Adirectinjection, multi residue analytical method separated in two chromatographic runs was developed utilizing scheduled analysis to simultaneously quantify 154 compounds, 84 precursors and 70 transformation products (TPs)/metabolites.
Trang 1Full length article
Nina Hermes, Kevin S Jewell, Arne Wick, Thomas A Ternes∗
Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany
a r t i c l e i n f o
Article history:
Received 12 September 2017
Received in revised form 7 November 2017
Accepted 12 November 2017
Available online 13 November 2017
Keywords:
Chemicals of emerging concern
Liquid chromatography-mass spectrometry
Scheduled MRM
Direct injection
Water
a b s t r a c t
Adirectinjection,multiresidueanalyticalmethodseparatedintwochromatographicrunswasdeveloped utilizingscheduledanalysistosimultaneouslyquantify154compounds,84precursorsand70 transfor-mationproducts(TPs)/metabolites.Improvementsinthechromatographicdataquality,sensitivityand reproducibilitywereachievedbyschedulingtheanalysisofeachanalyteintopre-determinedretention timewindows.Thisstudyshowstheinfluenceofthescantimeonthedwelltimeandthenumberof datapointsperpeakaswellastheeffectontheprecisionofanalysis.Loweringthescantimedecreased dwelltimetoaminimalvalue,however,thishadnonegativeeffectsontheprecision.Increasingthe numberofdatapointsperpeakbydecreasingthescantimeledtomoreaccuratepeakshapes.Afinal setofparameterswaschosentoobtainaminimumof10datapointsperpeaktoguaranteeaccurate peakshapesandthusreproducibilityofanalysis.Avalidationofthemethodwasperformedfordifferent watermatricesyieldingverygoodlinearityforallsubstances,withlimitsofquantificationmainlyinthe lowertomidng/L-rangeandrecoveriesmainlybetween70and125%forsurfacewater,bankfiltrate
aswellasinfluentsandeffluentsofwastewatertreatmentplants.Theanalysisofenvironmental sam-plesandwastewaterrevealedtheoccurrenceofselectedprecursorsandTPsinallanalyzedmatrices: 95%ofthecompoundsinthetargetlistcouldbequantifiedinatleastonesample.TherelevanceofTPs andmetabolitessuchasvalsartanacidandclopidogrelacidwasalsoconfirmedbytheirdetectioninall aqueousmatrices.Wastewaterindicatorssuchasacesulfameanddiclofenacweredetectedatelevated concentrationsaswellassubstancessuchasoxipurinolwhichsofarwerenotinthefocusofmonitoring programs.Thedevelopedmethodcanbeusedforrapidanalysisofvariouswatermatriceswithoutany sampleenrichmentandcanaidtheassessmentofwaterqualityandwatertreatmentprocesses
©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
∗ Corresponding author.
E-mail address: ternes@bafg.de (T.A Ternes).
[2,3,5,10,11].Forcertainmicropollutantsharmfuleffectsonbiota
https://doi.org/10.1016/j.chroma.2017.11.020
0021-9673/© 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2ofpharmaceuticals andillicit drugsinwastewater Thenumber
maxi-mizethetDwell,whilealsoenablingsufficientdatacoverageforeach
2 Experimental
[39,40].TheselectionofTPsandmetabolites(70)wasperformed
widths
(tWindow)forschedulingweredefined.Acompletelistofmass
Trang 3Table 1
sMRM Parameters for both methods; Settling time: time to switch between the polarities; Pause time: time between analysis of two MRM transitions.
by:
data points per peak=Peak width [s] ∗ f (2)
tDwellcouldthenbecalculatedas:
tDwell[ms]=( tTarget,act[ms]
injections
concentration
Areacalibrationspike ∗100 (5)
sam-ple, Areasample the peak area of the original sample and Areacalibration,spike thepeakareaofthecalibrationsample
3 Results and discussion
Trang 4Table 2
Description of environmental samples analyzed; all samples taken in Germany; bio = biological treatment, PAC = Powered activated carbon, GAC = granulated activated carbon.
