We describe a comprehensive evaluation of 12 Protein A stationary phases for capture of biotherapeutics. We first examine the morphological properties of the stationary phases using a variety of orthogonal techniques including electron microscopy, particle sizing, pressure-flow behavior, and isocratic pulse response.
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
MedImmune, Purification Process Sciences, One MedImmune Way, Gaithersburg, MD 20878, USA
a r t i c l e i n f o
Article history:
Received 21 December 2017
Received in revised form 26 March 2018
Accepted 29 March 2018
Available online 7 April 2018
Keywords:
Protein A
Antibody
Affinity chromatography
Dynamic binding capacity
Bioprocessing
a b s t r a c t
1 Introduction
Monoclonalantibodies(mAbs)continuetobethemost
preva-lentclassofapprovedbiotherapeutics[1 Inaddition,theuseof
Fc-fusionproteinsandmAb-likemolecules,suchasbispecific
anti-bodiesandantibody-drugconjugates(ADCs),continuestoincrease
[2–4].SincethefirstmAbwasapprovedinthe1980s,ProteinA
hasbecomethemostwidelyusedcapturestepforFc-containing
moleculesduetoitshighlyspecificnature,easeofuse,andstrong
regulatorytrackrecord.Forthesepurificationprocesses,ProteinA
chromatographyisroutinelyutilizedaspartofaplatformapproach
whereitisplacedfirstinthepurificationtraintocaptureproduct
fromclarifiedcellculturebroth[5–13].Thisconfigurationallows
forrobustprocessingofsimilarmolecules.Evenwiththese
advan-tages,therehavebeeneffortstoidentifyalternativestoProtein
∗ Corresponding author.
E-mail address: pabstt@medimmune.com (T.M Pabst).
A, such as cation exchange or multimodal capture chromatog-raphy, toovercome the burden of high stationary phase costs [14–19];however,thesetechniquesmaynotbeasselectiveand maylacktheabilitytobeemployedaspartofaplatformapproach Therehasalsobeeninterestinnon-chromatographictechniques, suchasprecipitation[20–22]andaqueoustwo-phaseextraction [23–25],butthesestrategieshavenotgainedwidespreadusefor industrial-scalebioprocessing.Thus,itseemsunlikelythatProtein
Achromatographywillbesupersededasthedominantplatform approach for antibodyand Fc-fusionprotein purificationin the foreseeablefuture,anditsuseislikelytocontinuetoincreasewith thegrowthinthemarket[26]
StaphylococcalProteinAisa42kDasinglechainpolypeptide locatedontheoutersurfaceofStaphylococcusaureus[27–30].Early Protein A affinity stationaryphases consisted of native Protein
A coupledtoabase matrixmostoften throughcovalent bond-ing to amines Since then, dramatic improvements have been madeinProteinAchromatographystationaryphases,mostnotably increasedstabilityunderalkalineconditionsrealizedthroughpoint
https://doi.org/10.1016/j.chroma.2018.03.060
0021-9673/© 2018 MedImmune Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2c interstitialproteinconcentration(mg/mL)
C proteinconcentrationinsolution(mg/mL)
CF columnproteinfeedconcentration(mg/mL)
cp proteinconcentrationintheporefluid(mg/mL)
CCCB clarifiedcellculturebroth
dp volumemeanparticlediameter(m)
Dax axialdispersioncoefficient(cm2/s)
De effectiveporediffusivity,=εpDp(cm2/s)
Dp porediffusivity(cm2/s)
D0 freesolutiondiffusivity(cm2/s)
DBC dynamicbindingcapacity(mg/mL)
EBC equilibriumbindingcapacity(mg/mL)
K adsorptionconstant in Langmuirisothermmodel
(mL/mg)
kf filmmasstransfercoefficient(cm/s)
KD distributioncoefficient,=
VR/CV−εb
/ (1−εb)
M dextranmolecularweight(Da)
q stationaryphaseproteinconcentration(mg/mL)
qd percentoftotalinahistogramparticlesizebin(%)
qm maximumbindingcapacityinLangmuirisotherm
model(mg/mL)
r radialcoordinate(cm)
rp volumemeanparticleradius(m)
rpore poreradius(nm)
rs dextranhydrodynamicradius(nm)
S standarderrorofregression(unitsoftheresponse
variable)
u superficialmobilephasevelocity(cm/s)
v interstitialmobilephasevelocity(cm/s)
VR retentionvolume(mL)
V10% volumeatwhich10%breakthroughoccurs(mL)
z axialcoordinate(cm)
Dimensionlessnumbers
NBi Biotnumber,=kfrp/De
NRe Reynoldsnumber,=dpu/εb
NSc Schmidtnumber,=/D0
Greeksymbols
P pressuredropinapackedbed(MPa)
εb extraparticleporosity (interstitialcolumnvolume
fraction)
εp,x intraparticleporosityforsolutex
εT totalcolumnporosity,=εb+ (1−εb)εp
dynamicviscosity(cP)
mutationsintheBandCdomainsofProteinA[31].Manyofthe
commerciallyavailableProteinAstationaryphases nowconsist
ofengineeredligandswithrepeatunitsderived fromtheBorC
domain,and canwithstandmany cyclesof exposuretosodium
hydroxideconcentrationsatorgreaterthan0.1N
Inadditiontotheincreaseinalkalinestability,therehasbeen
