In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions.
Trang 1j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Susanne Schweigera, Stephan Hinterbergera, Alois Jungbauera,b,∗
a Austrian Centre of Industrial Biotechnology, Vienna, Austria
b Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
a r t i c l e i n f o
Article history:
Received 9 August 2017
Received in revised form 23 October 2017
Accepted 24 October 2017
Available online 26 October 2017
Keywords:
Preparative chromatography
Peak analysis
Column qualification
Measurement precision
Packing variation
Column geometry
Aspect ratio
Column performance
a b s t r a c t
Inthebiopharmaceuticalindustry,pre-packedcolumnsarethestandardforprocessdevelopment,but theymustbequalifiedbeforeuseinexperimentalstudiestoconfirmtherequiredperformanceofthe packedbed.Columnqualificationiscommonlydonebypulseresponseexperimentsanddependshighly
ontheexperimentaltestingconditions.Additionally,thepeakanalysismethod,thevariationinthe3D packingstructureofthebed,andthemeasurementprecisionoftheworkstationinfluencetheoutcomeof qualificationruns.WhileafullbodyofliteratureonthesefactorsisavailableforHPLCcolumns,no com-parablestudiesexistforpreparativecolumnsforproteinchromatography.Wequantifiedtheinfluence
oftheseparametersforcommerciallyavailablepre-packedandself-packedcolumnsofdisposableand non-disposabledesign.Pulseresponseexperimentswereperformedon105preparativechromatography columnswithvolumesof0.2–20ml.Theanalyteacetonewasstudiedatsixdifferentsuperficial veloci-ties(30,60,100,150,250and500cm/h).Thecolumn-to-columnpackingvariationbetweendisposable pre-packedcolumnsofdifferentdiameter-lengthcombinationsvariedby10–15%,whichwasacceptable fortheintendeduse.Thecolumn-to-columnvariationcannotbeexplainedbythepackingdensity,but
isinterpretedasadifferenceinparticlearrangementinthecolumn.Sinceitwaspossibletodetermine differencesinthecolumn-to-columnperformance,weconcludedthatthecolumnswerewell-packed Themeasurementprecisionofthechromatographyworkstationwasindependentofthecolumnvolume andwasinarangeof±0.01mlforthefirstpeakmomentand±0.007ml2forthesecondmoment.The measurementprecisionmustbeconsideredforsmallcolumnsintherangeof2mlorless.Theefficiency
ofdisposablepre-packedcolumnswasequalorbetterthanthatofself-packedcolumns
©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC
BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Small scale columns of up to 20ml are frequently used in
biomanufacturingforprocess development,scale-downstudies,
explorationofthedesignspace,andtroubleshooting.For
prepar-ativeseparations,columnscaneitherbeboughtasready-to-use
pre-packedcolumnsortheyarepackedby theuserhimself.In
thelattercases,onlythebulkresinandtheemptycolumn
hard-wareareboughtfromthemanufacturer.Pre-packedpreparative
columnshavebecomepopularbecausethelaboriouscolumn
pack-ingcanbe outsourced[1] Pre-packed columnsareavailable in
non-disposableanddisposabledesigns.Non-disposablecolumns
aremadeofhighqualitymaterialssuchasglasswallsandcould
∗ Corresponding author at: University of Natural Resources and Life Sciences,
Department of Biotechnology, Muthgasse 18, 1190 Wien, Austria.
E-mail address: alois.jungbauer@boku.ac.at (A Jungbauer).
bere-packedwithadifferentmedium bythecustomer,similar
toself-packedcolumns In comparison, disposablecolumnsare madeofcheapermaterialssuchaspolypropyleneandcannotbe re-packed.Ifthecolumnlifetimeisover,theyarediscared Dis-posablecolumnsmustbesimpleandeasytomanufactureinorder
toyieldaffordablecolumns.Self-packedchromatographycolumns arecommonlytestedbeforeusetocheckthepackingqualityand
toidentifydefectsinordertoensurethereproducibilityofruns Frequently,pre-packedcolumnsareusedbycustomerswithonly limitedadditionalqualificationsincethecolumnsareassumedto havethesamepackingquality.However,onlylimitedinformation
isavailabletoprovethisassumptionforpreparative chromatog-raphycolumnsontheprocessdevelopmentscale[2].Differences
inthecolumn-to-columnperformancewereinvestigatedonlyfor process-scalechromatographycolumnswithdiameterslargerthan
40cm [3,4] Ample of literature is also available for analytical
[5–10],semi-preparativeand preparativeHPLCcolumns[11,12] The column-to-column variation is more pronounced than the
https://doi.org/10.1016/j.chroma.2017.10.059
0021-9673/© 2017 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/
Trang 2knowl-edge,acomparisonofthepackingqualityofpre-packedcolumns
tothatofself-packedcolumnshasnotbeenperformed
Thepackedbeditselfishighlyheterogeneousinboththeaxial
andradialdirections[13–15].Themorehomogeneousthepacking,
thelowerthepeakdispersion,measuredeitherasheightequivalent
toatheoreticalplate(H)orskewness[16].Itisknownthatthe
pack-ingmethod[17]andthepropertiesofthechromatographymedium
[2,18]influencethestructureofthepackedbed.Furthermore,the
material[19,20]andthesurfaceproperties[21]ofthecolumnwall
haveaninfluenceoncolumnperformancesincetheychangethe
packingbehavior.Thepackingdensityisanimportantfactorto
con-siderforevaluationofthecolumnperformance.Itinfluencespeak
retentionandwidth,sinceitisdirectlyrelatedtotheextraparticle
porosity.Apartfromthepackedbed,thecolumnperformancealso
dependsonthedesignofthecolumnheader[22]aswellasonfrits
andfilters[23]
Columnperformanceis typicallyqualified bypulseresponse
experimentsofasmallnon-interactingsolute.Forsmallmolecules,