Surface water (SW) grab samples (n = 4) SW1: Landgraben (stream, Darmstadt),
SW2: Rhine (river, km 590.3 Koblenz), SW3: Moselle (river, km 2.0 Koblenz), SW4: Lake tegel (lake, Berlin) Bank filtrate (BF) grab samples (n = 3) [depth below ground/retention time/redox potential]
BF1: 12 m/1 month/238 mV BF2: 19 m/3 months/138 mV BF3: 25 m/5 months/120 mV
WWTP2: influent + bio + GAC WWTP3: influent + bio
tTarget alsolowerstDwell downtoaminimumvalueandchanges
intDwellarenotrecorded.Therefore,differenttTargetvalues(0.3s,
tDwellaswellasthenumberofdatapointsperpeakwerecalculated
howandiftDwell affectsprecisionofanalysisbyafivefold
tTargetthelowesttDwellwasreachedinthisperiod(Fig.1A).With
tTargetof0.3saminimumofaround5msforthecalculatedtDwell
min-imumtDwell isreached.ThisisthecasefortTarget=0.3sbetween
intDwellbutadecreaseindatapointsperpeak.Reachingthe mini-mumtDwelloftheinstrumentdidnotaffecttheanalysisnegatively
meth-odsandforalltTargetascanbeseenintheboxplotsinFig.1 and
tTarget,peakshapebecamemoreinaccurateandinseveralcasesthe
twindowandtDwell isimportanttoguaranteeaccuratepeakshape
Trang 5Fig 1. Method data M1 TST = t Target A: Calculated dwell time per transition over the chromatographic run time B-D: Correlation of data points per peak and chromatographic run time, straight line at data points per peak = 10 E: Boxplot over precision values for the selected t Target with the box showing the interquartile range (IQR) and the median (horizontal line), the whiskers give the range and the circles the outliers which are beyond 1.5 x IQR from the nearest quartile.
Trang 6O-Fig 2.Method data M2 TST = t Target A: Calculated dwell time per transition over the chromatographic run time B–D: Correlation of data points per peak and chromatographic run time, straight line at data points per peak = 10 E: Boxplot over precision values for the selected t Target with the box showing the interquartile range (IQR) and the median (horizontal line), the whiskers give the range and the circles the outliers which are beyond 1.5 x IQR from the nearest quartile.
Trang 7Table 3
Summary of validation results; SW = Surface water, BF = Bank filtrate, Inf = WWTP influent, Eff = WWTP effluent.
Precision (% RSD) Intra-day
(100 ng/L)
Instrument precision Intra-day
(1000 ng/L)
Inter-day (100 ng/L)
Inter-day (1000 ng/L)
Abs Recovery (%)
Spike-level 1000 ng/L
Rel Recovery (%)
Spike-level 1000 ng/L
BF1)
Trang 8fil-Fig 3.Overview of the number of detected CECs in each sample, grouped into for precursors and TPs/metabolites The method analyzes in total 154 compounds, 84 precursors and 70 TPs/metabolites; inf = influent, eff = effluent, adv.eff = effluent of advanced treatment step.
Table 4
Summary of quantitation results from the analysis of raw wastewater, tertiary and advanced treatment effluents, surface waters and bank filtrate partially impacted by wastewater.
Sample Detected > LOQ
(Total = 154)
Conc range [g/L]
Substance with highest conc.
Median Conc.
[g/L]
Average Conc.
[g/L]
Substances with conc >1000 ng/L
Note: For the calculation of the medians, concentrations below LOQ were defined as 1/2 LOQ.
Trang 94 Conclusions
Acknowledgment
Appendix A Supplementary data
020
References
[1] M.L Farré, S Pérez, L Kantiani, D Barceló, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, Trends Anal Chem 27 (2008) 991–1007, http://dx.doi.org/10 1016/j.trac.2008.09.010
[2] S Mompelat, B Le Bot, O Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ Int 35 (2009) 803–814, http://dx.doi.org/10.1016/j.envint.2008.10.008
[3] D.J Lapworth, N Baran, M.E Stuart, R.S Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ Pollut 163 (2012) 287–303, http://dx.doi.org/10.1016/j.envpol.2011 12.034
[4] R.P Deo, Pharmaceuticals in the surface water of the USA: a review, Curr Environ Health Rep 1 (2014) 113–122, http://dx.doi.org/10.1007/s40572-014-0015-y
[5] Y Luo, W Guo, H.H Ngo, L.D Nghiem, F.I Hai, J Zhang, S Liang, X.C Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci Total Environ 473–474 (2014) 619–641, http://dx.doi.org/10.1016/j.scitotenv.2013.12.065 [6] Q Sui, X Cao, S Lu, W Zhao, Z Qiu, G Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg Contam 1 (2015) 14–24, http://dx.doi.org/10.1016/j.emcon.2015.07.
