1. Trang chủ
  2. » Giáo án - Bài giảng

A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops

11 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops
Tác giả María Jesús Martínez Bueno, Francisco José Díaz-Galiano, Łukasz Rajski, Víctor Cutillas, Amadeo R. Fernández-Alba
Trường học University of Almería
Chuyên ngành Food Science / Metabolomics / Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Almería
Định dạng
Số trang 11
Dung lượng 1,63 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In the last decade, the consumption trend of organic food has increased dramatically worldwide. However, the lack of reliable chemical markers to discriminate between organic and conventional products makes this market susceptible to food fraud in products labeled as “organic”.

Trang 1

crops

María Jesús Martínez Bueno, Francisco José Díaz-Galiano, Łukasz Rajski, Víctor Cutillas,

Amadeo R Fernández-Alba∗

University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n, La Ca˜ nada de San

Urbano, 04120, Almería, Spain

a r t i c l e i n f o

Article history:

Received 7 November 2017

Received in revised form 26 February 2018

Accepted 1 March 2018

Available online 3 March 2018

Keywords:

Fingerprint

Authenticity

Natural food components

Pesticides

HRAMS

IRMS

a b s t r a c t

Inthelastdecade,theconsumptiontrendoforganicfoodhasincreaseddramaticallyworldwide How-ever,thelackofreliablechemicalmarkerstodiscriminatebetweenorganicandconventionalproducts makesthismarketsusceptibletofoodfraudinproductslabeledas“organic”.Metabolomicfingerprinting approachhasbeendemonstratedasthebestoptionforafullcharacterizationofmetabolome occur-ringinplants,sincetheirpatternmayreflecttheimpactofbothendogenousandexogenousfactors

Inthepresentstudy,advancedtechnologiesbasedonhighperformanceliquid chromatography-high-resolutionaccuratemassspectrometry(HPLC-HRAMS)hasbeenusedformarkersearchinorganicand conventionaltomatoesgrowningreenhouseundercontrolledagronomicconditions.Thescreeningof unknowncompoundscomprisedtheretrospectiveanalysisofalltomatosamplesthroughoutthe stud-iedperiodanddataprocessingusingdatabases(mzCloud,ChemSpiderandPubChem).Inaddition,stable nitrogenisotopeanalysis(␦15N)wasassessedasapossibleindicatortosupportdiscriminationbetween bothproductionsystemsusingcrop/fertilizercorrelations.Pesticideresidueanalyseswerealsoapplied

asawell-establishedwaytoevaluatetheorganicproduction.Finally,theevaluationbycombined chemo-metricanalysisofhigh-resolutionaccuratemassspectrometry(HRAMS)and␦15Ndataprovidedarobust classificationmodelinaccordancewiththeagriculturalpractices.Principalcomponentanalysis(PCA) showedasampleclusteringaccordingtofarmingsystemsandsignificantdifferencesinthesample pro-filewasobservedforsixbioactivecomponents(L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine,trilobatin, phloridzin,tomatine,phloretinandechinenone)

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

∗ Corresponding author.

E-mail address: amadeo@ual.es (A.R Fernández-Alba).

year

https://doi.org/10.1016/j.chroma.2018.03.002

0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

2 Experimental section

Switzerland)

mea-surements

Trang 3

parti-Table 1

Detailed information on the tomato samples produced under controlled agronomic

conditions, crop system, farms, fertilisation and plant protection carried out in this

study.