themainfactorcontrollingcolumnperformanceishydrodynamic
dispersionand notmass transfer.Thisallows evaluation ofthe
column packing,which would beimpossible with a
biomacro-molecule.Itisassumedwhenthecolumnispackedwellenough
togivegood performance values for smallmolecules, it isalso
suitableforbiomacromolecules.Pulseresponseexperimentsare
highlydependentonthetypeofexperimentaltestingset-upused
andthemethodofpeakanalysis.Thetestingsolutehasanimpact
onthepeakshape [24]andthereforemustbekeptconstantfor
comparativestudies.Theamountoftheinjectedsample affects
thestatisticalmoments ofapeak [25]andpeakanalysisisalso
influenced by noise and baseline drift[26–29] Proper baseline
correctionandsettingoftheintegrationintervalsstillallowsthe
determinationofhighermomentswithagoodaccuracy[30].The
twomostcommonlyusedpeakanalysismethodsaredirect
numer-ical integration and peak fitting to a predefined function The
exponentially modified Gaussian (EMG)function [31,32] is the
mostpopularfunctionforpeakfittingandprovidesrobustresults
[33],especiallyforpeakswithhighexperimentalnoise.TheEMG
wasderivedbyconvolutionofaGaussianpeakwithanexponential
decayfunction.However,thereisnophysicalreason,whyapeak
shouldfollowtheshapeofanEMG[34].Therefore,itfailstofit
severecasesoftailingorfronting[34].Thepeakparameters
deter-minedbyEMGfittingcanonlybeasgoodasthefitandhencedonot
reflecttherealpeakpropertieswhenthefitisbad.Incomparison,
directnumericalintegrationprovidesthemostexactresults[33],
presumingthebaselinedriftismoderateandthedataaresmooth
andwithoutanynoise
Inthisstudy,weanalyzedtheperformanceof0.2–20.0ml
pre-packedandself-packedpreparativechromatographycolumnsof
differentlengthsanddiametersthathadbeenpackedwithdifferent
chromatographymediainordertoshedlightonthescale-downof
proteinchromatography.Thecolumnshavebeentestedby
injec-tionofanon-interactingsoluteatdifferentflowrates.Thepeak
wasevaluatedbynumericalintegrationandEMGfittingandthe
firstandsecondpeakmomentsandpeakskewnesswerecalculated
andstatisticallyevaluatedwithrespecttocolumn-to-column
vari-ation,measurementprecisionoftheworkstation,columntypes,
andcolumndimensions
2.1 Chemicals
TrisandsodiumchloridewerepurchasedfromMerckMillipore
and acetonewasobtainedfromVWR chemicals.Silicaparticles
(surfaceplain,size1m,50mg/mlsuspensioninwater)were pur-chasedfromKiskerBiotechGmbH&CoKG
2.2 Columns
Pre-packedMiniChromandValiChromcolumnsfromRepligen (previouslyAtoll)wereused.MiniChromcolumnsareofdisposable designwhileValiChromcolumnsarenon-disposablecolumns.The wallsoftheMiniChromcolumnsaremadeofpolypropylene,while theValiChromcolumnsaremadeofglass.Theadaptersofboth columntypesaredesigneddifferentlyandhavedifferentvolumes Thedisposablecolumnsareavailableat2–3pre-definedlengths
In contrast,thenon-disposablecolumnsarecustom-made with anyrequiredlength.Allpre-packedcolumnshavethesamefrit andfilteratthetopandatthebottomofthecolumn (polypropy-lene/polyethylenefibre,weight200g/m2,thickness0.42mm).The columnswerepackedwith4differentmedia:MabSelectSuRe(GE Healthcare,85mparticlediameter),ToyopearlGigacapS–650M (Tosoh, 75m particle diameter), Toyopearl SP–650M (Tosoh,
65m particle diameter) and Toyopearl Phenyl–650M (Tosoh,
65mparticlediameter).MabSelectSuReisacompressibleProtein
Amediumwithhighlycross-linkedagaroseasbackbone.Both, Toy-opearlGigacapS–650MandToyopearlSP–650Mmediaarestrong cationexchangemediawithamethacrylatebackbone.The Giga-capresinhasanadditionalpolymerlinkerbetweenthebackbone and the sulfopropyl functionalization Toyopearl Phenyl–650M hasthesamebackboneasSP–650Mbutisahydrophobic inter-action medium since it is functionalized with a phenyl ligand group.MiniChromcolumnsweresuppliedincompletesetsofall availablecolumnsizeswiththefollowingdiameter-length com-binations(inmm):5–10,5–25,5–50,8–20,8–50,8–100,11.3–50 and 11.3–100 Eachof those column dimensionswas delivered threetimespre-packedwitheitherMabSelectSuReorToyopearl GigacapS–650M.ThreeadditionalcolumnspackedwithMabSelect SuRewereavailableinthe11.3–50dimension.Eachcolumn dimen-sion was available once pre-packed with Toyopearl SP–650M and Toyopearl Phenyl–650M ValiChrom columns packed with MabSelect SuReand ToyopearlSP–650Mweredeliveredin the followingdiameter-lengthcombinations(inmm):5–100,5–150, 5–200,8–150,8–200,8–250,11.3–100, 11.3–150and11.3–200 ValiChromcolumns packedwithToyopearl Phenyl–650M were availableinthefollowingdiameter-lengthcombinations(inmm): 5–100,5–200,8–150,8–200,11.3–150and11.3–200
Additionally,wepackedcolumnsinourlaboratorywith MabSe-lectSuReandToyopearlGigacapS–650MusingTricorn5columns (GE Healthcare) They are designed as non-disposable columns witha diameterof 5mm Tricorn 5 filters (ethylene propylene diene/polyethylene,porosity7m,thickness1.35mm)wereused
atthetopandatthebottomofthecolumnswithoutanyfrits.The columnswerepackedaccordingtooptimizedpackingprotocols withbedheightsintherangeof12–162mm
The described columns will hereafter be referred to as pre-packeddisposable(MiniChrom), pre-packed non-disposable (ValiChrom),andself-packed(Tricorn)columns
2.3 Workstation
AnÄKTATMpure25M2chromatography system(GE Health-care)wasused,whichwascontrolledwithUnicornsoftware6.4 Theextracolumntubingbetweenthepumps,valves,and detec-torswasusedasprovidedbythemanufacturer.Thesampleswere injectedviaaninjectionloop.Theinjectionvalvehasatotal vol-umeof44landthecolumnvalveof110l.Thedetectioncell
