In the last decade, the consumption trend of organic food has increased dramatically worldwide. However, the lack of reliable chemical markers to discriminate between organic and conventional products makes this market susceptible to food fraud in products labeled as “organic”.
Trang 1crops
María Jesús Martínez Bueno, Francisco José Díaz-Galiano, Łukasz Rajski, Víctor Cutillas,
Amadeo R Fernández-Alba∗
University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n, La Ca˜ nada de San
Urbano, 04120, Almería, Spain
a r t i c l e i n f o
Article history:
Received 7 November 2017
Received in revised form 26 February 2018
Accepted 1 March 2018
Available online 3 March 2018
Keywords:
Fingerprint
Authenticity
Natural food components
Pesticides
HRAMS
IRMS
a b s t r a c t
Inthelastdecade,theconsumptiontrendoforganicfoodhasincreaseddramaticallyworldwide How-ever,thelackofreliablechemicalmarkerstodiscriminatebetweenorganicandconventionalproducts makesthismarketsusceptibletofoodfraudinproductslabeledas“organic”.Metabolomicfingerprinting approachhasbeendemonstratedasthebestoptionforafullcharacterizationofmetabolome occur-ringinplants,sincetheirpatternmayreflecttheimpactofbothendogenousandexogenousfactors
Inthepresentstudy,advancedtechnologiesbasedonhighperformanceliquid chromatography-high-resolutionaccuratemassspectrometry(HPLC-HRAMS)hasbeenusedformarkersearchinorganicand conventionaltomatoesgrowningreenhouseundercontrolledagronomicconditions.Thescreeningof unknowncompoundscomprisedtheretrospectiveanalysisofalltomatosamplesthroughoutthe stud-iedperiodanddataprocessingusingdatabases(mzCloud,ChemSpiderandPubChem).Inaddition,stable nitrogenisotopeanalysis(␦15N)wasassessedasapossibleindicatortosupportdiscriminationbetween bothproductionsystemsusingcrop/fertilizercorrelations.Pesticideresidueanalyseswerealsoapplied
asawell-establishedwaytoevaluatetheorganicproduction.Finally,theevaluationbycombined chemo-metricanalysisofhigh-resolutionaccuratemassspectrometry(HRAMS)and␦15Ndataprovidedarobust classificationmodelinaccordancewiththeagriculturalpractices.Principalcomponentanalysis(PCA) showedasampleclusteringaccordingtofarmingsystemsandsignificantdifferencesinthesample pro-filewasobservedforsixbioactivecomponents(L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine,trilobatin, phloridzin,tomatine,phloretinandechinenone)
©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
∗ Corresponding author.
E-mail address: amadeo@ual.es (A.R Fernández-Alba).
year
https://doi.org/10.1016/j.chroma.2018.03.002
0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Trang 22 Experimental section
Switzerland)
mea-surements
Trang 3parti-Table 1
Detailed information on the tomato samples produced under controlled agronomic
conditions, crop system, farms, fertilisation and plant protection carried out in this
study.
Crop system Manure Fertilizer Pest control # samples Name
Conventional Conventional Mineral Pesticides 7 C
clesizeofabout1mm.Driedtomatopowdersamples(0.5±0.01g)
wereweighedina50mLpolypropylenecentrifugetubeandthen
2Lofa10mg/Lmethanolicinternalstandardsolutionwasadded
(dichlorvos-d6).Next,thetomatoes wererehydrated by adding
0.5mLofultrapurewater,andthemixturewasvortexedfor30s
Thetubeswerethenautomaticallyshakenfor5min,afterthe
addi-tion5mLofmethanol.Afterthat,0.5gMg2SO4 (anhydrous)plus
0.25gNaClwereaddeddirectlytoeachtubeandthemixturewas
shakenagain(automatically)for5moremin.Finally,a
centrifuga-tionstep(3500rpm/1730×g,5min)wasperformed,and0.5mLof
thesupernatantwasdilutedwith0.5mLofultrapurewater
Sam-pleswerestoredat−20◦CuntilanalysisbyLC-Q-Orbitrap-MS.