Crop system Manure Fertilizer Pest control # samples Name

Conventional Conventional Mineral Pesticides 7 C

clesizeofabout1mm.Driedtomatopowdersamples(0.5±0.01g)

wereweighedina50mLpolypropylenecentrifugetubeandthen

2␮Lofa10mg/Lmethanolicinternalstandardsolutionwasadded

(dichlorvos-d6).Next,thetomatoes wererehydrated by adding

0.5mLofultrapurewater,andthemixturewasvortexedfor30s

Thetubeswerethenautomaticallyshakenfor5min,afterthe

addi-tion5mLofmethanol.Afterthat,0.5gMg2SO4 (anhydrous)plus

0.25gNaClwereaddeddirectlytoeachtubeandthemixturewas

shakenagain(automatically)for5moremin.Finally,a

centrifuga-tionstep(3500rpm/1730×g,5min)wasperformed,and0.5mLof

thesupernatantwasdilutedwith0.5mLofultrapurewater

Sam-pleswerestoredat−20◦CuntilanalysisbyLC-Q-Orbitrap-MS.

2.3 HRAMSanalysis

Toevaluatethedifferencesbetweenorganicandconventional

productionsystems,anon-targetedanalysiswasappliedusingan

LC-ESI-Q-Orbitrap.FortheLCseparation,UHPLCDionexTM

Ulti-mate3000(ThermoScientificTM,SanJose,USA)wasused.Mobile

phaseAwas98%waterand2%methanolwhereasmobilephase

Bwas98%methanoland2%water;bothmobilephasescontained

5mMofammoniumformateand0.1%formicacid.Separationwas

carriedoutonaPhenomenexLunaC8column(mobilephaseflow:

350␮L/min).Thelength,diameterandparticlesizewere100mm,

2.0mmand3␮m,respectively.Thecolumnwasthermostatedat

30◦C.Themobilephasegradientstartedform100%ofmobilephase

Aandmaintainedfor1min,from1to2min,theamountofmobile

phaseBincreasedto30%,from2to3minto50%,from3to11min

to100%.100%ofBwasmaintaineduntil14min.Followingthis,the

mobilephasewaschangedto100%Aandmaintainedover3minfor

re-equilibration.Theinjectionvolumewas10␮L.Theautosampler

wasthermostatedat10◦C

AQ-Orbitrap(ThermoScientific,Bremen,Germany)mass

spec-trometerwasequippedwithHeatedElectrosprayIonizationSource

(HESIII).TheHESIparametersinpositivepolaritywereasfollows:

sheathgas flow rate:40;auxiliary gasflow rate: 5;sweepgas

flowrate:1;sprayvoltage:3.00kV;capillarytemperature:280◦C;

S–lensRFlevel:55.0;heatertemperature:350◦C.Theinstrument

wasoperatedinfullscan/allionfragmentationMS2(AIF).AIFisan

acquisitionmodeinwhichallprecursorionsarefragmented

with-outapreselectioninthequadrupole.Fragmentationisobtained

with the higher energy collision-induced dissociation (HCD) cell,

locatedatthefarside ofthequadrupoleiontrap“C-trap”

Dur-ingfillingoftheHCDcollisioncell,theenergycanbesettostep

betweenvaluesatspecifiedpercentvaluesaroundthechosen

mid-dleenergyregardlessoftheion’scharacteristics.Theparametersof

fullscananalysiswereasfollows:scanrange74−1100m/z,

resolu-tion70,000FWHMandautomaticgaincontrol(AGC)target1×106

AGCisusedtoregulatethetotalnumberifionscollectedinthe

C-trapbeforebeinginjectedintotheorbitrapforanalysis.The

max-imumioninjectiontime(maxIT)wassetto‘AUTO’,Parametersof

“AllIonFragmentationMS2mode”wereasfollows:resolution70

000FWHM,collisionenergyCE30V,AGCtarget1×106,maxIT

auto,scan range74–1100m/z.Anexternalmasscalibrationand

quadrupolecalibration were carried out daily, using a mixture

ofn−butylamine,caffeine,Ultramark1621andMet-Arg-Phe-Ala

(MRFA)