of theUVdetector hasavolume of15l.The tubingfrom the column valvetothecolumnand backwasvaried basedonthe columntypeused.TubingswithanIDof0.25mmandalengthof
Trang 3thecolumnoutlettothecolumnvalvewereusedforpre-packed
disposablecolumns,forpre-packednon-disposablecolumnswith
diameter-lengthcombinationsof5–100and5–150andfor
self-packed columns For pre-packed non-disposable columns with
thediameter-lengthcombinationsof5–200,8–150,8–200,8–250,
11.3–100,11.3–150and11.3–200,thetubingfromthecolumnto
thecolumnvalvewas331mminlength
Theextracolumnvolumeandbandbroadeningwasdetermined
byinjections of acetonethrough theworkstation includingthe
tubingtoandfromthecolumn,whichwasconnectedbyaPEEK
con-nector,0.010”thru-holeand0.07lvolume.Theinfluenceofextra
columnvolumeandbandbroadeningisshowninthe
Supplemen-taryMaterial.Forverysmallcolumnstheextracolumnvolumewas
evenlargerthanthecolumnvolumeandalsoextracolumnband
broadeningwasveryhigh
2.4 Pulseresponseexperiments
Column performance was evaluated in triplicate by pulse
responseexperimentsatdifferentsuperficialvelocities(30,60,100,
150,250and500cm/h).Acetone(1%,v/v)wasusedforthepulse
Theinjectedpulsevolumeswere10lforallpre-packeddisposable
columns,pre-packednon-disposablecolumnswith5mmID,and
self-packedcolumns,50lforpre-packednon-disposablecolumns
with8mmID,and500lforpre-packednon-disposablecolumns
with11.3mmID.Forpulsesthroughtheextracolumnvolumeonly,
10lwereinjectedatalltheusedflowrates.Therunningbuffer
was50mMTris,0.9%(w/v)sodiumchloridepH8.0(pHadjusted
withhydrogenchloride)
2.5 Determinationofextraparticleporosity
The extra particle porosity of the pre-packed disposable
columnswasdeterminedbyinjectionofsilicananoparticles
(sur-faceplain)withadiameterof1000nm.Silicananoparticles(50l)
wereinjectedto theMabSelectSuRe columnsand 10l tothe
GigacapS–650Mcolumnswithaconcentrationof50mg/ml
Puri-fiedwaterwasusedasarunningbufferatasuperficialvelocityof
250cm/h.Theextracolumnvolumewasdeterminedbyinjections
throughtheworkstationandthetubingrangingtoandfromthe
columnattherespectiveflowrates.Theretentionvolumeatpeak
maximumwasusedforcalculationoftheextraparticleporosity
2.6 Peakanalysis
Thepeakswereautomaticallyanalyzedwithascriptwritten
inthestatisticalsoftwareR.Thescriptwasoptimizedforpeaks
obtainedbypulseresponseexperimentsandrunsstablyfordata
withonly one main peak and few smallerpeaks, which were
baselineseparated.Thepeakanalysisprocessstartedwithadata
reductionsteptoabout1000datapoints,thenseveralpeakswere
detectedandwerefittedtoalinearbaselinethroughnon-peakdata
points.Anotherpeakdetectionstepwasperformedwiththe
base-linecorrecteddata.Forpeakdetection,thedataweresmoothed
andthefirstderivativeofthedata,theslope,wascalculatedover
awindowsizeof30datapoints.Twothresholdlevelswereset:
level±1at±0.5%ofthemaximumpeakheightandlevel±2at±5%
ofthemaximumpeakheight.Assoonasthederivativeofthesignal
increasedabovelevel2andreturnedtolevel−2fromthe
nega-tive,apeakwasdetected.Thedetectedpeakthenstartedatlevel
1andendedatlevel−1.Apeakwasdefinedtohaveawidthof
atleast30datapointstomakethescriptmorerobust.For
cal-culationofthepeakmaximum,thedataweresmoothedinorder
tocorrectforsmallfluctuationsoftheoutputsignal,whichmight
biasthepeakmaximum.Thepeakwasintegratedfromthe
base-Fig 1.Schematic distinction between measurement precision (lower left panel, blue) and the packing variation (lower right panel, violet) Every column was tested
in triplicates The variation in the triplicate measurements (blue arrows) gives infor-mation on the measurement precision The difference between three individually packed columns gives information on the packing variation (violet arrows) Each cir-cle represents one measurement point The measurement precision was evaluated
in terms of mean (blue dashed lines) and standard deviation (blue error bars) for each column separately The packing variation was calculated based on the means
of the triplicate measurements of the individual columns (blue circles) Again, the mean (violet dashed line) and the standard deviation (violet error bar) were consid-ered (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
linebetweenitsdetectedstarttoitsendpoints.Thecalculation
ofthepeakmomentsisdescribedinSection3,Theory.Fordirect numericalintegration,thestatisticalmomentsofthepeakswere calculatedasstatedin[38].Themomentswerecorrectedforthe extracolumncontributionstopeakretentionandbroadening con-sideringthedifferenttubinglengthsforeachcolumndimension Finally,thesecondmomentwascorrectedforthedifferent injec-tionvolumesbysubstractingthecontributionoftherectangular injectionpulse
2.7 Determinationofmeasurementandcolumn-to-column packingvariation
Threeindependently packed pre-packeddisposablecolumns wereavailableatdifferentdimensionspackedwithMabSelectSuRe andGigacapS–650M.Allcolumnswerepackedinthesamecolumn typewiththesameoptimizedmethod,withtheonlydifference beingthestructureofthepackedbed.Everycolumnwastestedin triplicate.Consideringeachcolumnseparately,themeanandthe standarddeviationofthetriplicatemeasurementsdescribedthe measurementprecisionofthesystem(seeFig.1).Columnswere excludedfordeterminationofthemeasurementprecisionifonly duplicateorsinglemeasurementswereavailable.Thepacking vari-ationcanbecalculatedbycomparingtheresultsofthedifferent columns.Forwell-packedcolumns,thecolumn-tocolumn varia-tionishigherthanthesame-columnrepeatability[11].Thepacking variationwascalculatedbycomparingthemeanofthetriplicate measurementsforeachcolumn.Ifthemeanswereclosetogether, thepackingwasrathersimilar,sotheresultswereeasily repro-ducible.Asameasureofthevarianceofthecolumnmeans,and
