1. Trang chủ
  2. » Giáo án - Bài giảng

Quantification of more than 150 micropollutants including transformation products in aqueous samples by liquid chromatography-tandem mass spectrometry using scheduled multiple

10 7 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Quantification of More Than 150 Micropollutants Including Transformation Products in Aqueous Samples by Liquid Chromatography-Tandem Mass Spectrometry Using Scheduled Multiple Reaction Monitoring
Tác giả Nina Hermes, Kevin S. Jewell, Arne Wick, Thomas A. Ternes
Trường học Federal Institute of Hydrology (BfG)
Chuyên ngành Environmental Chemistry / Water Quality Monitoring
Thể loại Research Article
Năm xuất bản 2018
Thành phố Koblenz
Định dạng
Số trang 10
Dung lượng 1,21 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Adirectinjection, multi residue analytical method separated in two chromatographic runs was developed utilizing scheduled analysis to simultaneously quantify 154 compounds, 84 precursors and 70 transformation products (TPs)/metabolites.

Trang 1

Full length article

Nina Hermes, Kevin S Jewell, Arne Wick, Thomas A Ternes∗

Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany

a r t i c l e i n f o

Article history:

Received 12 September 2017

Received in revised form 7 November 2017

Accepted 12 November 2017

Available online 13 November 2017

Keywords:

Chemicals of emerging concern

Liquid chromatography-mass spectrometry

Scheduled MRM

Direct injection

Water

a b s t r a c t

Adirectinjection,multiresidueanalyticalmethodseparatedintwochromatographicrunswasdeveloped utilizingscheduledanalysistosimultaneouslyquantify154compounds,84precursorsand70 transfor-mationproducts(TPs)/metabolites.Improvementsinthechromatographicdataquality,sensitivityand reproducibilitywereachievedbyschedulingtheanalysisofeachanalyteintopre-determinedretention timewindows.Thisstudyshowstheinfluenceofthescantimeonthedwelltimeandthenumberof datapointsperpeakaswellastheeffectontheprecisionofanalysis.Loweringthescantimedecreased dwelltimetoaminimalvalue,however,thishadnonegativeeffectsontheprecision.Increasingthe numberofdatapointsperpeakbydecreasingthescantimeledtomoreaccuratepeakshapes.Afinal setofparameterswaschosentoobtainaminimumof10datapointsperpeaktoguaranteeaccurate peakshapesandthusreproducibilityofanalysis.Avalidationofthemethodwasperformedfordifferent watermatricesyieldingverygoodlinearityforallsubstances,withlimitsofquantificationmainlyinthe lowertomidng/L-rangeandrecoveriesmainlybetween70and125%forsurfacewater,bankfiltrate

aswellasinfluentsandeffluentsofwastewatertreatmentplants.Theanalysisofenvironmental sam-plesandwastewaterrevealedtheoccurrenceofselectedprecursorsandTPsinallanalyzedmatrices: 95%ofthecompoundsinthetargetlistcouldbequantifiedinatleastonesample.TherelevanceofTPs andmetabolitessuchasvalsartanacidandclopidogrelacidwasalsoconfirmedbytheirdetectioninall aqueousmatrices.Wastewaterindicatorssuchasacesulfameanddiclofenacweredetectedatelevated concentrationsaswellassubstancessuchasoxipurinolwhichsofarwerenotinthefocusofmonitoring programs.Thedevelopedmethodcanbeusedforrapidanalysisofvariouswatermatriceswithoutany sampleenrichmentandcanaidtheassessmentofwaterqualityandwatertreatmentprocesses

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

∗ Corresponding author.

E-mail address: ternes@bafg.de (T.A Ternes).

[2,3,5,10,11].Forcertainmicropollutantsharmfuleffectsonbiota

https://doi.org/10.1016/j.chroma.2017.11.020

0021-9673/© 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.