2.4 IRMSanalysis Driedtomato powder samples(2±0.1g) were weighedinto tincapsules.Nitrogenisotopecompositionwasdeterminedusing

aFlashEA1112elementalanalyzercoupledtoa Finnigan Delta-plusisotoperatiomassspectrometer(ThermoScientific,Bremen, Germany) Allsampleswere analyzed in duplicate, and forthe majority of samples the absolutedifference between duplicate measurementswas<0.2‰.Eachbatchofsamplesincluded repli-cateanalysesofthein-housestandard,IAEA-N-1(␦15N=+0.4‰) and IAEA-N-2 (␦15N=+20.3‰), which was used for the drift correctionofrawanalyticalmeasurementdata.Thelong-term per-formanceofthemassspectrometerwasmonitoredbyanalysisofa secondaryreferencematerial,acetanilide(␦15N=±0.15‰),which wasincludedwitheverybatchofsamples.Nitrogenisotoperatios werereportedwithrespecttoairnitrogen

2.5 Dataprocessingandchemometricanalysis CompoundDiscoverersoftwareversion2.1(ThermoScientific)

incombinationwithlibrarysearchingwastheworkflowusedto identifypotentialmarkercompounds.Thistoolallowsautomatic analytedetectionbasedonthepresenceoftheexactmassof pre-cursorions,withamasstoleranceof5ppm.Toreducechemical interferencesfromthematrix,amasstoleranceforalignmentof

5ppm,anintensitytoleranceof30%,a totalintensitythreshold

of1×105,amaximumshiftof0.5minandasignal-to-noise(S/N) thresholdof10werethefiltersset

In a second step,the datawere manuallyprocessed forthe comprehensiveidentificationofchemicalmarkers.The identifica-tionofeachcompoundwasbasedontheacquisitionofatleast3 diagnosticions(oneprecursorionandtwo fragmentions) with

amassaccuracy<5ppm.Forthat,Xcalibur4.0,MassFrontier7.0 and TraceFinder4.1 software’s(ThermoScientific) werefurther employedtodatareviewandcheckthediagnosticionsobtained

inMSandMS2spectra

Finally,chemometrictoolswereemployedfortheprocessingof

MSand␦15NdataPrincipalcomponentanalysis(PCA)wasusedto differentiatethestatisticalsignificancebetweenfarmingsystems ThestatisticalanalyseswereperformedusingRsoftware(version 3.3.3)

2.6 Methodvalidation RigorousvalidationassaysaccordingtoSANTE/11945/2015and ISO/IEC 17025:2005Guidelines wereperformed toensure high qualityanalyticalmeasurements[26,27].Therefore,aftera

evaluated

Trang 4

3 Results and discussion

<www.metlin.scripps.edu>

Table2,threediagnosticions(oneprecursorionandatleasttwo

Trang 5

Table 2

Natural food components (NFCs) identified as markers in tomatoes by HRAMS.

Rt Accurate mass

value [M+H] +

Proposed formula [M+H] +

Mass deviation a (ppm)

Accurate mass value (m/z)

Proposed formula Mass deviation a

(ppm)

Identified compounds

L-tyrosyl-L- isoleucyl-L-threonyl-L-threonine b

277.1547 C 15 H 21 N 2 O 3 −2.8 221.1132 C 8 H 17 N 2 O 5 −3.3

185.0420 C 6 H 10 O 5 Na −0.2

740.4580 C 39 H 66 NO 12 −1.4 578.4051 C 33 H 56 NO 7 −1.1 416.3523 C 27 H 46 NO 2 −1.5

Rt: retention time.

a Values reported in the worst case.

b marker tentatively identified.

c marker identified with the injection of the reference standard.

Fig 1.Comparison of the spectral obtained for trilobatin in an organic tomato sample using both acquisition modes (AIF vs PRM) by HRAMS.

Trang 6

Table 3

Method validation Results.