2.3 HRAMSanalysis
Toevaluatethedifferencesbetweenorganicandconventional
productionsystems,anon-targetedanalysiswasappliedusingan
LC-ESI-Q-Orbitrap.FortheLCseparation,UHPLCDionexTM
Ulti-mate3000(ThermoScientificTM,SanJose,USA)wasused.Mobile
phaseAwas98%waterand2%methanolwhereasmobilephase
Bwas98%methanoland2%water;bothmobilephasescontained
5mMofammoniumformateand0.1%formicacid.Separationwas
carriedoutonaPhenomenexLunaC8column(mobilephaseflow:
350L/min).Thelength,diameterandparticlesizewere100mm,
2.0mmand3m,respectively.Thecolumnwasthermostatedat
30◦C.Themobilephasegradientstartedform100%ofmobilephase
Aandmaintainedfor1min,from1to2min,theamountofmobile
phaseBincreasedto30%,from2to3minto50%,from3to11min
to100%.100%ofBwasmaintaineduntil14min.Followingthis,the
mobilephasewaschangedto100%Aandmaintainedover3minfor
re-equilibration.Theinjectionvolumewas10L.Theautosampler
wasthermostatedat10◦C
AQ-Orbitrap(ThermoScientific,Bremen,Germany)mass
spec-trometerwasequippedwithHeatedElectrosprayIonizationSource
(HESIII).TheHESIparametersinpositivepolaritywereasfollows:
sheathgas flow rate:40;auxiliary gasflow rate: 5;sweepgas
flowrate:1;sprayvoltage:3.00kV;capillarytemperature:280◦C;
S–lensRFlevel:55.0;heatertemperature:350◦C.Theinstrument
wasoperatedinfullscan/allionfragmentationMS2(AIF).AIFisan
acquisitionmodeinwhichallprecursorionsarefragmented
with-outapreselectioninthequadrupole.Fragmentationisobtained
with the higher energy collision-induced dissociation (HCD) cell,
locatedatthefarside ofthequadrupoleiontrap“C-trap”
Dur-ingfillingoftheHCDcollisioncell,theenergycanbesettostep
betweenvaluesatspecifiedpercentvaluesaroundthechosen
mid-dleenergyregardlessoftheion’scharacteristics.Theparametersof
fullscananalysiswereasfollows:scanrange74−1100m/z,
resolu-tion70,000FWHMandautomaticgaincontrol(AGC)target1×106
AGCisusedtoregulatethetotalnumberifionscollectedinthe
C-trapbeforebeinginjectedintotheorbitrapforanalysis.The
max-imumioninjectiontime(maxIT)wassetto‘AUTO’,Parametersof
“AllIonFragmentationMS2mode”wereasfollows:resolution70
000FWHM,collisionenergyCE30V,AGCtarget1×106,maxIT
auto,scan range74–1100m/z.Anexternalmasscalibrationand
quadrupolecalibration were carried out daily, using a mixture
ofn−butylamine,caffeine,Ultramark1621andMet-Arg-Phe-Ala
(MRFA)
2.4 IRMSanalysis Driedtomato powder samples(2±0.1g) were weighedinto tincapsules.Nitrogenisotopecompositionwasdeterminedusing
aFlashEA1112elementalanalyzercoupledtoa Finnigan Delta-plusisotoperatiomassspectrometer(ThermoScientific,Bremen, Germany) Allsampleswere analyzed in duplicate, and forthe majority of samples the absolutedifference between duplicate measurementswas<0.2‰.Eachbatchofsamplesincluded repli-cateanalysesofthein-housestandard,IAEA-N-1(␦15N=+0.4‰) and IAEA-N-2 (␦15N=+20.3‰), which was used for the drift correctionofrawanalyticalmeasurementdata.Thelong-term per-formanceofthemassspectrometerwasmonitoredbyanalysisofa secondaryreferencematerial,acetanilide(␦15N=±0.15‰),which wasincludedwitheverybatchofsamples.Nitrogenisotoperatios werereportedwithrespecttoairnitrogen
2.5 Dataprocessingandchemometricanalysis CompoundDiscoverersoftwareversion2.1(ThermoScientific)
incombinationwithlibrarysearchingwastheworkflowusedto identifypotentialmarkercompounds.Thistoolallowsautomatic analytedetectionbasedonthepresenceoftheexactmassof pre-cursorions,withamasstoleranceof5ppm.Toreducechemical interferencesfromthematrix,amasstoleranceforalignmentof
5ppm,anintensitytoleranceof30%,a totalintensitythreshold
of1×105,amaximumshiftof0.5minandasignal-to-noise(S/N) thresholdof10werethefiltersset
In a second step,the datawere manuallyprocessed forthe comprehensiveidentificationofchemicalmarkers.The identifica-tionofeachcompoundwasbasedontheacquisitionofatleast3 diagnosticions(oneprecursorionandtwo fragmentions) with
amassaccuracy<5ppm.Forthat,Xcalibur4.0,MassFrontier7.0 and TraceFinder4.1 software’s(ThermoScientific) werefurther employedtodatareviewandcheckthediagnosticionsobtained
inMSandMS2spectra
Finally,chemometrictoolswereemployedfortheprocessingof
MSand␦15NdataPrincipalcomponentanalysis(PCA)wasusedto differentiatethestatisticalsignificancebetweenfarmingsystems ThestatisticalanalyseswereperformedusingRsoftware(version 3.3.3)
2.6 Methodvalidation RigorousvalidationassaysaccordingtoSANTE/11945/2015and ISO/IEC 17025:2005Guidelines wereperformed toensure high qualityanalyticalmeasurements[26,27].Therefore,aftera
evaluated
Trang 43 Results and discussion
<www.metlin.scripps.edu>
Table2,threediagnosticions(oneprecursorionandatleasttwo
Trang 5Table 2
Natural food components (NFCs) identified as markers in tomatoes by HRAMS.