arobustdemandtoincreasethebindingcapacityofProteinA
sta-tionaryphasesinresponsetocontinuouslyincreasingcellculture
titers,whichnowroutinelyexceed5g/L.Processmodelsdeveloped
topredictfacilitycapacityandcostofgoodshavebeenshownto
besensitivetoProteinAcapturecolumndynamicbinding
capac-ity(DBC)[32,33].Moreover,theimportanceofincreasedbinding
capacity,bothequilibriumanddynamiccapacity,isnotlimitedto batchprocessingassimilarincreasesinproductivityareexpected
incontinuousmulti-columnprocesssettings.Inresponsetothese marketpressures,numerousProteinAstationaryphaseshavebeen introducedoverthelastseveralyearstoachieveeverhigherDBCs andincreasedproductivity.Insomecases,anincreaseinDBCis real-izedbyimprovingstaticbindingcapacitythroughmodificationof theligand[34,35]orincreasingtheliganddensity[7,36].Inother cases,DBCcanbeincreasedbyreducingmasstransferresistance suchthattheavailablestaticcapacityisutilizedmoreefficiently [37–40]
In this work, we examine recent innovations in Protein A stationaryphasessuitableforindustrial-scalecaptureof biophar-maceuticals.Theworkincludescomprehensivecharacterizationof thestationaryphasemorphologicalproperties,aswellasbinding andelutionbehaviorforapanelofantibodiesandFc-fusion pro-teins.Inaddition,wequantitativelydescribeproteinmasstransfer usingthegeneralratemodeltodetermineeffectiveporediffusivity Finally,theProteinAstationaryphasesweretestedwithclarified cellculturebrothtoassessprocessperformanceandproduct qual-ityunderrealisticbioprocesssettings
2 Materials and Methods
2.1 Bufferreagentsandproteinpreparations Chemicalsusedforbufferpreparation anddextranstandards were obtained from Sigma (St Louis, MO, USA) and JT Baker (Phillipsburg, NJ, USA) Antibodies and Fc-fusion proteinswere expressedinChinesehamsterovary(CHO)cellsusingstandardcell culturetechniques.Togeneratepurifiedmaterial,clarifiedcell cul-turebrothwaspurifiedbyProteinAchromatographyandthenby ionexchangechromatography.Table1summarizestheantibodies andFc-fusionproteinsusedinthiswork
2.2 ProteinAstationaryphases Protein A stationary phases used in this work are summa-rizedinTable2alongwithpubliclyavailabledataobtainedfrom manufacturerliterature.Allstationaryphaseswerecommercially available,exceptforMabSelectPrismA,whichwasobtainedasa pre-commerciallaunchsamplefromGEHealthcare(Marlborough,
MA,USA).TheProteinAstationaryphaseswereflowpackedin 1.1cmdiameterVantageL11columnsfromMillipore(Billerica,MA, USA)toa10cmbedheightandcompressionfactorsof∼1.2were achievedforallresins.Packedbedqualitywasevaluatedby calcu-latingasymmetryfactorsandreducedHETPfrompulsesofsodium chlorideinTrisbufferatpH7.4.Valuesforasymmetryfactorranged from1.0–2.2andreducedHETPvaluesrangedfrom3.6–9.2,which areconsistentwiththereducedHETPvaluesrecentlyreportedfor lab-scalecolumns[41]
2.3 Proteinconcentrationdetermination Proteinconcentrations of purified samplesweredetermined using a Nanodrop 2000c from Thermo Scientific (Wilmington,
DE, USA) with themicrovolume pedestal and measurement at
a wavelength of 280nm Concentrations of antibodies and Fc-fusion proteins in clarified cell culture brothwere determined
byanalyticalProteinAhigh-performanceliquidchromatography (ProA-HPLC)usingaPOROSA20(4.6mmID×10cm,20m) col-umnobtainedfromThermoFisher(GrandIsland,NY,USA)with
anAgilent1200HPLCsystem(PaloAlto,CAUSA).TheHPLC sys-temwasoperatedat3.5mL/minwithbindingandelutionmobiles phases consistingof phosphate bufferedsaline (PBS) atpH 7.2 and pH 2.2, respectively Samples were applied tothe column
Trang 3Table 1
Protein properties.
Molecule Class pI a MW (kDa) b rh(nm) c D0(x10−7cm 2 /s) d
a Measured by capillary isoelectric focusing.
b Measured by mass spectrometry including contribution from glycosylation.
c Calculated by Stokes-Einstein equation with D0measured by dynamic light scattering at infinite dilution.
d Measured by dynamic light scattering at infinite dilution.
Table 2
Protein A stationary phase properties as reported by manufacturers.
Name Abbreviation Manufacturer Base matrix Protein A ligand progenitor domain
(number of repeat units)
d p (m) Alkaline stabilized
MabSelect SuRe MSS GE Healthcare Agarose B (4) 85 Yes
MabSelect SuRe LX LX GE Healthcare Agarose B (4) 85 Yes
MabSelect SuRe pcc PCC GE Healthcare Agarose B (4) 50 Yes
MabSelect PrismA PrismA GE Healthcare Agarose B (6) ∼60 Yes
Amsphere A3 A3 JSR Life Sciences polymethacrylate – a 50 Yes
AF-rProtein A HC-650F 650F Tosoh Biosciences polymethacrylate C (6) 45 Yes
a Not disclosed by the manufacturer.