Name Matrix Effect (%) Inter/intra-day (R.S.D, %) Rec (%, ±␴) LOD (␮g/kg DW) LOQ (␮g/kg DW) MDL (␮g/kg FW) MQL (␮g/kg FW)

Inter/intra-day:repeatability/reproducibility of the instrumental method (R.S.D,%);Rec:recovery average values (n = 6);␴:dispersion from the average recovery values;

LOQ:limit of quantification;LOD:limit of detection;DW:dry weight;MQL:method quantification limit;MDL:method detection limit,FW:fresh weight.

a Matrix effect evaluated using one of the fragment ions (578.4051 for tomatine; 398.3410 for tomatidine).

available

samples

satisfac-tory

Trang 7

Table 4

Estimated concentration ranges and mean concentrations of the markers identified in organic and conventional tomato samples during a full harvest cycle (␮g/kg FW).

a compounds semi-quantified with catechin as standard.

b compounds semi-quantified with phloridzin as standard.

c compounds semi-quantified with tomatidine as standard.

Table4showstheconcentrationrangesandmean

literature

Trang 8

Fig 2. Seasonal trend corresponding to a complete farming campaign for all bioactive compounds identified as markers in organic tomato crops by HRAMS.

Table 5

Pesticide residues levels (␮g/kg FW) found in conventional and organic tomato samples, chemical class and main use.

Pesticide Chemical class Main use Sample

type

MRLs in Tomato (␮g/kg)

Concentration levels in samples (␮g/kg FW) Positive

samples

Spinosad: sum of spinosyn A + D; C: conventional tomatoes; O: organic tomatoes; MRL: Maximun residue limit.

Bycontrast,onlyonepesticide(spinosad)wasdetectedinthe

organicallygrowntomatoes.Spinosadisanovelmode-of-action

insecticide derived from a family of natural products obtained

from the fermentation of Saccharopolyspora spinosa According

totheRegulation(EC) No834/2007,its usein organic

produc-tionisallowed[4 Thegreaterconcentrationsoftheinsecticide

appli-cations

Trang 9

Table 6

␦ 15 N values found in organic and conventional tomato grown in greenhouse under

controlled agronomic conditions during a complete farming campaign.

␦ 15 N (‰) – Organic 15.7 15.3 13.5 11.8 11.7 11.7 9.8

␦ 15 N (‰) – Conventional 6.7 7.5 4.9 2.5 5.2 5.0 4.5

fertilizers.Inaccordancewithpreviouslypublishedscientific

stud-ies,tomatoesfromorganicproductionshowedhigher␦15Nvalues

(+9.8to+15.7‰)thanthosetomatoesgrownusingsynthetic

fer-tilizers,suchaspotashandammonia(+2.5to+7.5‰).Therefore,

inviewoftheseresultsitispossibletothinkthat␦15Ndataare

appropriatefordistinguishingtheuseoforganicversussynthetic

fertilizers,and thusprovidea linkagetotheproductionsystem

However,areliablethresholdcouldnotbeestablishedafterafull

harvestcycle.Batemanetal.[34]evaluatedorganicand

Fig 3. PCA graphs employing software R using only markers’ HRAMS data (A) and (C); and including HRAMS & IRMS data (B) and (D) PCs: Number of principal components

Trang 10

4 Conclusions

Acknowledgements

Appendix A Supplementary data

002

References

[1] FAOSTAT Database 2014 http://www.fao.org/faostat/en/#data/QC [2] EUROSTAT Database 2014 http://ec.europa.eu/eurostat/data/database [3] EC Regulation 834/2007 Council Regulation 834/2007/EC of 28 June 2007 on organic production and labelling of organic products Official Journal of the European Union L189, 2007, 1-23.

[4] EC Regulation 889/2008 Commission Regulation 889/2008/EC of 5 September

2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control Official Journal of the European Union L250, 2008, 1–84.

[5] Action for the future of Organic Production in E.U, 2014 http://cor.europa.eu/ en/events/Documents/COM(2014)%20179%20final.pdf

[6] EFSA, The 2013 European Union report on pesticide residues in food, EFSA J.

13 (2015) 4038.

[7] Working document of the Commission services on official controls in the organic sector http://ec.europa.eu/agriculture/organic/documents/control-bodies/controls-working-document-20110708 en.pdf

[8] A Ribas-Agustí, P Bouchagier, E Skotti, D Erba, C Casiraghi, C Sárraga, M Castellari, Effects of different organic anti-fungal treatments on tomato plant productivity and selected nutritional components of tomato fruit, J Hortic Sci Biotechnol 88 (2013) 67–72.