soforthedifferentpackings,thetotalmeanwiththerespective standarddeviationwasdetermined(Fig.1).Alowstandard
Trang 4procedurewasdoneseparatelyforeachcolumndiameter-length
combinationforbothmedia.Onlycolumnsavailablethreetimes
withtriplicatemeasurementswereconsideredfortheanalysis(9
datapointsperdiameter-lengthcombination).Thecalculationof
themeasurementprecisionandthecolumn-to-columnvariation
wasmadeforthepeaksanalyzedbydirectnumericalintegration
2.8 Statisticaltesting
StatisticaltestsweredoneinthestatisticalsoftwareR.Thedata
weretestedfor statisticalsignificanceusinganalysisofvariance
(ANOVA),Student’st-tests,orlinearregression.Theassumption
ofnormaldistributionoftheresidualswasconfirmedusingthe
Kolmogorov-Smirnovtest.P-valuessmallerthan0.05were
con-sideredsignificant.Thep-valuesof pairedt-tests wereadjusted
withtheBonferroni method.Principalcomponent analysiswas
usedtodescribethelargestvariationsinthedata(Supplementary
Material).Thevariableswerecenteredandscaledfortheprincipal
componentanalysis
Thestatisticalmomentsofthepeaksweredeterminedbydirect
numericalintegration.Thefirstmoment(M1)isthemeanretention
volumeofa peak.Thesecondmoment(M2)isthevarianceofa
peakandisameasureofpeakwidtharounditscenterofgravity
Itisusedasameasureforcolumnefficiency.Thedeterminedfirst
andsecondmomentswerecorrectedbythecontributionsofthe
extracolumnvolumetothefirstandsecondmoments.Besides,the
secondmomentwascorrectedforcontributionsofthedifferent
injectionvolumesusingthefollowingequation
2inj= V
2
inj
12
whereinj2 isthepeak variance arisingfromtheinjectionof a
rectangularsampleplugandVinjistheinjectionvolume
Thethirdmoment(M3)isameasureforpeakasymmetry.The
degreeofasymmetryisdescribedbythepeakskewness,whichwas
calculatedby
skew= M3
Thepeakskewnessisnegativeforfrontingpeaks,zerofor
sym-metricalpeaks,andpositivefortailingpeaks.Theskewnesswas
notcorrectedforcontributionsoftheextracolumnvolume
Theheightequivalenttotheoreticalplate(H)wascalculatedby
H=M2∗L
whereListhecolumnlength.Columnefficiencywasevaluatedin
termsofreducedHETP(h),whichwasbycalculatedby
h= H
wheredpistheparticlediameterofthemedium.Thenominal
par-ticlediameterswereusedforthecalculationsasprovidedbythe
mediummanufacturers.Thereducedvelocityu’wascalculatedby
u’= u∗dp
D0
(8)
whereuisthesuperficialvelocityandD0isthemoleculardiffusivity
ofacetonewith1.16*10−5cm2/s
Fig 2. Number of runs for each of the chromatography media and column types.
Thecolumnaspectratiowascalculatedby Columnaspectratio= L
dc
(9) wheredcisthecolumndiameter.Thebedaspectratiowas calcu-latedby
Bedaspectratio= dc
dp
(10)
4.1 Datadescription
Columnperformancewasevaluatedbypulseresponse exper-imentsin termsoffirstandsecondmomentaswellasreduced HETPandpeakskewness.Theimpactofthesuperficialflow veloc-ity,chromatographymedium,columntype,columndiameter,and columnlengthoncolumnperformancewasassessed.Intotal,105 columnswereanalyzedin1884runswithonerunrepresenting one pulse response experiment (Fig 2) 1169 runs were per-formedwithpre-packeddisposablecolumns,428withpre-packed non-disposablecolumnsand287withself-packedcolumns.Three differentmediumtypes(cationexchange,hydrophobicinteraction andProteinA)wereanalyzedtoobtainmorerepresentativeresults overvariouschromatography mediaandtoevaluatedifferences betweenthedifferentmediatypes.Thedatastructureand variabil-itywasevaluatedinmoredetailbyprinciplecomponentanalysis (SupplementaryMaterial).Acomparisonofnumericalintegration and EMGfittingof thepeakshowedthat numericalintegration
ismoresuitableforfrontingandnon-exponentiallytailingpeaks (SupplementaryMaterial).Consequently,alltheshowndatawere analyzedbydirectnumericalintegration
TheVanDeemtercurveshowsthat masstransferistherate limitingmechanism,sincethereducedHETPincreasedwiththe reduced velocity (Fig.3A) Consequently,especially therunsat higherreducedvelocitieswillpartlybecontrolledbydiffusional limitations ofacetoneinside thebeads andnot onlyreflect the differences in thedifferentpackings The reduced HETP widely variedwithinonereducedvelocity,becausecolumnsofdifferent typesanddimensionswereevaluated.Afewreducedplateheights arenegativebecauseforsomeofthecolumnstheextracolumn bandbroadeningwashigherthanthetotalbandbroadening.This
isattributedtothestatisticalvariationoftheresults.Thepacked mediumalsoinfluencedthecolumnperformance.However,the datamightbebiasedsincesomemediawerealsoavailablein pre-packednon-disposableandself-packedformat,whichhadlonger columnlengthsandmighthavebeenmoredifficulttopack There-fore,onlythepre-packeddisposablecolumnswereconsideredfor analyzingtheimpactof thepackedmedium oncolumn
Trang 5perfor-Fig 3.Columnn performance for all columns (A) Van Deemter plot of all runs (B) Column performance of pre-packed disposable columns packed with the different media Data for a superficial velocity of 150 cm/h are shown (C) Variation of reduced HETP with column aspect ratio for all runs at all velocities (D) Variation of reduced HETP with bed aspect ratio for all runs at all velocities.