neatandtheelutionprofilewasmonitoredat280nmusingthe
systemspectrophotometer Elutionpeak areawasconverted to
proteinconcentrationusingastandardcurvegeneratedwith
puri-fiedmaterial
2.4 AggregatedeterminationbysizeexclusionHPLC
Aggregatelevelsinpurifiedproteinsamplesweredetermined
by analytical high-performance size exclusion chromatography
(SEC-HPLC)usingaTSKgelG3000SWXL(7.8mmID×30cm,5m)
columnobtainedfromTosohBiosciences(KingofPrussia,PA,USA)
withanAgilent1260HPLCsystem.TheHPLCsystemwas
oper-atedat1mL/minwithamobilephaseconsistingof100mMsodium
phosphate,200mMsodiumsulfate,pH6.8.Themobilephaseused
toanalyzemAb1samplesalsoincluded10%isopropanol.Samples
(250g)wereappliedtothecolumnneatandtheelutionprofile
wasmonitoredat280nmusingthesystemspectrophotometer
Aggregatelevelsweredeterminedasaratioofpeakareasofthe
early-elutingaggregatepeak(s)andthemonomerpeak
2.5 DynamicLightScattering
Dynamiclightscattering(DLS)measurementsweremadewith
aDynaProPlateReaderIIfromWyattTechnology(SantaBarbara,
CA,USA)withpurified proteinsamplespreparedat 2–10g/L in
25mM Tris, 150mM NaCl,pH 7.4 35Lprotein sampleswere
measuredin triplicate in 384well plates at 20◦C Diffusivities
wereobtainedfrom theDynamics software (version7.4.0) and
hydrodynamic radii were calculated within the software using
theStokes-Einsteinequation.Averaged(n=3)valueswereplotted
versusconcentrationandextrapolatedtoobtaindiffusivityvalues
andhydrodynamicradiiatinfinitedilution
2.6 Electronmicroscopy Transmissionelectronmicroscopy(TEM)ofstationaryphases wasperformed at Charles RiverPathology Associates (Durham,
NC, USA) Stationary phases in their shipping solutions (∼20% ethanol)weredehydratedwithgradedstepsto100%ethanol, sol-ventexchangedinto100%acetone,andthenembeddedinSpurr’s resintogeneratesolidsampleblocks.Thinsections(∼90nm)were cutusingadiamondknife,stainedwithmethanolicuranylacetate andReynold’sleadcitrate,andthenexaminedwithatransmission electronmicroscopefromJEOL(Peabody,MA,USA;model JEM-1011).TEMwasperformedatmagnificationsbetween800–6000x andhigh-resolutionimageswerecapturedwithanAMTXR16M digitalcamera
2.7 Particlesizemeasurements Volumemeandiametersweredeterminedbylightscattering using thePartica laser scattering particlesizedistribution ana-lyzer(modelLA-950V2)fromHoribaInstruments(WestChicago,
IL,USA).Stationaryphasesampleswerepreparedat15%slurries
in50mMTris,150mMNaCl,pH7.4andthen1mLofthesample slurrywasaddedtothedetectionchamberandmeasuredatroom temperature.Horibasoftwarereportedthevolumemeandiameter, thestandarddeviationoftheparticlesizedistribution,andthe dis-tributionhistogram.Samplesweremeasuredintriplicateandthe volumemeandiameterwasdeterminedfromtheaverageofthree samplemeasurements
2.8 Pressure-flowcurves Pressuredropacrosspackedbedswasmeasuredatlinear super-ficialvelocities between0–400cm/husing a digital manometer
Trang 4(model3462)purchased fromTraceableProducts (Webster,TX,
USA).ColumninletswereconnectedtoanAKTAPure25(GE
Health-care,Marlborough,MAUSA)systempumpandthecolumnoutlet
leftopentoatmosphericpressure.Thedigitalmanometerwas
con-nectedtotheinletandoutlettubingwithT-connections.Pressure
dropmeasured in anempty column withthe adapterspushed
togetherwassubtractedfromthepackedbedmeasurements
2.9 Particleporositymeasurements
Particleporosities,εp,wereobtainedfromisocraticpulses
injec-tionsofmAb3,bsAb1,andsodiumchloridecarriedoutat150cm/h
usinganAKTAPure25.Forproteinpulses,themobilephasewas
50mMacetate,100mMNaCl,pH3.0forallproteinandstationary
phasecombinationsexceptproteinsinjectedontotheToyopearl
AF-rProteinAHC-650F column, which used 100mM acetic acid
topreventinteractionswiththecolumnatpH3.0.Protein
sam-ples (final concentration ∼2.5mg/mL) were injected on to the
columnsusinga100Lsampleloop.Forsodiumchloride
injec-tions,the mobilephase was50mM Tris,150mMNaCl, pH7.4,
and100Lsamplesof50mMTris,1MNaCl,pH7.4wereinjected
usingasampleloop.PeakretentionwasmonitoredusingtheAKTA
instrumentation(absorbanceforproteins,conductivityforsodium
chloride)andthedatawasexportedtoExcelsoftwareto
deter-minethepeakretentionvolumeusingthefirststatisticalmoment
Thesystem volume, determinedin an empty column withthe
adapterspushedtogether,wassubtractedfromthevaluesobtained
inpackedbeds
2.10 Inversesizeexclusionchromatographyusingdextranpulse
injections
Dextraninjectionswerecarriedoutat1mL/minusingan
Agi-lent1260HPLCand thepeakretention wasmonitoredwithan
Agilentrefractiveindex(RI)detector(ModelG1362A).Themobile
phase(50mMTris,pH7.4)wascontrolledto26◦Cwitha
recir-culating water bath Temperature of the autoinjector, column
block,andRIdetectorwerecontrolledat26◦CusingChemstation
software.Dextransamples,purchasedfromSigma-Aldrich(with
nominalmolecularweights of 10kDa (catalog#D9260),40kDa