001 [7] B Petrie, R Barden, B Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res.
72 (2015) 3–27, http://dx.doi.org/10.1016/j.watres.2014.08.053 [8] E.N Evgenidou, I.K Konstantinou, D.A Lambropoulou, Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters:
a review, Sci Total Environ 505 (2015) 905–926, http://dx.doi.org/10.1016/j scitotenv.2014.10.021
[9] Y Pico, D Barcelo, Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon, Anal Bioanal Chem 407 (2015) 6257–6273, http://dx.doi.org/10.1007/s00216-015-8739-6
[10] C Postigo, D Barcelo, Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation, Sci Total Environ 503–504 (2015) 32–47, http://dx.doi.org/10.1016/j.scitotenv.2014.06.019 [11] K Yu, B Li, T Zhang, Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE pre-concentration, Anal Chim Acta 738 (2012) 59–68, http://dx.doi.org/10.1016/j.aca.2012.05.057
[12] G.M Bruce, R.C Pleus, S.A Snyder, Toxicological relevance of pharmaceuticals
in drinking water, Environ Sci Technol 44 (2010) 5619–5626, http://dx.doi org/10.1021/es1004895
[13] J Lienert, K Güdel, B.I Escher, Screening method for ecotoxicological hazard assessment of 42 pharmaceuticlas considering human metabolism and excretory routes, Environ Sci Technol 41 (2007) 4471–4478, http://dx.doi org/10.1021/es0627693
[14] V Osorio, A Larranaga, J Acena, S Perez, D Barcelo, Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers, Sci Total Environ 540 (2016) 267–277, http://dx.doi.org/10.1016/j.scitotenv.2015.06.143 [15] D.M Cwiertny, S.A Snyder, D Schlenk, E.P Kolodziej, Environmental designer drugs: when transformation may not eliminate risk, Environ Sci Technol 48 (2014) 11737–11745, http://dx.doi.org/10.1021/es503425w
Trang 10[16] J Diamond, K Munkittrick, K.E Kapo, J Flippin, A framework for screening
sites at risk from contaminants of emerging concern, Environ Toxicol Chem.
34 (2015) 2671–2681, http://dx.doi.org/10.1002/etc.3177
[17] R Lopez-Serna, M Petrovic, D Barcelo, Direct analysis of pharmaceuticals,
their metabolites and transformation products in environmental waters using
on-line TurboFlow chromatography-liquid chromatography-tandem mass
spectrometry, J Chromatogr A 1252 (2012) 115–129, http://dx.doi.org/10.
1016/j.chroma.2012.06.078
[18] R Rosal, A Rodriguez, J.A Perdigon-Melon, A Petre, E Garcia-Calvo, M.J.
Gomez, A Aguera, A.R Fernandez-Alba, Occurrence of emerging pollutants in
urban wastewater and their removal through biological treatment followed
by ozonation, Water Res 44 (2010) 578–588, http://dx.doi.org/10.1016/j.
watres.2009.07.004
[19] M.S Kostich, A.L Batt, J.M Lazorchak, Concentrations of prioritized
pharmaceuticals in effluents from 50 large wastewater treatment plants in
the US and implications for risk estimation, Environ Pollut 184 (2014)
354–359, http://dx.doi.org/10.1016/j.envpol.2013.09.013
[20] M Huerta-Fontela, M.T Galceran, F Ventura, Occurrence and removal of
pharmaceuticals and hormones through drinking water treatment, Water
Res 45 (2011) 1432–1442, http://dx.doi.org/10.1016/j.watres.2010.10.036
[21] R Loos, R Carvalho, D.C Antonio, S Comero, G Locoro, S Tavazzi, B.
Paracchini, M Ghiani, T Lettieri, L Blaha, B Jarosova, S Voorspoels, K.