mance(Fig.3B).Asexpected,notallmediawereequallyeasyto
pack,asreflectedbysignificantlydifferentreducedHETPvalues
MabSelectSuRehadthelowestreducedHETPofabout4.5.Columns
packedwithMabSelectSuRearesoldveryfrequentlyandtherefore
representthemostoftenpackedcolumnsofthemanufacturer.It
isthereforereasonablethatahighlyoptimizedpackingprocedure
hasbeendevelopedovertime.Despitethereishardlyanytrend
visisblebetweenthereducedHETPandthecolumnaspectratio,a
linearmodelgaveasignificantslopeof0.1(Fig.3C).Consequently,
thereducedHETPinreasesslightlywiththeaspectratio.Thebed
aspectratiodoesnotchangewiththereducedHETP(Fig.3D), a
linearmodelfittedtothedatagaveanonsignificantslope
AsalreadyshownintheVanDeemterplot,thereducedvelocity
affectedthemeasuredperformanceparameters.Formoredetailed
analysis,thevariationofthemomentswithreducedvelocitywas
visualizedfordifferentcolumnvolumes.Asexpectedfromtheory,
thesecondpeakmomentincreasedwithcolumnvolumeandwith
thereducedvelocity(Fig.4A).Thereducedvelocitygreatly
influ-encedpeakwidth.Thisconfirmsthatpulseresponseexperiments
shouldalwaysberunatthesamereducedvelocityinorderthat
experimentsarecomparable
Thelargerthecolumn,themoresymmetricalarethepeaks(Fig
4B).Peaksofcolumnslargerthan5mlarerathersymmetrical,while
columnswithavolumesmallerthan1mldisplayedtailingdueto
thedominating extracolumneffects Thereducedvelocityused
fortesting hasa largeimpact onthemeasuredpeak skewness
forsmallcolumns.Consequently,theoutcomeofcolumn
perfor-mancetestscaneasilybechangedbychoosingadifferentreduced
velocity.Thelowertheflowrate,themoretailingoccurs.Thesame
effectwasobservedforpeaksthroughtheworkstationwithno col-umnconnected(datanotshown).Duetothelargeinfluenceofthe workstationinsmallcolumns,thepeakshapewassimilartopeaks measuredintheextracolumnvolume
4.2 MeasurementprecisionoftheÄKTApure25workstation
Theworkstationwillinfluenceeverypulseresponseexperiment sincethepulsewillnotonlybroadeninthecolumnitselfbutalso
intheextracolumnvolume.However,apartfromtheadditional bandbroadeningintroducedbytheworkstation,itwillalsoadda certainvariationtotheresults.Apulseresponseexperimentdone severaltimeswiththesamecolumnonthesameworkstationwill yieldslightlydifferentresultseachtime.Knowingthe measure-mentprecisionoftheworkstationallowstheevaluationofwhether
adifferenceinpeak parametersissignificantorjust withinthe typicaldatavariationrange
Based on the triplicate measurements of all pulse response experiments,wewereabletocalculatethemeasurementprecision
oftheusedworkstation.Themeanandthecorrespondingstandard deviationofthetriplicatemeasurementsforthefirstandthesecond momentwerecalculatedandplottedagainsteachother.Novisual trendbetweentheabsolutemagnitudeofthemeananditsstandard deviationcouldbeobservedforthefirstmoment(Fig.5A).Alinear modelfittedtothedataconfirmedanon-significantslope,meaning thatthestandarddeviationofthefirstmomentwasindependent
ofthesizeofthefirstmomentandthereforecouldbeconsidered constant.Consequently,evencolumnslargerthantheonesusedin thisstudywouldhavethesamestandarddeviation.Thisisa
Trang 6rea-Fig 4.Variation of column performance parameters with column volume and reduced velocity (A) Second Moment (B) Skewness.
Fig 5.Measurement precision of the ÄKTA pure 25 M2 workstation Variation of the standard deviation (SD) with the mean of the first (A) and second (B) moment of all runs at all velocities available in triplicates (565 data points) 95% of the data points are below the black dashed line.
sonableproposalsincethemeasurementprecisionoriginatesfrom
theworkstationitselfandnotfromthecolumnandthereforestays
constantirrespectiveofthecolumnvolume
Thestandarddeviationofthesecondmomentdependsonthe
sizeofthesecondmoment,sincetheslopeofalinearmodel
fit-tedtothedataofthesecondmomentwassignificant(Fig.5B)
However,thepredictedslopeissmall(0.014)andthereforeonly
aslightdependenceofthestandarddeviationwiththepeakwidth
wasobserved.Thelargerthecolumndiameter,thehigherthe
stan-darddeviationofthesecondmoment.Consequently,thestated
measurementprecisionshouldnotbeusedforextrapolationsto
columnswithanevenlargerdiameter
ThemeasurementprecisionoftheÄKTApure25workstation
issmallerthan±0.01mlforthefirstmomentand±0.007ml2for
thesecondmomentfor95%ofthedatapoints,whereasthelatter
parametermightbehigherifcolumnvolumeslargerthan20ml
areused.Theerrorrangesweregivenfor95%ofthedatapointsin
ordertogivemorereliableestimatesrepresentingthewholedata
rangeandnotthemean.TheRSDofthefirstmomentdependedon
thecolumnvolumeandwassmallerthan0.75%forcolumnslarger
than2ml.TheRSDofthesecondmomentwassmallerthan7.5%
forcolumnslargerthan2ml.However,theRSDmaybeupto25%
forcolumnssmallerthan1ml.Thepackedmediumhadnoeffect
onthemeasurementprecisionofthefirstandsecondmoment
4.3 Column-to-columnpackingvariation
Itiscommonlyassumedthatpre-packedcolumnshavethesame packingquality,sincetheyarepackedbyexpertswitha standard-izedpackingmethod.Thisisespeciallytrueforcolumnsofthesame batch,whichwerepackedsimultaneously.Weexaminedwhether thisassumptionwasvalidforpre-packeddisposablecolumns.We focusedonthevariationinthefirstandsecondmomentcaused
bythepackingofcolumnsof thesame size.Toverify,whether thecolumn-to-columnpackingvariationissignificantcompared
tothemeasurementprecision,wemadeanANOVAanalysison everycolumnlength-diametercombinationatacertainvelocity The column-to-column packingvariation wassignificantfor 59 outof70testedlength-diameterandvelocitycombinations.This meansthatthemajorityofthecolumnsandvelocities,thevariation betweenthedifferentpackingswaslargeenoughtobeidentified
assuchontopof themeasurementprecision.For theother11 columnsandvelocities,themeasurementprecisionmighteitherbe toolowtoidentifydifferencesinthepackingbetweenthedifferent columnsorthecolumnpackingswerethesame.Thecalculationof thecolumn-to-columnpackingvariationisdescribedinsection2.7
inmoredetail
Theabsolutestandarddeviationofthefirstandsecondmoment causedbythepackingdifferencesbetweenthecolumnsincreased withthe meanfirst and thesecond moment,respectively
Trang 7(sig-Fig 6.Packing variation of pre-packed disposable columns Variation of the relative SD (RSD) expressed as the % of the mean for the first (A) and the second (B) moment of all runs available for three columns of the same size (70 data points) The data are shown for all superficial velocities.