[9] D Anton, D Matt, P Pedastsaar, I Bender, R Kazimierczak, M Roasto, T Kaart,

A Luik, T Püssa, Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.)

Trang 11

cultivars grown under organic and conventional conditions, J Agric Food

Chem 62 (2014) 5173–5180.

[10] M Hohmann, Y Monakhova, S Erich, N Christoph, H Wachter, U Holzgrabe,

Differentiation of organically and conventionally grown tomatoes by

chemometric analysis of combined data from proton nuclear magnetic

resonance and mid-infrared spectroscopy and stable isotope analysis, J Agric.

Food Chem 63 (2015) 9666–9675.

[11] K.H Laursen, J.K Schjoerring, S.D Kelly, S Husted, Authentication of

organically grown plants – advantages and limitations of atomic spectroscopy

for multi-element and stable isotope analysis, TrAC 59 (2014) 73–82.

[12] F Camin, M Perini, L Bontempo, S Fabroni, W Faedi, S Magnani, G Baruzzi,

M Bonoli, M.R Tabilio, S Musmeci, A Rossmann, S.D Kelly, P Rapisarda,

Potential isotopic and chemical markers for characterizing organic fruits,

Food Chem 125 (2011) 1072–1082.

[13] S Wagner, K Scholz, M Donegan, L Burton, J Wingate, W Völkel,

Metabonomics and biomarker discovery: LC–MS metabolic profiling and

constant neutral loss scanning combined with multivariate data analysis for

mercapturic acid analysis, Anal Chem 78 (2006) 1296–1305.

[14] M Carbonaro, M Mattera, S Nicoli, P Bergamo, M Cappelloni, Modulation of

antioxidant compounds in organic vs conventional fruit (peach Prunus persica

L., and pear, Pyrus communis L.), J Agric Food Chem 50 (2012) 5458–5462.

[15] E Rembialkowska, Quality of plant products from organic agriculture, J Sci.

Food Agric 87 (2007) 2757–2762.

[16] D Lairon, Nutritional quality and safety of organic food A review, Agron.

Sustain Dev 30 (2009) 33–41.

[17] H Novotná, O Kmiecik, M Gał ˛azka, V Krtková, A Hurajová, V Schulzová, E.

Hallmann, E Rembiałkowska, J Hajˇslová, Metabolomic fingerprinting

employing DART-TOFMS for authentication of tomatoes and peppers from

organic and conventional farming, Food Addit Contam 29 (2012) 1335–1346.

[18] E Koh, S Kaffka, E Mitchell, A long-term comparison of the influence of

organic and conventional crop management practices on the content of the

glycoalkaloid ␣-tomatine in tomatoes, J Sci Food Agric 93 (2013) 1537–1542.

[19] A Vallverdú-Queralt, O Jáuregui, A Medina-Remón, R.M Lamuela-Raventós,

Evaluation of a method to characterize the phenolic profile of organic and

conventional tomatoes, J Agric Food Chem 60 (2012) 3373–3380.

[20] L Rajski, M.M Gómez-Ramos, A.R Fernández-Alba, Large pesticide

multiresidue screening method by liquid chromatography-Orbitrap mass

spectrometry in full scan mode applied to fruit and vegetables, J Chromatogr.

A 1360 (2014) 119–127.

[21] A de Juan, R Tauler, Factor analysis of hyphenated chromatographic data:

exploration, resolution and quantification of multicomponent systems, J.

Chromatogr A 1158 (2007) 184–195.

[22] M.D Gil García, M.J Culzoni, M.M De Zan, R Santiago Valverde, M Martinez

Galera, H.C Goicoechea, Solving matrix-effects exploiting the second order

advantage in the resolution and determination of eight tetracycline

antibiotics in effluent wastewater by modelling liquid chromatography data

with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms,

J Chromatogr A 1179 (2008) 106–124.