(31389),70kDa(31390),270kDa(00894),410kDa(00895),and
670kDa (00896), and dextrose, purchased from Thermo Fisher
Scientific(catalog#D16-1),weredissolvedinthemobilephase
buffer at a final concentration of 5mg/mL and injected neat
(10L) on to the ∼10mL Protein A columns (packed in
Van-tage L11 columnsas described previously).Data wasexported
toExcel software todetermine thepeak retention volume,VR,
usingthefirststatisticalmoment,andthedistributioncoefficient,
KD=
VR/CV−εb
/ (1−εb).Peakswerenormalizedbypeakarea forplotting.Thesystemvolume,determinedinanemptycolumn
withtheadapterspushedtogether,wassubtractedfromthevalues
obtainedinpackedbeds
2.11 Adsorptionisotherms
Equilibrium adsorption isotherms were constructed from
1.25mLbatchbindingexperiments.Proteinstocksolutionswere
preparedat∼5mg/mLinequilibrationbuffer(50mMTris,150mM
NaCl,pH7.4)and dilutedtoknownconcentrations with
equili-brationbufferin1.5mLEppendorftubes.Stationaryphaseslurries
werepreparedat∼15%inequilibrationbuffer,addedtothediluted
protein samples, and allowed to gently mix on a rotator for
24–28hours.Afterequilibration,theEppendorftubeswere
cen-trifugedbriefly to pelletthe stationaryphases and the protein
concentrationsintheliquidphasesweremeasured.Amass
bal-ancewasusedtodeterminetheamountofproteinthatwasbound
tothestationaryphaseatequilibrium
2.12 Breakthroughbehaviorandequilibriumbindingcapacity measurements
BreakthroughbehaviorwasdeterminedusingtheAKTAPure
25ata residencetimeof 4minuteswitha ∼10mLpackedbed Purifiedprotein loadwasadjusted topH7.4±0.2 and conduc-tivity wasadjustedto15±2 mS/cmwithsodiumchloride.The columnwasequilibratedwith50mMTris,150mMNaCl,pH7.4 andthenloadedwithprotein(feedconcentration,CF∼5mg/mL) untilthecolumnwassaturated(i.e.theoutletconcentrationwas
∼99%ofthefeedconcentration).Theexactproteinconcentration
ofthefeedwasdeterminedbyofflineA280measurementusing theNanodrop2000c.Bedexhaustionoccurredwithaproteinload
of150–225mg/mLcolumnvolume,dependingontheproteinand stationaryphase.Instantaneousconcentrationatthecolumn out-letwasmeasuredonlineat280nmusingtheAKTAUVmeter.The
UVabsorbancewasmeasuredwiththecolumninbypassto deter-minethemaximumabsorbanceoftheproteinfeedsolution.To testforlinearity,theAKTAUVmeterwascalibratedwithmAb1, whichhadthegreatestUVabsorbanceoftheproteinsevaluatedin thisstudy.Ahighlylinearcalibrationcurvewasobtainedoverthe proteinconcentrationrangeusedforbreakthroughanddynamic bindingcapacityexperiments
The equilibrium binding capacity (EBC, in mg/mL of solid support)wasdeterminedfromafullbreakthroughcurveby numer-ically integrating theareaabove thecurve andbelow the feed concentrationaccordingto:
EBC=
0
∞
(CF−C)dV−εTCFCV
WhereεT=εb+ (1−εb)εP isthetotalporosity(outsideof parti-cleandinsidepores),εbistheextraparticleporosity,andCVisthe columnvolume(orpackedbedvolume).Inthisequation,the inte-gralinthenumeratorrepresentsthemassofproteinaccumulated
inthecolumnduringtheentirebreakthroughexperimentandthe secondterminthenumeratorrepresentsthemassofproteinthat remainsunboundintheliquidwithinthecolumn;takentogether theyrepresentthemassofproteinboundtothesolidphaseduring theexperiment.Thedenominatorrepresentstheamountof sta-tionaryphase(inunitsofmLofsolidsupport).Thesystemholdup volume(determinedbyproteinpulsesinemptycolumnswiththe adapterspushedtogether)wasalsosubtractedfromthevolume loaded.EBCswereconverted tomg/mLofparticleormg/mL of packedbedusingεpandεb,asappropriate
2.13 Dynamicbindingcapacitymeasurements Dynamicbindingcapacity(DBC),definedastheamountof pro-teinloadedat10%breakthrough,wasdeterminedforstationary phasespackedin∼10mLcolumnsusinganAKTAPure25ina man-nersimilartofullbreakthrough curvesasdescribed above.The columnwasequilibratedwith50mMTris,150mMNaCl,pH7.4 andthenloadedwithpHandconductivityadjustedpurifiedprotein
atCF∼5mg/mLuntil>10%breakthroughwasobserved.DBCwas determinedatresidencetimesof2.4,4,and6minutesaccording to:
DBC= (V10%−εTCV)CF
whereV10%isthevolumeatwhich10%breakthroughoccurs
AscanbeseenfromEq.(2),theunboundproteinthatremainsin theliquidinsidethecolumnissubtractedfromtheboundprotein forpurposesofcalculatingDBC,whereastheamountofproteinthat
Trang 5Table 3
Summary of Protein A stationary phase morphological properties.
Name Particle size a (m) rporeb (nm) Extraparticle
porosity, εbc
Intraparticle porosity
a As measured by laser light scattering dpis the volume mean diameter; SD is the standard deviation of the frequency distribution.
b Determined by fit of Eq (4) to isocratic elution data obtained with dextran probes ranging from 10–670 kDa.
c Determined from fit of Eq (3) to pressure drop data in a packed bed.
d Determined from injections of mAb or bsAb under non-binding (acidic) conditions described in Section 2.9.
e Determined from NaCl pulse injections.