Servaes, P Haglund, J Fick, R.H Lindberg, D Schwesig, B.M Gawlik, EU-wide
monitoring survey on emerging polar organic contaminants in wastewater
treatment plant effluents, Water Res 47 (2013) 6475–6487, http://dx.doi.org/
10.1016/j.watres.2013.08.024
[22] S.S Caldas, C Rombaldi, J.L Arias, L.C Marube, E.G Primel, Multi-residue
method for determination of 58 pesticides, pharmaceuticals and personal
care products in water using solvent demulsification dispersive liquid–liquid
microextraction combined with liquid chromatography-tandem mass
spectrometry, Talanta 146 (2016) 676–688, http://dx.doi.org/10.1016/j.
talanta.2015.06.047
[23] T.S Oliveira, M Murphy, N Mendola, V Wong, D Carlson, L Waring,
Characterization of Pharmaceuticals and Personal Care products in hospital
effluent and waste water influent/effluent by direct-injection LC–MS-MS, Sci.
Total Environ 518–519 (2015) 459–478, http://dx.doi.org/10.1016/j.
scitotenv.2015.02.104
[24] L Vergeynst, A Haeck, P De Wispelaere, H Van Langenhove, K Demeestere,
Multi-residue analysis of pharmaceuticals in wastewater by liquid
chromatography-magnetic sector mass spectrometry: method quality
assessment and application in a Belgian case study, Chemosphere 119 (suppl)
(2015) S2–S8, http://dx.doi.org/10.1016/j.chemosphere.2014.03.069
[25] M.E Dasenaki, N.S Thomaidis, Multianalyte method for the determination of
pharmaceuticals in wastewater samples using solid-phase extraction and
liquid chromatography-tandem mass spectrometry, Anal Bioanal Chem 407
(2015) 4229–4245, http://dx.doi.org/10.1007/s00216-015-8654-x
[26] F.F Donato, M.L Martins, J.S Munaretto, O.D Prestes, M.B Adaime, R Zanella,
Development of a multiresidue method for pesticide analysis in drinking
water by solid phase extraction and determination by gas and liquid
chromatography with triple quadrupole tandem mass spectrometry, J Braz.
Chem Soc (2015), http://dx.doi.org/10.5935/0103-5053.20150192
[27] J.P Meador, A Yeh, G Young, E.P Gallagher, Contaminants of emerging
concern in a large temperate estuary, Environ Pollut 213 (2016) 254–267,
http://dx.doi.org/10.1016/j.envpol.2016.01.088
[28] R Gurke, M Rossler, C Marx, S Diamond, S Schubert, R Oertel, J Fauler,
Occurrence and removal of frequently prescribed pharmaceuticals and
corresponding metabolites in wastewater of a sewage treatment plant, Sci.
Total Environ 532 (2015) 762–770, http://dx.doi.org/10.1016/j.scitotenv.
2015.06.067
[29] I Ferrer, E.M Thurman, Analysis of 100 pharmaceuticals and their degradates
in water samples by liquid chromatography/quadrupole time-of-flight mass
spectrometry, J Chromatogr A 1259 (2012) 148–157, http://dx.doi.org/10.
1016/j.chroma.2012.03.059
[30] N.A Alygizakis, P Gago-Ferrero, V.L Borova, A Pavlidou, I Hatzianestis, N.S.
Thomaidis, Occurrence and spatial distribution of 158 pharmaceuticals, drugs
of abuse and related metabolites in offshore seawater, Sci Total Environ 541
(2016) 1097–1105, http://dx.doi.org/10.1016/j.scitotenv.2015.09.145
[31] B Petrie, J Youdan, R Barden, B Kasprzyk-Hordern, Multi-residue analysis of
90 emerging contaminants in liquid and solid environmental matrices by
ultra-high-performance liquid chromatography tandem mass spectrometry, J.
Chromatogr A 1431 (2016) 64–78, http://dx.doi.org/10.1016/j.chroma.2015.