[23] K Woese, D Lange, C Boess, K.W Bögl, A comparison of organically and conventionally grown foods – results of a review of the relevant literature, J Sci Food Agric 74 (1997) 281–293.

[24] H Willer, L Kilcher, The world of organic agriculture Statistics and emergingtrends 2011 FiBL-IFOAM Report Bonn, Germany/Frick, Switzerland: IFOAM and FiBL Version 1.3, 2017.

[25] M.D Raigón, A Rodríguez-Burruezo, J Prohens, Effects of organic and conventional cultivation methods on composition of eggplant fruits, J Agric Food Chem 58 (2010) 6833–6840.

[26] DG-SANTE, European Commission, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed Document No SANTE/11945/2015, 2016.

[27] ISO/IEC 17025, General Requirements for the competence of testing and calibration laboratories, ISO, Geneva, Switzerland, 2005.

[28] Commission Decision 2002/657/EC, Off J Eur Communities L221 (2002) 8.

[29] F Carnevale Neto, T Guaratini, L Costa-Lotufo, P Colepicolo, P.J Gates, N Peporine Lopes, Re-investigation of the fragmentation of protonated carotenoids by electrospray ionization and nanospray tandem mass spectrometry, Rapid Commun Mass Spectrom 30 (2016) 1540–1548.

[30] E Hallmann, The influence of organic and conventional cultivation systems

on the nutritional value and content of bioactive compounds in selected tomato types, J Sci Food Agric 92 (2012) 2840–2848.

[31] R Slimestad, M Verheul, Review of flavonoids and other phenolics from fruits

of different tomato (Lycopersicon esculentum Mill) cultivars, J Sci Food Agric.

89 (2009) 1255–1270.

[32] M Gómez-Romero, A Segura-Carretero, A Fernández-Gutiérrez, Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit, Phytochemistry 71 (2010) 1848–1864.

[33] N Kozukue, M Friedman, Tomatine chlorophyll, b-carotene and lycopene content in tomatoes during growth and maturation, J Sci Food Agric 83 (2003) 195–200.

[34] A.S Bateman, S.D Kelly, M Woolfe, Nitrogen isotope composition of organically and conventionally grown crops, J Agric Food Chem 55 (2007) 2664–2670.

[35] C.T Inácio, P.M Chalk, A.M Magalhães, Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1 Plant products, Crit Rev Food Sci Nutr 55 (2015) 1206–1218.

[36] A.S Bateman, S.D Kelly, T.D Jickells, Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime, J Agric Food Chem 53 (2005) 5760–5765.

[37] E Borràs, J Ferré, R Boqué, M Mestres, L Ace ˜ na, O Busto, Data fusion methodologies for food and beverage authentication and quality assessment – a review, Anal Chim Acta 891 (2015) 1–14.