breaksthroughthecolumn(upto10%breakthrough)isincluded
intheDBCvalue.Amorerigorouscalculation,likeEq.(1)where
thelimitsofintegrationgofrom0toV10%,couldbeimplemented
toaccountforproteinthatbreaksthroughuptoV10%,butthis
con-tributionisnegligibleandthuswasnotaccountedforintheDBC
values.ThetotalporositydeterminedbymAb3injectionswasused
inDBCcalculationsformAb1-3,bsAb1,and Fc1(i.e.thesmaller
proteins),whiletotalporositydeterminedbybsAb1injectionswas
usedforthelargerproteins
2.14 LinearpHgradientelutionchromatography
ForlinearpHgradientelutionexperiments,columnswere
equi-libratedwith50mMTris,150mMNaCl,pH7.4andthenpurified
proteinwasloadedonthecolumnto5mg/mLpackedbedusing
anAKTAPure25.Thecolumnwasre-equilibrated,washedwith
50mMcitrate,pH6.7,andthenelutedinalineargradientto50mM
citrate,pH2.7over10columnvolumesat150cm/h.Equilibration
andelutionbufferpHwasmeasuredofflineusingaSevenMultipH
meterfromMettlerToledo(Columbus,OH,USA)equippedwithan
InLabExpertPropHprobefromMettlerToledoandcalibratedwith
pH2,4,7,and10standards.Peakretentionvolumewasdetermined
bypeakmaximumabsorbance(fromtheAKTA
spectrophotome-terat280nm).ElutionpHatthepeakmaximumwascalculated
throughlinearinterpolationbetweentheofflinepHvaluesofthe
two buffersusedtoformthegradient TheAKTA pHtracewas
adjustedtoaccountforthetotalcolumnporosity,εT,andthe
sys-temdelayvolume.ElutionpHatpeakmaximumasdetermined
bylineargradientelutionwasusedtoselectanappropriate
elu-tionpHforthestepelutionphaseinthecapturechromatography
experimentsdescribedinthefollowingsection
2.15 Capturefromclarifiedcellculturebroth
Captureofproteinsfromclarifiedcellculturebroth(CCCB)was
evaluatedinpackedcolumnsusinganAKTAPure25.Columnswere
equilibratedwith50mMTris,150mMNaCl,pH7.4andthenCCCB
wasloadedonthecolumnataresidencetimeof4min.Theload
wascalculatedas85%oftheDBCmeasuredataresidencetime
of4min.Columnswerere-equilibratedwith50mMTris,150mM
NaCl, pH7.4 and then eluted in stepwisefashion with 25mM
acetate,pH3.4–3.5forallstationaryphasesexceptforToyopearl
AF-rProteinAHC-650F(whichusedpH3.2),andMabSpeedrP202
(pH3.8).Elutionpoolswerecollectedfrom100-100mAU(using
AKTAspectrophotometerwitha2mmpathlengthat280nm).Step yieldwasdeterminedusingmassofproductintheload (deter-minedbyProA-HPLC)andpool(determinedbyA280)
2.16 HostcellproteinandDNAmeasurements Hostcellprotein(HCP)concentrations weremeasuredusing thebioaffysandwichimmunoassayontheGyrolabxPworkstation fromGyrosAB(Uppsala,Sweden).Captureanddetection antibod-ieswerein-housereagentsraisedagainstHCPfromthecellline usedtoproducetheantibodiesandFc-fusionproteinsusedinthis work
Host cell DNA concentrations were measured by an in-house method employing a sodium iodide/sodium dodecyl sulfate/ProteinaseKsampletreatmentfollowedbyanisopropanol DNA extraction coupled with a quantitative Polymerase Chain ReactiontargetingtheShortInterspersedNuclearElementDNA sequencerepeatedacrosstheCHOgenomewithSYBRGreenbased detection
3 Results and discussion
3.1 Stationaryphasemorphologicalproperties Table3 summarizesProteinA stationaryphase morphologi-cal properties Ascan be seen in thetable, particlesizes were
inagreementwithdataprovidedbythemanufacturerand stan-darddeviationsmeasuredweretypicallysmallcomparedtothe meanparticlesize(13–24%ofthevolumeaveragedmeanvalue) ParticlesizedistributionscanbefoundinSupplementalmaterial (Fig.S3).Extraparticleporositiesofthestationaryphasespackedin chromatographycolumnsweredeterminedbyfittingtheKozeny equation[42]topressuredropdata(byminimizingtheresidual sumofsquares):
P
L =150
d2 P
(1−εb)2
Whereanduarethemobilephasedynamicviscosityand super-ficialvelocity,respectively,anddPistheaverageparticlediameter Forthiswork,dP-valuesdeterminedfromparticlesizing(volume meandiameters;seeTable3)wereusedinplaceofmanufacturer’s data.Pressuredropcurveswerefoundtobelinearovertherange tested(upto400cm/hin1.1cm×10cmpackedbeds)andthe mag-nitudeofthepressuredropwasconsistentwithexpectationsbased
Trang 6diametermanufacturing-scalecolumnwilllikelybehigherdueto
alossofwallsupport;nonetheless,thedatapresentedisusefulto
assessrelativedifferencesbetweenthestationaryphases.Thefitted
εb-valuesareshowninTable3andpressuredropcurveswiththe
fittedKozenyequationareshowninSupplementalmaterial(Fig
S4)
Particleporositiesmeasuredusingsodiumchlorideweregreater
than0.9 for theless rigid (agarose andcellulose) particles and
between0.8–0.9forthemorerigid(syntheticpolymer)particles
suggestingahigherpercentageofsolidsinthebasematricesforthe
syntheticpolymersupports.Particleporositywasalsoestimated
withmAb3andbsAb1undernon-binding(acidic)conditions.As
expected,thelargerproteinscouldnotaccesstheentirepore
vol-umeduetostericrestrictions,andresultedinporositiesthatwere
lowerthanobtainedusingsodiumchloride,withonlyminor
dif-ferencesobservedbetweenthemAb(εp,mAb3=0.34–0.76)andthe
slightlylargerbsAb(εp,bsAb1=0.30–0.70)asshowninTable3
Inertdextanprobes,rangingfrom10–670kDa,wereusedto
fur-therelucidateparticleporosity(datainSupplementalmaterial,Fig
S5).Forallthestationaryphasestested,thelargest670kDa
dex-tranprobecouldaccessalimitedfractionoftheparticlevolume
whilesmallerdextranprobesgainedaccesstoalargerportionof
theparticlevolume.Toestimatetheporeradius,rpore,and
intra-particleporosity,εp,dex,usingthedextranelutiondata,acylindrical
poremodelwasappliedaccordingtoHageletal.[43]:
KD=εp,dex