nificantslopeofalinearmodel)(datanotshown).Therefore,we
consideredtheRSD(givenin%ofthemean).TheRSDofthefirst
momentwassmallerthan1%ofthemeanforallcolumnslarger
than1ml(Fig.6A),sowecanconcludethatthevariationin
pack-inghadnoimpactonthefirstmoment.TheRSDofthefirstmoment
decreasedwiththemean,whichcorrelateswiththecolumn
vol-ume.Consequently,thisparametershouldnotbehigherthan1%for
columnvolumesgreaterthanthosetested.TheRSDofthesecond
momentdidnotincreasewiththemeansincealinearmodelonly
gaveasignificantinterceptandnosignificantslope,andcan
there-forebeconsideredconstant(Fig.6B).Themajorityofthecolumns
showedaRSDofaround10–15%.Comparedtothefirstmoment,the
relativestandarddeviationofthesecondmomentwashigh.This
wasanexpectedoutcomesincethepackingqualitymainlyaffects
peakshapeandwidthandnotthepositionofthepeakmaximum
Theverysmallcolumnsshowthehighestpackingvariationofupto
20–30%buttheyalsoshowthelowestpackingvariationoflessthan
5%.Toourknowledge,itismoreeasytoreproduciblypackwider
columns,whichisthereasonwhytheverythincolumnsshowa
higherpackingvariation
WhenthevariationintheHETPwascalculated,wefoundamean
RSDof15%foralldatapoints.Thisvaluewascomparabletothe14%
RSDfoundforsemi-preparativeHPLCcolumnsand30%for
prepar-ative HPLC columns[11] Therefore, the disposablepre-packed
columnscanbeconsideredtobepackedreproduciblywithinthe
expectedrange,despitetheRSDis1%forthefirstand10–15%forthe
secondmoment.Ifhigherstandardswererequiredbycustomers,
forexampleapackingvariationoflessthan10%morethanhalf
ofthecolumnswouldneedtobediscarded,whichinturnwould
dramaticallyincreasethecostsofpre-packedcolumns.Considering
thatonlythemeasurementprecisioncanleadtoavariationofthe
secondmomentof7.5%,theobservedcolumn-to-columnpacking
variationcanbeconsideredacceptable
4.4 Influenceofcolumngeometryonpackingvariation
Wecomparedthecolumn-to-columnpackingvariationof
pre-packeddisposablecolumnswithdifferentdimensions
(diameter-lengthinmm:5–10,5–25,5–50,8–20,8–50,8–100,11.3–50and
11.3–100)toelucidatetheinfluencesofcolumnvolumeandaspect
ratioonthepackingvariation.Wealsoevaluatedwhetherone
col-umntype canbepackedtothesame standardsofqualitywith
variousmedia.Thisfactormightbeimportantformedium
screen-ingstudies,wheretheimpactofthemediumshallbeevaluated
insteadofthepackingquality.Wefocusedonevaluatingthe
vari-ationinthesecondpeakmomentsincethisparameterishighly affectedbypackingdifferencesasshowninsection4.5
Thediameter-lengthcombinationofthecolumnssignificantly influenced the column-to-column packing variation, while the medium type didnot (Fig.7A).Consequently, the columnsare equallypackedregardlessofthemedium.TheRSDofthesecond momentvariesbetween7and20%formostdiameter-length com-binations.Thehighvariationisattributedtothedifferentvelocities evaluated,since especially at highvelocities alsomass transfer contributestobandbroadening.Notrendwasseenbetweenthe packing variation and the column volume or the aspect ratio However,somediameter-lengthcombinationswereeasiertopack reproduciblyasillustratedbycolumnswith8mmIDand20and
50mm height This observation may be attributed todifferent packingproceduresusedfordifferentcolumnsizes.Especiallythe columnswith5mmIDshowahighpackingvariation
Theextraparticleporositywasdetermined(Fig.7B)toevaluate whethercolumn-to-columnpackingvariationwasduetodifferent packingdensity.However,thepackingdensitywasnotthecause forthevariationofthesecondmomentofthedifferentcolumns Whentheextraparticleporosityvariedwidely,thepackingcanstill
berepeatable.Forexample,thevariationinextraparticle poros-ity washigh for thesmall columns,even though theyshowed thesamepackingvariationasthelargeones.Hence,thereason forlargecolumn-to-columnvariationisexplainedbytheparticle arrangementinside thecolumn, sinceallotherfactorscouldbe excluded.Differencesinthepackingofprocessscale chromatogra-phycolumnswerealsoobservedby[4]andtheauthorsclaimedthat thesedifferencesdonothaveanimpactontheactualseparationof proteins
Whenwecomparethepackingvariationwiththecolumn per-formance measured as reduced HETP (Fig 7C), no correlation betweenpackingvariationandpackingqualitycanbeseen.Ahigh extraparticleporositydoesnotresultinlowcolumnperformance, whichwasalsoshownbyStanleyetal.[11]forHPLCcolumns.They alsoclaimedthatitisonlypossibletodeterminethe column-to-columnefficiencyforwell-packedcolumns.Sinceitwaspossible
todeterminedifferencesinthecolumn-to-columnefficiencywe canconcludethatthecolumnsarewell-packed
4.5 Influenceofcolumntypeoncolumnefficiency
Three different column types (pre-packed disposable, pre-packed non-disposableand self-packedcolumns) were investi-gated.Thepre-packeddisposablecolumnsaremadeof polypropy-lene,whereasthepre-packednon-disposablecolumnsareofhigher
Trang 8Fig 7.Influence of column diameter and length on the column-to-column packing variation and packing quality of pre-packed disposable columns (A) Relative standard deviation (RSD) of the second moment caused by the packing variation for the differently packed columns of various column diameter-length combinations packed with Gigacap S–650 M and MabSelect SuRe at all evaluated superficial velocities (B) Extra particle porosity () of the pre-packed disposable columns packed with MabSelect SuRe The error bars show the standard deviation between three equally packed columns * Standard deviation is exceptionally high because one of the three columns was treated under harsh conditions before the extra particle porosity was determined (C) Absolute variation in reduced HETP caused by the packing variation for columns of various diameter-length combinations packed with Gigacap S–650 M and MabSelect SuRe at all evaluated superficial velocities.