12.036
[32] B Huerta, S Rodriguez-Mozaz, C Nannou, L Nakis, A Ruhi, V Acuna, S Sabater, D Barcelo, Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river, Sci Total Environ 540 (2016) 241–249, http://dx.doi org/10.1016/j.scitotenv.2015.05.049
[33] S Dresen, N Ferreiros, H Gnann, R Zimmermann, W Weinmann, Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP LC–MS/MS system and library searching, Anal Bioanal Chem 396 (2010) 2425–2434, http://dx.doi.org/10.1007/s00216-010-3485-2
[34] S Rühmland, A Wick, T.A Ternes, M Barjenbruch, Fate of pharmaceuticals in
a subsurface flow constructed wetland and two ponds, Ecol Eng 80 (2015) 125–139, http://dx.doi.org/10.1016/j.ecoleng.2015.01.036
[35] B Lopez, P Ollivier, A Togola, N Baran, J.P Ghestem, Screening of French groundwater for regulated and emerging contaminants, Sci Total Environ 518–519 (2015) 562–573, http://dx.doi.org/10.1016/j.scitotenv.2015.01.110 [36] Y Liu, C.E Uboh, L.R Soma, X Li, F Guan, Y You, J.W Chen, Efficient use of retention time for the analysis of 302 drugs in equine plasma by liquid chromatography-MS/MS with scheduled multiple reaction monitoring and instant library searching for doping control, Anal Chem 83 (2011) 6834–6841, http://dx.doi.org/10.1021/ac2016163
[37] F.C Poole, The Essence of Chromatography, Elsevier, Amsterdam, 2003.
[38] M Schulz, D L ¨offler, M Wagner, T.A Ternes, Transformation of the X-ray contrast medium iopromide In soil and biological wastewater treatment, Environ Sci Technol 42 (2008) 7207–7217, http://dx.doi.org/10.1021/ es800789r
[39] M Jekel, W Dott, A Bergmann, U Dunnbier, R Gnirss, B Haist-Gulde, G Hamscher, M Letzel, T Licha, S Lyko, U Miehe, F Sacher, M Scheurer, C.K Schmidt, T Reemtsma, A.S Ruhl, Selection of organic process and source indicator substances for the anthropogenically influenced water cycle, Chemosphere 125 (2015) 155–167, http://dx.doi.org/10.1016/j.chemosphere 2014.12.025
[40] T.A Ternes, C Prasse, C.L Eversloh, G Knopp, P Cornel, U Schulte-Oehlmann,
T Schwartz, J Alexander, W Seitz, A Coors, J Oehlmann, Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens, Environ Sci Technol 51 (2017) 308–319, http://dx.doi.org/10.1021/acs.est.6b04855 [41] J.H Gross, Mass Spectrometry, third edition ed., Springer Cham (CH), 2017.
[42] N Dyson, Peak distortion, data sampling errors and the integrator in the measurement of very narrow chromatographic peaks, J Chromatogr A 842 (1999) 321–340.
[43] J Funke, C Prasse, C Lütke Eversloh, T.A Ternes, Oxypurinol –a novel marker for wastewater contamination of the aquatic environment, Water Res 74 (2015) 257–265, http://dx.doi.org/10.1016/j.watres.2015.02.007 [44] Umweltbundesamt, Liste Der Nach GOW Bewerteten Stoffe, 2017 (Accessed
18 August 2017) https://www.umweltbundesamt.de/sites/default/files/ medien/374/dokumente/liste der nach gow bewerteten stoffe 201708 0.pdf [45] K Nodler, O Hillebrand, K Idzik, M Strathmann, F Schiperski, J Zirlewagen,
T Licha, Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle–a comparative study with selected beta-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame, Water Res 47 (2013) 6650–6659,
http://dx.doi.org/10.1016/j.watres.2013.08.034 [46] T Letzel, A Bayer, W Schulz, A Heermann, T Lucke, G Greco, S Grosse, W Schussler, M Sengl, M Letzel, LC–MS screening techniques for wastewater analysis and analytical data handling strategies: sartans and their transformation products as an example, Chemosphere 137 (2015) 198–206,
http://dx.doi.org/10.1016/j.chemosphere.2015.06.083 [47] S Huntscha, H.P Singer, C.S McArdell, C.E Frank, J Hollender, Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry, J Chromatogr A 1268 (2012) 74–83, http://dx.doi.org/10.1016/ j.chroma.2012.10.032
[48] K Sangkuhl, T.E Klein, R.B Altman, Clopidogrel pathway, Pharmacogenet Genomics 20 (2010) 463–465, http://dx.doi.org/10.1097/FPC.
0b013e3283385420 [49] R.N Carvalho, L Ceriani, A Ippolito, T Lettieri, Development of the First Watch List Under the Environmental Quality Standards Directive JRC Technical Report, European Commission, 2015.