1− rs
rpore
2
(4)
WhereKDisthedistributioncoefficientandrsisthedextran
hydro-dynamicradius.Forthisworkrs-valueswereestimatedfromthe
dextranviscosityradiicorrelationofSquire[44]:
where M is the dextran molecular weight A plot of
KD vs
rs was used to obtain the fitted values of rpore, and εp,dex (by
linear least squares) The εp,dex-values obtained, as shown in
Table3,wereslightlyhigherthanthoseofnon-retainedproteins
and slightly lower than those obtained using sodium chloride
injections,suggestingthatthedextranprobesexperiencea
macro-porousstructurefreeofverysmallporesthatonlysodiumchloride
canaccess.Therpore-valuesobtainedfromthemodelfit,asshown
inTable3,weregenerallyconsistentacrossstationaryphases,with
valuesintherangeof30–60nm.Thesedatasuggestthatthe
par-ticleshavehighlyporousstructureswhichwassupportedbyTEM
ofthestationaryphases(datainSupplementalmaterial,Fig.S2)
TEM micrographs showed spherical particles with
well-connectedporousnetworks,regardlessofthebasematrixmaterial
Somedifferences wereobservedinthemorphologyofthebase
matrixstructures,wherethemorerigidsyntheticpolymer
mate-rials appeared to have structures that include dense nodes
surrounded by pore networks, but in general the pore sizes
appearedtobesimilar,whichisconsistentwiththecylindricalpore
modelresultsdiscussedabove
Substantialvariationinstainingwasobservedacrossthe
sta-tionaryphasesasshowninFig.S2.Forexample,MonofinityAand
MabSelectPrismAappearedtobeheavilystainedwhileMabSelect
SuRepccandPraestoAPshowedlittlestaining.Thestainsemployed
inthisstudy,uranylacetateandReynold’sleadcitrate,are
primar-ilyutilizedforTEMimagingofbiologicalspecimens.Exactlyhow
theyinteractwithembeddedstationaryphasespecimensofthis
natureremains amatterofconjecture Therefore,whileheavier
stainingimpliesaregionwithahigherconcentrationofelectron
denseatoms, it is difficulttodraw conclusionsbeyond this In
particular,wewouldcautionagainstinterpretationsthatlink
stain-ingvariationtoProteinAliganddensityordistributionunderthe assumptionthatthesestainsprimarilyinteractwiththe polypep-tidechainoftheProteinAligand
3.2 Adsorptionisotherms Fig.1showsadsorptionisothermsformAb1onProteinA sta-tionary phases Adsorption isotherms for all other protein and stationaryphasecombinationsareavailableinSupplemental mate-rial (Fig S6) The isotherm data were fit with the Langmuir isotherm:
q=1qm+KC
whereqmisthemaximumbindingcapacityandKisthe adsorp-tionconstant.Fittedvalues oftheseparameters (determinedby minimizing the residual sum of squares) are available in Sup-plementalmaterial(Table S2).Sincethere arechallengesinthe isothermexperimentation,particularlywithaccurate determina-tion of stationary phase volume added to the isotherm batch binding experiment, we adopted a methodology that relies on breakthrough experiments to estimate qm-values in a manner similartoNgetal.andRecketal.[45–47].Theqm-value(and corre-spondingexperimentalq-valuesshowninFig.1andFig.S6)were normalizedtotheEBCsascertainedwithEq.(1)usingfull break-throughcurvessuchthatqmissetequaltotheEBC.Thisapproach assumesforEq.(6)thatq=qmatC=CF,whichisvalidforthecaseof
anearlyrectangularisothermprovidedthatCFliesintheflat por-tionofthecurve.Inmostinstances,theqm-valuechangedbyless than15%whennormalizingtotheEBCvalue
AscanbeseeninFig.1(andSupplementalmaterialFig.S6)the isothermsarehighlyfavorableforallstationaryphases,whichis consistentwithProteinAbehaviorpreviouslyreportedinthe lit-erature[37,39,40] Equilibriumcapacities arequitehighforthe ProteinAstationaryphases,greater than140mg/mLparticlein someinstances.Tomakecomparisonswithinthelargedataset, EBCsofstationary phaseswere averagedfor a givenstationary phaseacrossvariousproteingroupings(e.g.allofthemAbs,orallof theproteinswithmolecularweightsintherangeof147–159kDa) ComparingstationaryphasesintermsofaverageEBCvaluefor pro-teinswithmolecularweightssimilartomAbs,MabSelectPrismA andMabSelectSuRe pccperformedbest,averaging>126mg/mL particle KanCapA3G and MabSelect SuRe LXshowedthe next highestequilibriumcapacities(107–112mg/mLparticle),followed
byToyopearlAF-rProteinAHC-650F,MonofinityA,andPraestoAP (92–96mg/mLparticle),andthenAmsphereA3,MabSpeedrP202, and Eshmuno A (81–86mg/mL particle) Similarcapacities and trendswereobservedforthelargerbsAbs(∼200kDa);however, averageEBCsforthelargerFc-fusionproteins(280–310kDa)were 50-65%ofthethosedeterminedforthesmallerproteins
3.3 Dynamicbindingcapacity Dynamicbindingcapacitiesat10%breakthroughwere deter-minedforallcombinationsofproteinsandstationaryphasesfor2.4,
4,and6minresidencetimes.Fig.2showsDBCplottedasafunction
ofresidencetime.DBCvaluesarealsoavailableintabularformatin Supplementalmaterial(TableS1).Forthe4minresidencetime con-dition,fullbreakthroughcurveswereobtainedforcolumnsloaded
to150–220mg/mLpackedbed,andareshowninFig.3formAb1 Fullbreakthroughcurvesat4minresidencetimeforthe remain-ingmoleculeandstationaryphasescombinationsareavailablein Supplementalmaterial(Fig.S7)
AscanbeseeninFig.2,theProteinAstationaryphaseshave highdynamic bindingcapacities, greaterthan70mg/mL packed bedinsomeinstancesat4–6minresidencetimes.Therangeof
Trang 7Fig 1. Equilibrium isotherms for mAb1 on Protein A stationary phases Open circles are experimental data and the solid line is a fit of the Langmuir isotherm, Eq (6), with parameters given in Table S2.