qualitywitha column wallmade ofglass Alsotheself-packed
columnshadaglasswallandweredesignedforre-use
ColumnswithanIDof11.3mmandlengthof100mmwere
com-paredtoelucidatethedifferencesbetweenpre-packeddisposable
and non-disposablecolumnssincethis wastheonly size
avail-ableinbothcolumntypes.Wefoundasignificantdifferenceinthe
reducedHETPbetweenthedisposableandnon-disposablecolumns
packedwithSP–650M,butnodifferencefor thosepackedwith
MabSelectSuRe(Fig.8A).Forcomparisonofthepre-packedwith
theself-packedcolumns,onlycolumnswithanIDof5mmanda
maximumlengthof60mmwereconsidered.Thisselectionallowed
ustocomparecolumnsofthesamedimensionsandtherebyavoids
biasesofeasierorhardertopackdimensions.Self-packedcolumns
packedwithMabSelectSuResignificantlydifferedfrompre-packed
disposablecolumnsbutshowedthesameefficiencywhenpacked
withGigacapS–650M(Fig.8B).However,itisworthnotingthatthe
packingprocedurewasoptimizedandthecolumnefficiencymight
beworseforcolumnswhicharenotwellpacked
Thediverseeffectsweobservedfordifferentmediamayoccur
becauseofchangesinthepackingbehaviorofthemediabetween
thedisposableandnon-disposablecolumnsandmayberelatedto
variationsintheirsurfacechargesandroughness
However, for HPLC columns it wasshown that the column
wallmaterialdoesnotinfluencecolumnefficiency[35]
Alterna-tively,thepackingoperatormighthaveaninfluenceonthecolumn
efficiencysincethedifferentcolumntypeswerepackedby
differ-entoperators.Besides,differentpackingsolutionsandprocedures
mighthavebeenused.Despitethedifferencesweobservedinpeak
shapebetweenthedifferentcolumntypes,thesedifferenceswere
alsopresentforthosemedia,wheretheefficiencyofbothcolumn
typeswasthesame.Thesameistrueconsideringthespecificdesign
ofthetopandbottomadapterandofthefilterandfritsinthe
col-umnresultingindifferentextracolumnvolumes.Furthermore,the volumeoftheadaptersofthepre-packednon-disposablecolumns waslargerthanthoseofthepre-packeddisposablecolumnsand stilltheyshowedbetterefficiency
Ingeneral,noclearevidenceofthesuperiorityofonecolumn typewasfound.Thespecificcombinationofacertainmediumand columntypeprobablyhasaninfluenceoncolumnefficiency.Forthe evaluatedmediaandcolumns,pre-packednon-disposablecolumns arebetterorequallypackedthanpre-packeddisposablecolumns Pre-packeddisposablecolumnswerebetterthanorequalin effi-ciencytothe self-packedcolumns.However,these resultsmay notbeapplicabletocolumnsofdifferentdimensionsorcolumns packedwithdifferentmedia
Statistical analysis of peaks made on independently packed columnsshowedasignificantinfluenceofthedifferentpackings comparedtothestandardfluctuationintroducedbythe measure-ment precisionof theworkstation The measurement precision
of theÄKTA pure25 workstation wasdetermined bytriplicate measurements for each column and was quantified as smaller than±0.01mlforthefirstmomentand±0.007ml2 forthe sec-ondmomentfor95%ofalldatapointsmeasured.Theimpactofthe workstationontheexperimentsdependsonthecolumnvolume evaluated.Whilethemeasurementprecisionisnegligibleforlarge columns,itshoulddefinitelynotbeneglectedforsmallcolumns, since thevariation is highcompared totheperformanceof the packedbed
The column-to-column variation of disposable pre-packed columnsdependsoncolumnvolumeandconsequentlyis consid-eredintermsofrelativestandarddeviation(RSD).TheRSDbetween
Trang 9Fig 8.Influence of column type on column efficiency (A) Reduced HETP for pre-packed disposable and non-disposable columns with 11.3 mm ID and 10 mm bed height tested at all superficial velocities (B) Reduced HETP for pre-packed disposable and self-packed columns with a bed height lower than 60 mm tested at all superficial velocities.
columnsofthesamedimensionswaslowerthan1%forthefirst
momentandabout10–15%forthesecondmoment.Theonly
dif-ferencebetweentheevaluatedcolumnsisthepacking.Wefound
thatthevariationcannotbeexplainedbythepackingdensity,but
isratherattributedtotheheterogeneityinparticlestructure in
thecolumn.Thecolumm-to-columnpackingvariationofthe
sec-ondmomentissmall,consideringthatthemeasurementprecision
oftheworkstationaloneisaround7.5%forcolumnslargerthan
2mlandupto25%forcolumnssmallerthan2ml.Thevariation
ofthefirstandsecondmomentsleadstoaresultingvariationin
HETPof about15%.Thisisthevariation for anunretained
ace-tonepulseauserof pre-packedcolumnscanexpectif hebuys
twocolumnsofthesamedimensions.Consideringthatcolumns
aretypicallyusedwithretainedsolutes,which aremainlymass
transferlimited,hardlyanychangeinperformanceisexpected.For
theevaluatedcolumndimensionsandmedia,pre-packed
dispos-ablecolumnshadahigherorequalcolumnefficiencycomparedto
self-packedcolumns
Acknowledgements
ThisworkhasbeensupportedbytheFederalMinistryof
Sci-ence,ResearchandEconomy(BMWFW),theFederalMinistryof
Traffic,InnovationandTechnology(bmvit),theStyrianBusiness
PromotionAgencySFG,theStandortagenturTirol,theGovernment
ofLowerAustriaandZIT−TechnologyAgencyoftheCityofVienna
throughtheCOMET-FundingProgrammanagedbytheAustrian
ResearchPromotionAgencyFFG
Supplementarydataassociatedwiththisarticlecanbefound,
intheonlineversion,athttps://doi.org/10.1016/j.chroma.2017.10
059
References
[1] S Grier, S Yakabu, Prepacked chromatography columns: evaluation for use in
pilot and large-scale bioprocessing, Bioprocess Int 14 (2016).
[2] T Scharl, C Jungreuthmayer, A Dürauer, S Schweiger, T Schröder, A.
Jungbauer, Trend analysis of performance parameters of pre-packed columns
for protein chromatography over a time span of ten years, J Chromatogr A
2016 (1465) 63–70, http://dx.doi.org/10.1016/j.chroma.2016.07.054
[3] J Moscariello, G Purdom, J Coffman, T.W Root, E.N Lightfoot, Characterizing
the performance of industrial-scale columns, J Chromatogr A 908 (2001)
[4] M.A Teeters, I Qui ˜ nones-García, Evaluating and monitoring the packing behavior of process-scale chromatography columns, J Chromatogr A 1069 (2005) 53–64, http://dx.doi.org/10.1016/j.chroma.2005.02.051
[5] M Kele, G Guiochon, Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns IV Results obtained with Luna C18 (2) columns, J Chromatogr A 869 (2000) 181–209 [6] M Kele, G Guiochon, Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns V Results obtained with Vydac 218TP C18 columns, J Chromatogr A 913 (2001) 89–112 [7] M Kele, G Guiochon, Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns I.
Experimental protocol, J Chromatogr A 830 (1999) 41–54.