Rt Accurate mass
value [M+H] +
Proposed formula [M+H] +
Mass deviation a (ppm)
Accurate mass value (m/z)
Proposed formula Mass deviation a
(ppm)
Identified compounds
L-tyrosyl-L- isoleucyl-L-threonyl-L-threonine b
277.1547 C 15 H 21 N 2 O 3 −2.8 221.1132 C 8 H 17 N 2 O 5 −3.3
185.0420 C 6 H 10 O 5 Na −0.2
740.4580 C 39 H 66 NO 12 −1.4 578.4051 C 33 H 56 NO 7 −1.1 416.3523 C 27 H 46 NO 2 −1.5
Rt: retention time.
a Values reported in the worst case.
b marker tentatively identified.
c marker identified with the injection of the reference standard.
Fig 1.Comparison of the spectral obtained for trilobatin in an organic tomato sample using both acquisition modes (AIF vs PRM) by HRAMS.
Trang 6Table 3
Method validation Results.
Name Matrix Effect (%) Inter/intra-day (R.S.D, %) Rec (%, ±) LOD (g/kg DW) LOQ (g/kg DW) MDL (g/kg FW) MQL (g/kg FW)
Inter/intra-day:repeatability/reproducibility of the instrumental method (R.S.D,%);Rec:recovery average values (n = 6);:dispersion from the average recovery values;
LOQ:limit of quantification;LOD:limit of detection;DW:dry weight;MQL:method quantification limit;MDL:method detection limit,FW:fresh weight.
a Matrix effect evaluated using one of the fragment ions (578.4051 for tomatine; 398.3410 for tomatidine).
available
samples
satisfac-tory
Trang 7Table 4
Estimated concentration ranges and mean concentrations of the markers identified in organic and conventional tomato samples during a full harvest cycle (g/kg FW).
a compounds semi-quantified with catechin as standard.
b compounds semi-quantified with phloridzin as standard.
c compounds semi-quantified with tomatidine as standard.
Table4showstheconcentrationrangesandmean
literature
Trang 8Fig 2. Seasonal trend corresponding to a complete farming campaign for all bioactive compounds identified as markers in organic tomato crops by HRAMS.
Table 5
Pesticide residues levels (g/kg FW) found in conventional and organic tomato samples, chemical class and main use.
Pesticide Chemical class Main use Sample
type
MRLs in Tomato (g/kg)
Concentration levels in samples (g/kg FW) Positive
samples
Spinosad: sum of spinosyn A + D; C: conventional tomatoes; O: organic tomatoes; MRL: Maximun residue limit.
Bycontrast,onlyonepesticide(spinosad)wasdetectedinthe
organicallygrowntomatoes.Spinosadisanovelmode-of-action
insecticide derived from a family of natural products obtained
from the fermentation of Saccharopolyspora spinosa According
totheRegulation(EC) No834/2007,its usein organic
produc-tionisallowed[4 Thegreaterconcentrationsoftheinsecticide
appli-cations
Trang 9Table 6
␦ 15 N values found in organic and conventional tomato grown in greenhouse under
controlled agronomic conditions during a complete farming campaign.