Trang 2

ofpharmaceuticals andillicit drugsinwastewater Thenumber

maxi-mizethetDwell,whilealsoenablingsufficientdatacoverageforeach

2 Experimental

[39,40].TheselectionofTPsandmetabolites(70)wasperformed

widths

(tWindow)forschedulingweredefined.Acompletelistofmass

Trang 3

Table 1

sMRM Parameters for both methods; Settling time: time to switch between the polarities; Pause time: time between analysis of two MRM transitions.

by:

data points per peak=Peak width [s] ∗ f (2)

tDwellcouldthenbecalculatedas:

tDwell[ms]=( tTarget,act[ms]

injections

concentration

Areacalibrationspike ∗100 (5)

sam-ple, Areasample the peak area of the original sample and Areacalibration,spike thepeakareaofthecalibrationsample

3 Results and discussion

Trang 4

Table 2

Description of environmental samples analyzed; all samples taken in Germany; bio = biological treatment, PAC = Powered activated carbon, GAC = granulated activated carbon.

Surface water (SW) grab samples (n = 4) SW1: Landgraben (stream, Darmstadt),

SW2: Rhine (river, km 590.3 Koblenz), SW3: Moselle (river, km 2.0 Koblenz), SW4: Lake tegel (lake, Berlin) Bank filtrate (BF) grab samples (n = 3) [depth below ground/retention time/redox potential]

BF1: 12 m/1 month/238 mV BF2: 19 m/3 months/138 mV BF3: 25 m/5 months/120 mV

WWTP2: influent + bio + GAC WWTP3: influent + bio

tTarget alsolowerstDwell downtoaminimumvalueandchanges

intDwellarenotrecorded.Therefore,differenttTargetvalues(0.3s,

tDwellaswellasthenumberofdatapointsperpeakwerecalculated

howandiftDwell affectsprecisionofanalysisbyafivefold

tTargetthelowesttDwellwasreachedinthisperiod(Fig.1A).With

tTargetof0.3saminimumofaround5msforthecalculatedtDwell

min-imumtDwell isreached.ThisisthecasefortTarget=0.3sbetween

intDwellbutadecreaseindatapointsperpeak.Reachingthe mini-mumtDwelloftheinstrumentdidnotaffecttheanalysisnegatively

meth-odsandforalltTargetascanbeseenintheboxplotsinFig.1 and

tTarget,peakshapebecamemoreinaccurateandinseveralcasesthe

twindowandtDwell isimportanttoguaranteeaccuratepeakshape

Trang 5

Fig 1. Method data M1 TST = t Target A: Calculated dwell time per transition over the chromatographic run time B-D: Correlation of data points per peak and chromatographic run time, straight line at data points per peak = 10 E: Boxplot over precision values for the selected t Target with the box showing the interquartile range (IQR) and the median (horizontal line), the whiskers give the range and the circles the outliers which are beyond 1.5 x IQR from the nearest quartile.

Trang 6

O-Fig 2.Method data M2 TST = t Target A: Calculated dwell time per transition over the chromatographic run time B–D: Correlation of data points per peak and chromatographic run time, straight line at data points per peak = 10 E: Boxplot over precision values for the selected t Target with the box showing the interquartile range (IQR) and the median (horizontal line), the whiskers give the range and the circles the outliers which are beyond 1.5 x IQR from the nearest quartile.

Trang 7

Table 3

Summary of validation results; SW = Surface water, BF = Bank filtrate, Inf = WWTP influent, Eff = WWTP effluent.

Precision (% RSD) Intra-day

(100 ng/L)

Instrument precision Intra-day

(1000 ng/L)

Inter-day (100 ng/L)

Inter-day (1000 ng/L)

Abs Recovery (%)

Spike-level 1000 ng/L

Rel Recovery (%)

Spike-level 1000 ng/L

BF1)

Trang 8

fil-Fig 3.Overview of the number of detected CECs in each sample, grouped into for precursors and TPs/metabolites The method analyzes in total 154 compounds, 84 precursors and 70 TPs/metabolites; inf = influent, eff = effluent, adv.eff = effluent of advanced treatment step.

Table 4

Summary of quantitation results from the analysis of raw wastewater, tertiary and advanced treatment effluents, surface waters and bank filtrate partially impacted by wastewater.

Sample Detected > LOQ

(Total = 154)

Conc range [␮g/L]

Substance with highest conc.

Median Conc.

[␮g/L]

Average Conc.

[␮g/L]

Substances with conc >1000 ng/L

Note: For the calculation of the medians, concentrations below LOQ were defined as 1/2 LOQ.