dynamicbindingcapacitiesthatwereobservedwassimilarforthe
mAbsandbsAbsexceptformAb1,whichwashigherforall
sta-tionaryphases.ForFc1,whichissimilarinsizetothemAbs,the
DBCrangewasbroaderacrossstationaryphases,butlargely
sim-ilartomAbsandbsAbs.ForthelargerFc2andFc3molecules,the
bindingcapacitieswereconsiderablylower,reaching30-40%ofthe
capacitydeterminedforthesmallermAbsandbsAbs
SimilartotheanalysisofEBCintheprevioussection,
compar-isonsweremadebetweenstationaryphasesintermsofaverage
DBCat4minresidencetimeforproteinswithmolecularweights
similartomAbs(147–159kDa).Thestationaryphasesgenerallyfell
intogroupswithMabSelectPrismAandMabSelectSuRepcc
hav-ingthehighestDBCsforallmoleculesat4minutesresidencetime
ThenextgroupofstationaryphasesincludedKanCapA3G,
Mab-SelectSuReLX,ToyopearAF-rProteinAHC-650F,PraestoAP,and
AmsphereA3,whiletheremainingstationaryphasesbehaved
sim-ilarlytoeachotherinathirdgroup.ForlargerbsAbs(∼200kDa)and
thelargerFc-fusionproteins(∼300kDa)theaverageDBC
compari-songroupingsremainedthesamebutAmsphereA3andToyopearl
AF-rProteinAHC-650Fmovedtothetopofthesecondgroupwhile
MabSelectSuReLXandKanCapA3Gfellslightlywithinthesecond
group.ThisobservationsuggeststhatAmsphereA3andToyopearl
AF-rProteinAHC-650Fmaybeabletobetteraccommodatethe
largerproteins
In all cases, theDBC data follow the expected trend where
shorterresidencetimesresultedinlowerdynamicbinding
capaci-ties.ThedecreaseinDBCbetween6minand4minresidencetimes
wasconsistentformAbsandbsAbsandwastypicallysmallerthan
thedecreasefrom4minto2.4min.Comparingstationaryphases
foragivenmoleculerevealedthatMabSelectPrismA,Monofinity
A,MabSelectSuReLX,KanCapA3G,andPraestoAPwereslightly moresensitivetoresidencetime,asthesestationaryphasesshowed steeperdeclinesinDBCbetween4minand2.4minresidencetimes acrossmostproteinstested.Thelargerimpactofresidencetime suggeststheseresinsmayexperiencehighermasstransfer resis-tance.Thistopicisexploredinthenextsection
3.4 Proteinmasstransport Masstransferplaysakeyroleintheperformanceofmodern Pro-teinAstationaryphases[36–39].Therefore,examinationofprotein masstransportiscrucialtogainacomprehensiveunderstanding
ofthesematerialsandmakeinformedjudgements.Tocharacterize proteinmasstransportinpackedbeds,wechosethe chromatogra-phygeneralratemodel,givenby:
∂c
∂t =−v ∂c
∂z+Dax∂2c
∂z2−1−εb
εb
3
rpkf(c−cp|r=rp) (7)
∂cp
∂t =Dp
∂2cp
∂r2 +2 r
∂cp
∂r
−1−εp
εp
∂q
Eq.(7)representsamassbalanceontheinterstitialcolumn vol-umewithtermsforconvection,dispersion,andfilmmasstransfer
Eq (8)representsa massbalanceonthestationaryphase with termsforporediffusionandadsorption
Danckwertsboundaryconditionswereappliedatthecolumn inletandoutlet[48].Asymmetryconditionwasassumedatthe beadcenter,andstagnatefilmmasstransferwasappliedatthe boundaryofthestationaryphaseandtheinterstitialcolumn vol-ume[48].Localequilibriumwasassumedforproteinadsorptionas
Trang 8Fig 2.Dynamic binding capacities as a function of residence time for mAbs, bispecific antibodies, and Fc fusion proteins on Protein A stationary phases.
describedbyEq.(6).Equations(7),(8)andtheboundaryconditions
werespatiallydiscretizedusingfinitevolumesandtheweighted
essentiallynon-oscillatory(WENO)method[48].Theresulting
sys-temofordinarydifferentialequationswasnumericallyintegrated
usingCADETsoftwareversion2.3.2(64bit)runningonaWindows
7PCwithMATLABversionR2014bandanIntelCOREi7CPU[49]
Langmuirisothermparameters,Kandqm,aregivenin
Supple-mentalmaterials(TableS2).Axialdispersion,Dax,wasneglected
[50,51].Theparticleradius,rp,extraparticleporosity,εb,and
parti-cleporosity,εp,wereobtainedfromTable3.εp,mAb3wasusedforthe
smallerproteins(mAb1-3,bsAb3,andFc1),andεp,bsAb1wasusedfor
thelargerproteins(bsAb1-2,Fc2-3).Thefilmmasstransfer
coef-ficient,kf,wasestimatedfromthecorrelationgivenbyCarberry
[52]:
kf =1.15u
Where NRe=dpu/εb (Reynolds number) and NSc=/D0
(Schmidtnumber)
Usingtheparametervaluesdescribedabove,porediffusivity,Dp,
wasfittoexperimentalbreakthroughdatabyminimizingthe
resid-ualsumofsquares(RSS).Fig.3showsmodelingresultsobtained
formAb1.Ascanbeseenfromthefigure,thegoodnessoffitwas
generallyexcellentinthiscasebutdidvaryfromstationaryphase
tostationaryphase.Otherproteins(showninSupplemental
mate-rialFig.S6)tendedtobehavesimilarly.Perhapsnotsurprisingly,
overallabetterfitwasobtainedwiththemAbsandapoorerfitwas
obtainedwiththelargerFc-fusionproteins
Whenthegoodnessoffitwasinferioritwasassociatedwith
instanceswherethebreakthroughcurvetailedtoagreaterextent,
suggestingaslowapproachtoequilibrium.Thisobservationis con-firmedquantitativelybythestandarderrorofregression,S,also showninFig.3(andFig.S6inSupplementalmaterial).Thetailing behaviorhaspreviouslybeenexplainedbasedonaheterogeneous bindingmechanismwheretherearefastbindingsitesthatare dif-fusioncontrolledandslowsitescontrolledbybindingkinetics[39]
InthecontextofProteinA,thisexplanationintuitivelymakes senseastherearemultiplebindingsitesonasingleProteinAligand [7,34].Wecanspeculatethatthediffusioncontrolledfastbinding sitescorrespondtolowbindingoccupancyofaProteinAligand.On theotherhand,asligandoccupancyincreases,wecansurmisethat theremainingbindingsitesmaybecomelessaccessibleandmore stericallyhindered,correspondingtoslowbindingkinetics There-fore,ininstanceswherethisbehaviorwasobserved,thereported effectiveporediffusivity,De (=εpDp),valueessentiallyrepresents
anaveragethatincorporatesresistancesduetobothporediffusion andbindingkinetics,likely havinglimitedpredictiveusefulness Nonetheless,evenwhenthegoodnessoffitvaried,theDe-values obtainedwereoftenconsistent.Forexample,basedonboth quan-titativemeasures(S)andqualitativecomparison,thegoodnessof
fitspannedabroadrangeforthethreemAbsonMabSelectSuRe
LX.Despitethis, theDe-valuesobtainedbyminimizationofRSS variedrelativelylittle,rangingfrom3.0–3.5×10−8cm2/s,whichis probablywithintheexpectederrorforthistypeofmeasurement Fig.4summarizesDe/D0forallproteinsandstationaryphases evaluated in this study Quantitative values of all results sum-marizedin Fig.4are provided inSupplementalmaterial (Table S2).D0 valuesaresummarized inTable1andDLSdatausedto estimateD0aregiveninSupplementalmaterial(Fig.S1).Where available, the De-values obtained were largely consistent with
Trang 9Fig 3. Breakthrough curves for mAb1 on Protein A stationary phases Open circles show experimental data and solid lines show fitted model results based on Eqs (7) and (8) using parameters in Table S2 The standard error of regression, S, is given for each stationary phase.