[8] M Kele, G Guiochon, Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns III Results obtained with Kromasil C18 columns, J Chromatogr A 855 (1999) 423–453 [9] M Kele, G Guiochon, Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns II Results obtained with symmetry C18 columns, J Chromatogr A 830 (1999) 55–79 [10] A Felinger, M Kele, G Guiochon, Identification of the factors that influence the reproducibility of chromatographic retention data, J Chromatogr A 913 (2001) 23–48, http://dx.doi.org/10.1016/S0021-9673(00)01044-X [11] B.J Stanley, C.R Foster, G Guiochon, On the reproducibility of column performance in liquid chromatography and the role of the packing density, J Chromatogr A 761 (1997) 41–51, http://dx.doi.org/10.1016/S0021-9673(96)00804-7
[12] C Laub, Reproducible preparative liquid chromatography columns, J Chromatogr A 992 (2003) 41–45, http://dx.doi.org/10.1016/S0021-9673(03)00212-7
[13] J.H Knox, G.R Laird, P.A Raven, Interaction of radial and axial disperion in liquid chromatography in relation to the infinite diameter effect, J.
Chromatogr Sci 122 (1976) 129–145.
[14] R.A Shalliker, B.S Broyles, G Guiochon, Axial and radial diffusion coefficients
in a liquid chromatography column and bed heterogeneity, J Chromatogr A
994 (2003) 1–12, http://dx.doi.org/10.1016/S0021-9673(03)00311-X [15] V Wong, R.A Shalliker, G Guiochon, Evaluation of the uniformity of analytical-size chromatography columns prepared by the downward packing
of particulate slurries, Anal Chem 76 (2004) 2601–2608, http://dx.doi.org/10 1021/ac030391a
[16] S Khirevich, A Höltzel, A Seidel-Morgenstern, U Tallarek, Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios, J Chromatogr A 1262 (2012) 77–91, http://dx.doi.org/10.1016/j.chroma.2012.08.086
[17] G Guiochon, T Farkas, H Guan-Sajonz, J.-H Koh, M Sarker, B.J Stanley, T Yund, Consolidation of particle beds and packing of chromatographic columns, J Chromatogr A 762 (1997) 83–88 https://doi.org/10.1016/S0021-9673(96)00642-5
[18] A Daneyko, A Höltzel, S Khirevich, U Tallarek, Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings, Anal Chem 83 (2011) 3903–3910, http://dx.doi.org/10.1021/ac200424p [19] T Takeuchi, D Ishii, High-performance micro packed flexible columns in liquid chromatography, J Chromatogr A 213 (1981) 25–32, http://dx.doi.org/ 10.1016/S0021-9673(00)80628-7
[20] T Takeuchi, D Ishii, Ultra-micro high-performance liquid chromatography, J Chromatogr A 190 (1980) 150–155, http://dx.doi.org/10.1016/S0021-9673(00)85524-7
[21] J.J Kirkland, J.J DeStefano, The art and science of forming packed analytical high-performance liquid chromatography columns, J Chromatogr A 1126 (2006) 50–57, http://dx.doi.org/10.1016/j.chroma.2006.04.027
Trang 10[22] Q.S Yuan, A Rosenfeld, T.W Root, D.J Klingenberg, E.N Lightfoot, Flow
distribution in chromatographic columns, J Chromatogr A 831 (1999)
149–165, http://dx.doi.org/10.1016/S0021-9673(98)00924-8
[23] R.A Shalliker, B.S Broyles, G Guiochon, On-column visualization of sample
migration in liquid chromatography, Anal Chem 72 (2000) 323–332, http://
dx.doi.org/10.1021/ac990370+
[24] O Kaltenbrunner, P Watler, S Yamamoto, Column qualification in process
ion-exchange chromatography, in: I Endo, T Nagamune, S Katoh, T.
Yonemoto (Eds.), Biosep Eng., 1st edition, Elsevir, 2000, pp 201–206.
[25] K Yamaoka, T Nakagawa, Moment analysis for isolation of intrinsic column
efficiencies in gas chromatography, Anal Chem 47 (1975) 2050–2053.
[26] D.J Anderson, R.R Walters, Effect of baseline errors on the calculation of
statistical moments of tailed chromatographic peaks, J Chromatogr Sci 22
(1984) 353–359.
[27] S.N Chesler, S.P Cram, Effect of peak sensing and random noise on the
precision and accuracy of statistical moment analyses from digital
chromatographic data, Anal Chem 43 (1971) 1922–1933, http://dx.doi.org/
10.1021/ac60308a005
[28] T Petitclerc, G Guiochon, Determination of the higher moments of a
nonsymmetrical chromatographic signal, J Chromatogr Sci 14 (1976)
531–535.
[29] E Grushka, M.N Myers, P.D Schettler, J.C Giddings, Computer
characterization of chromatographic peaks by plate height and higher central
moments, Anal Chem 41 (1969) 889–892, http://dx.doi.org/10.1021/
ac60276a014
[30] H Gao, P.G Stevenson, F Gritti, G Guiochon, Investigations on the calculation
of the third moments of elution peaks I: composite signals generated by adding up a mathematical function and experimental noise, J Chromatogr A
1222 (2012) 81–89, http://dx.doi.org/10.1016/j.chroma.2011.12.015 [31] H.M Gladney, B.F Dowden, J.D Swalen, Computer-assisted gas-liquid chromatography, Anal Chem 41 (1969).
[32] I.G McWilliam, H.C Bolton, Instrumental peak distortion II Effect of recorder response time, Anal Chem 41 (1969) 1762–1770, http://dx.doi.org/10.1021/ ac60282a002
[33] F Gritti, G Guiochon, Accurate measurements of peak variances: importance
of this accuracy in the determination of the true corrected plate heights of chromatographic columns, J Chromatogr A 1218 (2011) 4452–4461, http:// dx.doi.org/10.1016/j.chroma.2011.05.035
[34] F Gritti, G Guiochon, Mass transfer kinetics, band broadening and column efficiency, J Chromatogr A 1221 (2012) 2–40, http://dx.doi.org/10.1016/j chroma.2011.04.058
[35] R.J.M Vervoort, E Ruyter, A.J.J Debets, H.A Claessens, C.A Cramers, G.J De Jong, Influence of batch-to-batch reproducibility of Luna C18(2) packing material, nature of column wall material, and column diameter on the liquid chromatographic analysis of basic analytes, J Sep Sci 24 (2001) 167–172, http://dx.doi.org/10.1002/1615-9314(20010301)24:3<167:AID-JSSC167>3.0 CO;2-9
[38] E Grushka, Characterisation of exponentially-modified Gaussian peaks in chromatography, Anal Chem 44 (1972) 1733–1738 https://doi.org/10.1021/ ac60319a011