Trang 9

4 Conclusions

Acknowledgment

Appendix A Supplementary data

020

References

[1] M.L Farré, S Pérez, L Kantiani, D Barceló, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, Trends Anal Chem 27 (2008) 991–1007, http://dx.doi.org/10 1016/j.trac.2008.09.010

[2] S Mompelat, B Le Bot, O Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ Int 35 (2009) 803–814, http://dx.doi.org/10.1016/j.envint.2008.10.008

[3] D.J Lapworth, N Baran, M.E Stuart, R.S Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ Pollut 163 (2012) 287–303, http://dx.doi.org/10.1016/j.envpol.2011 12.034

[4] R.P Deo, Pharmaceuticals in the surface water of the USA: a review, Curr Environ Health Rep 1 (2014) 113–122, http://dx.doi.org/10.1007/s40572-014-0015-y

[5] Y Luo, W Guo, H.H Ngo, L.D Nghiem, F.I Hai, J Zhang, S Liang, X.C Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci Total Environ 473–474 (2014) 619–641, http://dx.doi.org/10.1016/j.scitotenv.2013.12.065 [6] Q Sui, X Cao, S Lu, W Zhao, Z Qiu, G Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg Contam 1 (2015) 14–24, http://dx.doi.org/10.1016/j.emcon.2015.07.

001 [7] B Petrie, R Barden, B Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res.

72 (2015) 3–27, http://dx.doi.org/10.1016/j.watres.2014.08.053 [8] E.N Evgenidou, I.K Konstantinou, D.A Lambropoulou, Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:

a review, Sci Total Environ 505 (2015) 905–926, http://dx.doi.org/10.1016/j scitotenv.2014.10.021

[9] Y Pico, D Barcelo, Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon, Anal Bioanal Chem 407 (2015) 6257–6273, http://dx.doi.org/10.1007/s00216-015-8739-6

[10] C Postigo, D Barcelo, Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation, Sci Total Environ 503–504 (2015) 32–47, http://dx.doi.org/10.1016/j.scitotenv.2014.06.019 [11] K Yu, B Li, T Zhang, Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE pre-concentration, Anal Chim Acta 738 (2012) 59–68, http://dx.doi.org/10.1016/j.aca.2012.05.057

[12] G.M Bruce, R.C Pleus, S.A Snyder, Toxicological relevance of pharmaceuticals

in drinking water, Environ Sci Technol 44 (2010) 5619–5626, http://dx.doi org/10.1021/es1004895

[13] J Lienert, K Güdel, B.I Escher, Screening method for ecotoxicological hazard assessment of 42 pharmaceuticlas considering human metabolism and excretory routes, Environ Sci Technol 41 (2007) 4471–4478, http://dx.doi org/10.1021/es0627693

[14] V Osorio, A Larranaga, J Acena, S Perez, D Barcelo, Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers, Sci Total Environ 540 (2016) 267–277, http://dx.doi.org/10.1016/j.scitotenv.2015.06.143 [15] D.M Cwiertny, S.A Snyder, D Schlenk, E.P Kolodziej, Environmental designer drugs: when transformation may not eliminate risk, Environ Sci Technol 48 (2014) 11737–11745, http://dx.doi.org/10.1021/es503425w

Trang 10

[16] J Diamond, K Munkittrick, K.E Kapo, J Flippin, A framework for screening

sites at risk from contaminants of emerging concern, Environ Toxicol Chem.

34 (2015) 2671–2681, http://dx.doi.org/10.1002/etc.3177

[17] R Lopez-Serna, M Petrovic, D Barcelo, Direct analysis of pharmaceuticals,

their metabolites and transformation products in environmental waters using

on-line TurboFlow chromatography-liquid chromatography-tandem mass

spectrometry, J Chromatogr A 1252 (2012) 115–129, http://dx.doi.org/10.

1016/j.chroma.2012.06.078

[18] R Rosal, A Rodriguez, J.A Perdigon-Melon, A Petre, E Garcia-Calvo, M.J.