Ngày đăng: 31/12/2022, 09:43

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[5] Action for the future of Organic Production in E.U, 2014. http://cor.europa.eu/en/events/Documents/COM(2014)%20179%20final.pdf Link
[7] Working document of the Commission services on official controls in the organic sector. http://ec.europa.eu/agriculture/organic/documents/control-bodies/controls-working-document-20110708en.pdf Link
[3] EC Regulation 834/2007. Council Regulation 834/2007/EC of 28 June 2007 on organic production and labelling of organic products. Official Journal of the European Union L189, 2007, 1-23 Khác
[4] EC Regulation 889/2008. Commission Regulation 889/2008/EC of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Official Journal of the European Union L250, 2008, 1–84 Khác
[8] A. Ribas-Agustí, P. Bouchagier, E. Skotti, D. Erba, C. Casiraghi, C. Sárraga, M.Castellari, Effects of different organic anti-fungal treatments on tomato plant productivity and selected nutritional components of tomato fruit, J. Hortic.Sci. Biotechnol. 88 (2013) 67–72 Khác
[9] D. Anton, D. Matt, P. Pedastsaar, I. Bender, R. Kazimierczak, M. Roasto, T. Kaart, A. Luik, T. Püssa, Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) Khác
[10] M. Hohmann, Y. Monakhova, S. Erich, N. Christoph, H. Wachter, U. Holzgrabe, Differentiation of organically and conventionally grown tomatoes by chemometric analysis of combined data from proton nuclear magnetic resonance and mid-infrared spectroscopy and stable isotope analysis, J. Agric.Food Chem. 63 (2015) 9666–9675 Khác
[11] K.H. Laursen, J.K. Schjoerring, S.D. Kelly, S. Husted, Authentication of organically grown plants – advantages and limitations of atomic spectroscopy for multi-element and stable isotope analysis, TrAC 59 (2014) 73–82 Khác
[12] F. Camin, M. Perini, L. Bontempo, S. Fabroni, W. Faedi, S. Magnani, G. Baruzzi, M. Bonoli, M.R. Tabilio, S. Musmeci, A. Rossmann, S.D. Kelly, P. Rapisarda, Potential isotopic and chemical markers for characterizing organic fruits, Food Chem. 125 (2011) 1072–1082 Khác
[13] S. Wagner, K. Scholz, M. Donegan, L. Burton, J. Wingate, W. Vửlkel, Metabonomics and biomarker discovery: LC–MS metabolic profiling and constant neutral loss scanning combined with multivariate data analysis for mercapturic acid analysis, Anal. Chem. 78 (2006) 1296–1305 Khác
[14] M. Carbonaro, M. Mattera, S. Nicoli, P. Bergamo, M. Cappelloni, Modulation of antioxidant compounds in organic vs conventional fruit (peach Prunus persica L., and pear, Pyrus communis L.), J. Agric. Food Chem. 50 (2012) 5458–5462 Khác
[15] E. Rembialkowska, Quality of plant products from organic agriculture, J. Sci.Food Agric. 87 (2007) 2757–2762 Khác
[16] D. Lairon, Nutritional quality and safety of organic food. A review, Agron.Sustain. Dev. 30 (2009) 33–41 Khác
[17] H. Novotná, O. Kmiecik, M. Gał ˛azka, V. Krtková, A. Hurajová, V. Schulzová, E.Hallmann, E. Rembiałkowska, J. Hajˇslová, Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming, Food Addit. Contam. 29 (2012) 1335–1346 Khác
[18] E. Koh, S. Kaffka, E. Mitchell, A long-term comparison of the influence of organic and conventional crop management practices on the content of the glycoalkaloid ␣-tomatine in tomatoes, J. Sci. Food Agric. 93 (2013) 1537–1542 Khác
[19] A. Vallverdú-Queralt, O. Jáuregui, A. Medina-Remón, R.M. Lamuela-Raventós, Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes, J. Agric. Food Chem. 60 (2012) 3373–3380 Khác
[20] L. Rajski, M.M. Gómez-Ramos, A.R. Fernández-Alba, Large pesticide multiresidue screening method by liquid chromatography-Orbitrap mass spectrometry in full scan mode applied to fruit and vegetables, J. Chromatogr.A 1360 (2014) 119–127 Khác
[21] A. de Juan, R. Tauler, Factor analysis of hyphenated chromatographic data:exploration, resolution and quantification of multicomponent systems, J.Chromatogr. A 1158 (2007) 184–195 Khác
[23] K. Woese, D. Lange, C. Boess, K.W. Bửgl, A comparison of organically and conventionally grown foods – results of a review of the relevant literature, J.Sci. Food Agric. 74 (1997) 281–293 Khác
[24] H. Willer, L. Kilcher, The world of organic agriculture. Statistics and emergingtrends 2011. FiBL-IFOAM Report. Bonn, Germany/Frick, Switzerland:IFOAM and FiBL. Version 1.3, 2017 Khác

🧩 Sản phẩm bạn có thể quan tâm