by blanching intact plants or by heat treatment of extracts,

J Vis Exp e54343 (2016) 9.

[38] J.A Bornhorst, J.J Falke, Purification of proteins using polyhistidine affinity

[39] S Menzel, T Holland, A Boes, H Spiegel, R Fischer, J.F Buyel, Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate, Protein Expr Purif 27 (July (152)) (2018) 122–130, http://dx.doi org/10.1016/j.pep.2018.07.012 [Epub ahead of print] PMID: 30059744 [40] J.F Buyel, J.A Bautista, R Fischer, V.M Yusibov, Extraction, purification and characterization of the plant-produced HPV16 subunit vaccine candidate E7 GGG, J Chromatogr B 880 (2012) 19–26.

[41] F Sainsbury, P.V Jutras, J Vorster, M.C Goulet, D Michaud, A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants, Front Plant Sci 7 (2016) 141.

[42] Y Kim, G Babnigg, R Jedrzejczak, W.H Eschenfeldt, H Li, N Maltseva, C Hatzos-Skintges, M.Y Gu, M Makowska-Grzyska, R.Y Wu, H An, G Chhor, A Joachimiak, High-throughput protein purification and quality assessment for crystallization, Methods 55 (2011) 12–28.

[43] M Benchabane, C Goulet, D Rivard, L Faye, V Gomord, D Michaud, Preventing unintended proteolysis in plant protein biofactories, Plant Biotechnol J 6 (2008) 633–648.

[44] N.N Greenwood, A Earnshaw, Chemistry of the Elements, 2 ed., Elsevier, New York, NY, 1997.

[45] S Madler, C Bich, D Touboul, R Zenobi, Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities, J Mass Spectrom 44 (2009) 694–706.

[46] A Sacchetti, V Subramaniam, T.M Jovin, S Alberti, Oligomerization of DsRed

is required for the generation of a functional red fluorescent chromophore, FEBS Lett 525 (2002) 13–19.

[47] A.M Hardin, C Harinarayan, G Malmquist, A Axen, R van Reis, Ion exchange chromatography of monoclonal antibodies: effect of resin ligand density on dynamic binding capacity, J Chromatogr A 1216 (2009) 4366–4371.

[48] A.D Tustian, L Laurin, H Ihre, T Tran, R Stairs, H Bak, Development of a novel affinity chromatography resin for platform purification of bispecific antibodies with modified protein a binding avidity, Biotechnol Prog (Feburary) (2018), http://dx.doi.org/10.1002/btpr.2622 [Epub ahead of print] PMID: 29464924.

[49] P.V Vrzheshch, N.A Akovbian, S.D Varfolomeyev, V.V Verkhusha, Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions, FEBS Lett 487 (2000) 203–208.

[50] V.C Tsang, P.P Wilkins, Optimum dissociating condition for immunoaffinity and preferential isolation of antibodies with high specific activity, J Immunol Methods 138 (1991) 291–299.

[51] A Ben-David, M.A Firer, Immunoaffinity purification of monoclonal antibodies In search of an elution buffer of general applicability, Biotechnol Tech 10 (1996).

[52] M.A Firer, Efficient elution of functional proteins in affinity chromatography,

J Biochem Biophys Methods 49 (2001) 433–442.

[53] E Muller, J Vajda, Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography, J Chromatogr B 1021 (2016) 159–168.

[54] T Besselink, M Liu, M Ottens, R van Beckhoven, A.E Janssen, R.M Boom, Comparison of activated chromatography resins for protein immobilization, J Sep Sci 36 (2013) 1185–1191.

[55] H Hjelm, K Hjelm, J Sjöquist, Protein A from Staphylococcus aureus Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins, FEBS Lett 28 (1972) 73–76.

[56] G.R Bolton, K.K Mehta, The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry, Biotechnol Prog 32 (2016) 1193–1202.

[57] J Zischewski, M Sack, R Fischer, Overcoming low yields of plant-made antibodies by a protein engineering approach, Biotechnol J 11 (2015) 107–116.