Gomez, A Aguera, A.R Fernandez-Alba, Occurrence of emerging pollutants in

urban wastewater and their removal through biological treatment followed

by ozonation, Water Res 44 (2010) 578–588, http://dx.doi.org/10.1016/j.

watres.2009.07.004

[19] M.S Kostich, A.L Batt, J.M Lazorchak, Concentrations of prioritized

pharmaceuticals in effluents from 50 large wastewater treatment plants in

the US and implications for risk estimation, Environ Pollut 184 (2014)

354–359, http://dx.doi.org/10.1016/j.envpol.2013.09.013

[20] M Huerta-Fontela, M.T Galceran, F Ventura, Occurrence and removal of

pharmaceuticals and hormones through drinking water treatment, Water

Res 45 (2011) 1432–1442, http://dx.doi.org/10.1016/j.watres.2010.10.036

[21] R Loos, R Carvalho, D.C Antonio, S Comero, G Locoro, S Tavazzi, B.

Paracchini, M Ghiani, T Lettieri, L Blaha, B Jarosova, S Voorspoels, K.

Servaes, P Haglund, J Fick, R.H Lindberg, D Schwesig, B.M Gawlik, EU-wide

monitoring survey on emerging polar organic contaminants in wastewater

treatment plant effluents, Water Res 47 (2013) 6475–6487, http://dx.doi.org/

10.1016/j.watres.2013.08.024

[22] S.S Caldas, C Rombaldi, J.L Arias, L.C Marube, E.G Primel, Multi-residue

method for determination of 58 pesticides, pharmaceuticals and personal

care products in water using solvent demulsification dispersive liquid–liquid

microextraction combined with liquid chromatography-tandem mass

spectrometry, Talanta 146 (2016) 676–688, http://dx.doi.org/10.1016/j.

talanta.2015.06.047

[23] T.S Oliveira, M Murphy, N Mendola, V Wong, D Carlson, L Waring,

Characterization of Pharmaceuticals and Personal Care products in hospital

effluent and waste water influent/effluent by direct-injection LC–MS-MS, Sci.

Total Environ 518–519 (2015) 459–478, http://dx.doi.org/10.1016/j.

scitotenv.2015.02.104

[24] L Vergeynst, A Haeck, P De Wispelaere, H Van Langenhove, K Demeestere,

Multi-residue analysis of pharmaceuticals in wastewater by liquid

chromatography-magnetic sector mass spectrometry: method quality

assessment and application in a Belgian case study, Chemosphere 119 (suppl)

(2015) S2–S8, http://dx.doi.org/10.1016/j.chemosphere.2014.03.069

[25] M.E Dasenaki, N.S Thomaidis, Multianalyte method for the determination of

pharmaceuticals in wastewater samples using solid-phase extraction and

liquid chromatography-tandem mass spectrometry, Anal Bioanal Chem 407

(2015) 4229–4245, http://dx.doi.org/10.1007/s00216-015-8654-x

[26] F.F Donato, M.L Martins, J.S Munaretto, O.D Prestes, M.B Adaime, R Zanella,

Development of a multiresidue method for pesticide analysis in drinking

water by solid phase extraction and determination by gas and liquid

chromatography with triple quadrupole tandem mass spectrometry, J Braz.

Chem Soc (2015), http://dx.doi.org/10.5935/0103-5053.20150192

[27] J.P Meador, A Yeh, G Young, E.P Gallagher, Contaminants of emerging

concern in a large temperate estuary, Environ Pollut 213 (2016) 254–267,

http://dx.doi.org/10.1016/j.envpol.2016.01.088

[28] R Gurke, M Rossler, C Marx, S Diamond, S Schubert, R Oertel, J Fauler,

Occurrence and removal of frequently prescribed pharmaceuticals and

corresponding metabolites in wastewater of a sewage treatment plant, Sci.

Total Environ 532 (2015) 762–770, http://dx.doi.org/10.1016/j.scitotenv.

2015.06.067

[29] I Ferrer, E.M Thurman, Analysis of 100 pharmaceuticals and their degradates

in water samples by liquid chromatography/quadrupole time-of-flight mass

spectrometry, J Chromatogr A 1259 (2012) 148–157, http://dx.doi.org/10.

1016/j.chroma.2012.03.059

[30] N.A Alygizakis, P Gago-Ferrero, V.L Borova, A Pavlidou, I Hatzianestis, N.S.