␦ 15 N (‰) – Organic 15.7 15.3 13.5 11.8 11.7 11.7 9.8
␦ 15 N (‰) – Conventional 6.7 7.5 4.9 2.5 5.2 5.0 4.5
fertilizers.Inaccordancewithpreviouslypublishedscientific
stud-ies,tomatoesfromorganicproductionshowedhigher␦15Nvalues
(+9.8to+15.7‰)thanthosetomatoesgrownusingsynthetic
fer-tilizers,suchaspotashandammonia(+2.5to+7.5‰).Therefore,
inviewoftheseresultsitispossibletothinkthat␦15Ndataare
appropriatefordistinguishingtheuseoforganicversussynthetic
fertilizers,and thusprovidea linkagetotheproductionsystem
However,areliablethresholdcouldnotbeestablishedafterafull
harvestcycle.Batemanetal.[34]evaluatedorganicand
Fig 3. PCA graphs employing software R using only markers’ HRAMS data (A) and (C); and including HRAMS & IRMS data (B) and (D) PCs: Number of principal components
Trang 104 Conclusions
Acknowledgements
Appendix A Supplementary data
002
References
[1] FAOSTAT Database 2014 http://www.fao.org/faostat/en/#data/QC [2] EUROSTAT Database 2014 http://ec.europa.eu/eurostat/data/database [3] EC Regulation 834/2007 Council Regulation 834/2007/EC of 28 June 2007 on organic production and labelling of organic products Official Journal of the European Union L189, 2007, 1-23.
[4] EC Regulation 889/2008 Commission Regulation 889/2008/EC of 5 September
2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control Official Journal of the European Union L250, 2008, 1–84.
[5] Action for the future of Organic Production in E.U, 2014 http://cor.europa.eu/ en/events/Documents/COM(2014)%20179%20final.pdf
[6] EFSA, The 2013 European Union report on pesticide residues in food, EFSA J.
13 (2015) 4038.
[7] Working document of the Commission services on official controls in the organic sector http://ec.europa.eu/agriculture/organic/documents/control-bodies/controls-working-document-20110708 en.pdf
[8] A Ribas-Agustí, P Bouchagier, E Skotti, D Erba, C Casiraghi, C Sárraga, M Castellari, Effects of different organic anti-fungal treatments on tomato plant productivity and selected nutritional components of tomato fruit, J Hortic Sci Biotechnol 88 (2013) 67–72.
[9] D Anton, D Matt, P Pedastsaar, I Bender, R Kazimierczak, M Roasto, T Kaart,
A Luik, T Püssa, Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.)
Trang 11cultivars grown under organic and conventional conditions, J Agric Food
Chem 62 (2014) 5173–5180.
[10] M Hohmann, Y Monakhova, S Erich, N Christoph, H Wachter, U Holzgrabe,
Differentiation of organically and conventionally grown tomatoes by
chemometric analysis of combined data from proton nuclear magnetic
resonance and mid-infrared spectroscopy and stable isotope analysis, J Agric.
Food Chem 63 (2015) 9666–9675.
[11] K.H Laursen, J.K Schjoerring, S.D Kelly, S Husted, Authentication of
organically grown plants – advantages and limitations of atomic spectroscopy
for multi-element and stable isotope analysis, TrAC 59 (2014) 73–82.
[12] F Camin, M Perini, L Bontempo, S Fabroni, W Faedi, S Magnani, G Baruzzi,
M Bonoli, M.R Tabilio, S Musmeci, A Rossmann, S.D Kelly, P Rapisarda,
Potential isotopic and chemical markers for characterizing organic fruits,
Food Chem 125 (2011) 1072–1082.
[13] S Wagner, K Scholz, M Donegan, L Burton, J Wingate, W Völkel,
Metabonomics and biomarker discovery: LC–MS metabolic profiling and
constant neutral loss scanning combined with multivariate data analysis for
mercapturic acid analysis, Anal Chem 78 (2006) 1296–1305.
[14] M Carbonaro, M Mattera, S Nicoli, P Bergamo, M Cappelloni, Modulation of
antioxidant compounds in organic vs conventional fruit (peach Prunus persica
L., and pear, Pyrus communis L.), J Agric Food Chem 50 (2012) 5458–5462.
[15] E Rembialkowska, Quality of plant products from organic agriculture, J Sci.
Food Agric 87 (2007) 2757–2762.
[16] D Lairon, Nutritional quality and safety of organic food A review, Agron.
Sustain Dev 30 (2009) 33–41.
[17] H Novotná, O Kmiecik, M Gał ˛azka, V Krtková, A Hurajová, V Schulzová, E.