[58] A Franke, N Forrer, A Butte, B Cvijetic, M Morbidelli, M Johnck, M Schulte, Role of the ligand density in cation exchange materials for the purification of proteins, J Chromatogr A 1217 (2010) 2216–2225.

[59] H.L Lu, D.Q Lin, M.M Zhu, S.J Yao, Effects of ligand density and pore size on the adsorption of bovine IgG with DEAE ion-exchange resins, J Sep Sci 35 (2012) 2131–2137.

[60] B.C To, A.M Lenhoff, Hydrophobic interaction chromatography of proteins I The effects of protein and adsorbent properties on retention and recovery, J Chromatogr A 1141 (2007) 191–205.

[61] R.E Campbell, O Tour, A.E Palmer, P.A Steinbach, G.S Baird, D.A Zacharias, R.Y Tsien, A monomeric red fluorescent protein, Proc Natl Acad Sci U S A.

99 (2002) 7877–7882.

[62] T.M Wannier, M.M Moore, Y Mou, S.L Mayo, Computational Design of the beta-Sheet Surface of a Red Fluorescent Protein Allows Control of Protein Oligomerization, PLoS One 10 (2015), e0130582.

[63] R.L Strack, D.E Strongin, D Bhattacharyya, W Tao, A Berman, H.E.

Broxmeyer, R.J Keenan, B.S Glick, A noncytotoxic DsRed variant for whole-cell labeling, Nat Methods 5 (2008) 955–957.

[64] I.I Shemiakina, G.V Ermakova, P.J Cranfill, M.A Baird, R.A Evans, E.A Souslova, D.B Staroverov, A.Y Gorokhovatsky, E.V Putintseva, T.V.

Gorodnicheva, T.V Chepurnykh, L Strukova, S Lukyanov, A.G Zaraisky, M.W Davidson, D.M Chudakov, D Shcherbo, A monomeric red fluorescent protein with low cytotoxicity, Nat Commun 3 (2012) 1204.

[65] K Minakuchi, D Murata, Y Okubo, Y Nakano, S Yoshida, Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution, Protein Sci 22 (2013)

Trang 10

[66] S Hober, K Nord, M Linhult, Protein A chromatography for antibody

purification, J Chromatogr B 848 (2007) 40–47.

[67] O Koniev, A Wagner, Developments and recent advancements in the field of

endogenous amino acid selective bond forming reactions for bioconjugation,

Chem Soc Rev 44 (2015) 5495–5551.

[68] R Hahn, P Bauerhansl, K Shimahara, C Wizniewski, A Tscheliessnig, A.

Jungbauer, Comparison of protein A affinity sorbents II Mass transfer

properties, J Chromatogr A 1093 (2005) 98–110.

[69] B Lain, Protein a, Bioprocess Int 11 (2013) 29–38.

[70] A Boes, H Spiegel, N Voepel, G Edgue, V Beiss, S Kapelski, R Fendel, M.

Scheuermayer, G Pradel, J.M Bolscher, M.C Behet, K.J Dechering, C.C.

Hermsen, R.W Sauerwein, S Schillberg, A Reimann, R Fischer, Analysis of a

multi-component multi-stage malaria vaccine candidate–tackling the cocktail

challenge, Plos One 10 (2015), e0131456.

[71] Y Shoji, J.A Chichester, M Jones, S.D Manceva, E Damon, V Mett, K Musiychuk, H Bi, C Farrance, M Shamloul, N Kushnir, S Sharma, V Yusibov, Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza, Hum Vaccin Immunother 7 (2011) 41–50.

[72] X Deng, U Storz, B.J Doranz, Enhancing antibody patent protection using epitope mapping information, mAbs 10 (2018) 204–209.

[73] C.G Sandercock, U Storz, Antibody specification beyond the target: claiming

a later-generation therapeutic antibody by its target epitope, Nat Biotechnol.

30 (2012) 615–618.

Ngày đăng: 31/12/2022, 09:51

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w