Thomaidis, Occurrence and spatial distribution of 158 pharmaceuticals, drugs

of abuse and related metabolites in offshore seawater, Sci Total Environ 541

(2016) 1097–1105, http://dx.doi.org/10.1016/j.scitotenv.2015.09.145

[31] B Petrie, J Youdan, R Barden, B Kasprzyk-Hordern, Multi-residue analysis of

90 emerging contaminants in liquid and solid environmental matrices by

ultra-high-performance liquid chromatography tandem mass spectrometry, J.

Chromatogr A 1431 (2016) 64–78, http://dx.doi.org/10.1016/j.chroma.2015.

12.036

[32] B Huerta, S Rodriguez-Mozaz, C Nannou, L Nakis, A Ruhi, V Acuna, S Sabater, D Barcelo, Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river, Sci Total Environ 540 (2016) 241–249, http://dx.doi org/10.1016/j.scitotenv.2015.05.049

[33] S Dresen, N Ferreiros, H Gnann, R Zimmermann, W Weinmann, Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP LC–MS/MS system and library searching, Anal Bioanal Chem 396 (2010) 2425–2434, http://dx.doi.org/10.1007/s00216-010-3485-2

[34] S Rühmland, A Wick, T.A Ternes, M Barjenbruch, Fate of pharmaceuticals in

a subsurface flow constructed wetland and two ponds, Ecol Eng 80 (2015) 125–139, http://dx.doi.org/10.1016/j.ecoleng.2015.01.036

[35] B Lopez, P Ollivier, A Togola, N Baran, J.P Ghestem, Screening of French groundwater for regulated and emerging contaminants, Sci Total Environ 518–519 (2015) 562–573, http://dx.doi.org/10.1016/j.scitotenv.2015.01.110 [36] Y Liu, C.E Uboh, L.R Soma, X Li, F Guan, Y You, J.W Chen, Efficient use of retention time for the analysis of 302 drugs in equine plasma by liquid chromatography-MS/MS with scheduled multiple reaction monitoring and instant library searching for doping control, Anal Chem 83 (2011) 6834–6841, http://dx.doi.org/10.1021/ac2016163

[37] F.C Poole, The Essence of Chromatography, Elsevier, Amsterdam, 2003.

[38] M Schulz, D L ¨offler, M Wagner, T.A Ternes, Transformation of the X-ray contrast medium iopromide In soil and biological wastewater treatment, Environ Sci Technol 42 (2008) 7207–7217, http://dx.doi.org/10.1021/ es800789r

[39] M Jekel, W Dott, A Bergmann, U Dunnbier, R Gnirss, B Haist-Gulde, G Hamscher, M Letzel, T Licha, S Lyko, U Miehe, F Sacher, M Scheurer, C.K Schmidt, T Reemtsma, A.S Ruhl, Selection of organic process and source indicator substances for the anthropogenically influenced water cycle, Chemosphere 125 (2015) 155–167, http://dx.doi.org/10.1016/j.chemosphere 2014.12.025

[40] T.A Ternes, C Prasse, C.L Eversloh, G Knopp, P Cornel, U Schulte-Oehlmann,

T Schwartz, J Alexander, W Seitz, A Coors, J Oehlmann, Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens, Environ Sci Technol 51 (2017) 308–319, http://dx.doi.org/10.1021/acs.est.6b04855 [41] J.H Gross, Mass Spectrometry, third edition ed., Springer Cham (CH), 2017.

[42] N Dyson, Peak distortion, data sampling errors and the integrator in the measurement of very narrow chromatographic peaks, J Chromatogr A 842 (1999) 321–340.