Hallmann, E Rembiałkowska, J Hajˇslová, Metabolomic fingerprinting
employing DART-TOFMS for authentication of tomatoes and peppers from
organic and conventional farming, Food Addit Contam 29 (2012) 1335–1346.
[18] E Koh, S Kaffka, E Mitchell, A long-term comparison of the influence of
organic and conventional crop management practices on the content of the
glycoalkaloid ␣-tomatine in tomatoes, J Sci Food Agric 93 (2013) 1537–1542.
[19] A Vallverdú-Queralt, O Jáuregui, A Medina-Remón, R.M Lamuela-Raventós,
Evaluation of a method to characterize the phenolic profile of organic and
conventional tomatoes, J Agric Food Chem 60 (2012) 3373–3380.
[20] L Rajski, M.M Gómez-Ramos, A.R Fernández-Alba, Large pesticide
multiresidue screening method by liquid chromatography-Orbitrap mass
spectrometry in full scan mode applied to fruit and vegetables, J Chromatogr.
A 1360 (2014) 119–127.
[21] A de Juan, R Tauler, Factor analysis of hyphenated chromatographic data:
exploration, resolution and quantification of multicomponent systems, J.
Chromatogr A 1158 (2007) 184–195.
[22] M.D Gil García, M.J Culzoni, M.M De Zan, R Santiago Valverde, M Martinez
Galera, H.C Goicoechea, Solving matrix-effects exploiting the second order
advantage in the resolution and determination of eight tetracycline
antibiotics in effluent wastewater by modelling liquid chromatography data
with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms,
J Chromatogr A 1179 (2008) 106–124.
[23] K Woese, D Lange, C Boess, K.W Bögl, A comparison of organically and conventionally grown foods – results of a review of the relevant literature, J Sci Food Agric 74 (1997) 281–293.
[24] H Willer, L Kilcher, The world of organic agriculture Statistics and emergingtrends 2011 FiBL-IFOAM Report Bonn, Germany/Frick, Switzerland: IFOAM and FiBL Version 1.3, 2017.
[25] M.D Raigón, A Rodríguez-Burruezo, J Prohens, Effects of organic and conventional cultivation methods on composition of eggplant fruits, J Agric Food Chem 58 (2010) 6833–6840.
[26] DG-SANTE, European Commission, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed Document No SANTE/11945/2015, 2016.
[27] ISO/IEC 17025, General Requirements for the competence of testing and calibration laboratories, ISO, Geneva, Switzerland, 2005.
[28] Commission Decision 2002/657/EC, Off J Eur Communities L221 (2002) 8.
[29] F Carnevale Neto, T Guaratini, L Costa-Lotufo, P Colepicolo, P.J Gates, N Peporine Lopes, Re-investigation of the fragmentation of protonated carotenoids by electrospray ionization and nanospray tandem mass spectrometry, Rapid Commun Mass Spectrom 30 (2016) 1540–1548.
[30] E Hallmann, The influence of organic and conventional cultivation systems
on the nutritional value and content of bioactive compounds in selected tomato types, J Sci Food Agric 92 (2012) 2840–2848.
[31] R Slimestad, M Verheul, Review of flavonoids and other phenolics from fruits
of different tomato (Lycopersicon esculentum Mill) cultivars, J Sci Food Agric.
89 (2009) 1255–1270.
[32] M Gómez-Romero, A Segura-Carretero, A Fernández-Gutiérrez, Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit, Phytochemistry 71 (2010) 1848–1864.
[33] N Kozukue, M Friedman, Tomatine chlorophyll, b-carotene and lycopene content in tomatoes during growth and maturation, J Sci Food Agric 83 (2003) 195–200.
[34] A.S Bateman, S.D Kelly, M Woolfe, Nitrogen isotope composition of organically and conventionally grown crops, J Agric Food Chem 55 (2007) 2664–2670.
[35] C.T Inácio, P.M Chalk, A.M Magalhães, Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1 Plant products, Crit Rev Food Sci Nutr 55 (2015) 1206–1218.
[36] A.S Bateman, S.D Kelly, T.D Jickells, Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime, J Agric Food Chem 53 (2005) 5760–5765.
[37] E Borràs, J Ferré, R Boqué, M Mestres, L Ace ˜ na, O Busto, Data fusion methodologies for food and beverage authentication and quality assessment – a review, Anal Chim Acta 891 (2015) 1–14.