[43] J Funke, C Prasse, C Lütke Eversloh, T.A Ternes, Oxypurinol –a novel marker for wastewater contamination of the aquatic environment, Water Res 74 (2015) 257–265, http://dx.doi.org/10.1016/j.watres.2015.02.007 [44] Umweltbundesamt, Liste Der Nach GOW Bewerteten Stoffe, 2017 (Accessed

18 August 2017) https://www.umweltbundesamt.de/sites/default/files/ medien/374/dokumente/liste der nach gow bewerteten stoffe 201708 0.pdf [45] K Nodler, O Hillebrand, K Idzik, M Strathmann, F Schiperski, J Zirlewagen,

T Licha, Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle–a comparative study with selected beta-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame, Water Res 47 (2013) 6650–6659,

http://dx.doi.org/10.1016/j.watres.2013.08.034 [46] T Letzel, A Bayer, W Schulz, A Heermann, T Lucke, G Greco, S Grosse, W Schussler, M Sengl, M Letzel, LC–MS screening techniques for wastewater analysis and analytical data handling strategies: sartans and their transformation products as an example, Chemosphere 137 (2015) 198–206,

http://dx.doi.org/10.1016/j.chemosphere.2015.06.083 [47] S Huntscha, H.P Singer, C.S McArdell, C.E Frank, J Hollender, Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry, J Chromatogr A 1268 (2012) 74–83, http://dx.doi.org/10.1016/ j.chroma.2012.10.032

[48] K Sangkuhl, T.E Klein, R.B Altman, Clopidogrel pathway, Pharmacogenet Genomics 20 (2010) 463–465, http://dx.doi.org/10.1097/FPC.

0b013e3283385420 [49] R.N Carvalho, L Ceriani, A Ippolito, T Lettieri, Development of the First Watch List Under the Environmental Quality Standards Directive JRC Technical Report, European Commission, 2015.

Ngày đăng: 31/12/2022, 09:40

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] M.L. Farré, S. Pérez, L. Kantiani, D. Barceló, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, Trends Anal. Chem. 27 (2008) 991–1007, http://dx.doi.org/10.1016/j.trac.2008.09.010 Link
[2] S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ. Int. 35 (2009) 803–814, http://dx.doi.org/10.1016/j.envint.2008.10.008 Link
[3] D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ. Pollut. 163 (2012) 287–303, http://dx.doi.org/10.1016/j.envpol.2011.12.034 Link
[4] R.P. Deo, Pharmaceuticals in the surface water of the USA: a review, Curr.Environ. Health Rep. 1 (2014) 113–122, http://dx.doi.org/10.1007/s40572-014-0015-y Link
[6] Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg. Contam. 1 (2015) 14–24, http://dx.doi.org/10.1016/j.emcon.2015.07.001 Link
[7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res.72 (2015) 3–27, http://dx.doi.org/10.1016/j.watres.2014.08.053 Link
[8] E.N. Evgenidou, I.K. Konstantinou, D.A. Lambropoulou, Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:a review, Sci. Total Environ. 505 (2015) 905–926, http://dx.doi.org/10.1016/j.scitotenv.2014.10.021 Link
[9] Y. Pico, D. Barcelo, Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon, Anal.Bioanal. Chem. 407 (2015) 6257–6273, http://dx.doi.org/10.1007/s00216-015-8739-6 Link
[11] K. Yu, B. Li, T. Zhang, Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE pre-concentration, Anal. Chim. Acta 738 (2012) 59–68, http://dx.doi.org/10.1016/j.aca.2012.05.057 Link
[12] G.M. Bruce, R.C. Pleus, S.A. Snyder, Toxicological relevance of pharmaceuticals in drinking water, Environ. Sci. Technol. 44 (2010) 5619–5626, http://dx.doi.org/10.1021/es1004895 Link
[13] J. Lienert, K. Güdel, B.I. Escher, Screening method for ecotoxicological hazard assessment of 42 pharmaceuticlas considering human metabolism and excretory routes, Environ. Sci. Technol. 41 (2007) 4471–4478, http://dx.doi.org/10.1021/es0627693 Link
[14] V. Osorio, A. Larranaga, J. Acena, S. Perez, D. Barcelo, Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers, Sci. Total Environ. 540 (2016) 267–277, http://dx.doi.org/10.1016/j.scitotenv.2015.06.143 Link
[15] D.M. Cwiertny, S.A. Snyder, D. Schlenk, E.P. Kolodziej, Environmental designer drugs: when transformation may not eliminate risk, Environ. Sci. Technol. 48 (2014) 11737–11745, http://dx.doi.org/10.1021/es503425w Link
[5] Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ Khác
[10] C. Postigo, D. Barcelo, Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation, Sci. Total Environ Khác

🧩 Sản phẩm bạn có thể quan tâm