previouslyreportedvaluesforProteinAstationaryphases
eval-uated athigher proteinconcentrations [36,38,39].In particular,
theDe-valuesobtainedin this studyfor monoclonalantibodies
at5mg/mLconcentrationonMabSelectSuRe,whichrangedfrom
4.8–5.7×10−8cm2/s,wereingoodagreementwithvaluesreported
byHahnandcoworkers[38].Intheirdetailedstudy,aDe-valueof
5×10−8cm2/swasobtainedforshallowbeduptakeonMabSelect
SuReat3.0mg/mLproteinconcentration.Withrespectto
exter-nalmasstransfer,theBiotNumber(NBi)valuesobtainedacross
allstationary phasesand proteinstested rangedfrom118-990,
suggestingfilmmasstransferplaysanegligibleroleunderthe
con-ditionsutilizedforthisstudy
3.5 LinearpHgradientelutionchromatography
SinceProteinAchromatographyisoftenemployedaspartofa
platformapproach,itisimportanttoselectanelutionpHthatworks
consistentlyforamajorityofthemodalitiestobepurifiedwiththe
platformprocess.Thismayincludemorethanoneantibodyformat
aswellasFc-fusionproteins.Table4summarizestheelutionpH
determinedbypHgradientelutionforallproteinandstationary
phasecombinations.Ascanbeseeninthetable,elutionpHwas
foundtooccurbetween3.5–3.8andonlyminorvariationswere
observedforallmoleculesonagivenstationaryphase.Therewere
afewexceptionstothisbehaviorthatwerespecifictoaproteinor
stationaryphase.Forexample,ToyopearlAF-rProteinAHC-650F
requiredthelowestpHforelutionofallproteins(0.1–0.3pHunits
lower),whiletheelutionpHforMabSpeedrP202wasfoundtobe
higherthantheotherstationaryphases(0.2–0.5pHunitshigher)
ThisuniquehighpHelutiononMabSpeedrP202couldbebeneficial
forproteinsthataresensitivetoacidicconditions,suchasFc-fusion proteins,whichcanaggregaterapidlyunderacidicconditions[53] TheonlyproteinthatwasoutoftrendwasFc3whichwasfoundto elute0.3–0.4pHunitshigherthanallotherproteins.Thisdataset wasusedtoselectanappropriateelutionpHforthestepelution conditionsusedforpurificationofselectmoleculesfromclarified cellculturebroth.InmostcasespH3.4–3.5wassuitableforstep elution;however,AF-rProteinAHC-650FrequiredalowerpH(pH 3.2)whileMabSpeedrP202couldelutetheselectmoleculeswith
ahigherpH(pH3.8)
Basedonpreviousreportsintheliterature,theunderlyingcause
oftheobservedvariationinelutionpH,andinthemilderelution conditionsseenforMabSpeedrP202inparticular,aremostlikely duetoligandpolypeptidesequencedifferencesasaresultofprotein engineeringtoimproveligandperformance[54].Thisremainsa matterofspeculation;however,asProteinAligandsequence infor-mationforthestationaryphasesevaluatedinthisstudyhavenot beenpubliclydisclosedbythemanufacturers.Nonetheless,similar strategieshavedemonstrateditispossibletoeluteProteinAunder milderpHconditionsthroughdestabilizationoftheliganditselfor theligand-Fcinteraction[55–57]
3.6 Capturefromclarifiedcellculturebroth Capturechromatographyexperimentswereconductedtotest theabilityoftheProteinAstationaryphasestoselectivelypurify threeoftheproteinsinthisstudy.Inallcases,thechromatogram forthecapturestepwaswellbehaved,showingsharpelutionpeaks andlittletonoproteininthe0.1Maceticacidcolumnstrip(Fig.S8
inSupplementalmaterialshowsexamplechromatogramsforthe
Trang 10Table 4
Elution pH on Protein A stationary phases as determined by pH gradient elution.
Stationary
phase
pH at elution peak max mAb1 mAb2 mAb3 bsAb1 bsAb2 bsAb3 Fc1 Fc2 Fc3
MabSelect SuRe LX 3.7 3.6 3.7 3.7 3.7 3.7 3.6 3.6 4.0 MabSelect SuRe pcc 3.7 3.6 3.7 3.7 3.7 3.7 3.6 3.6 4.0
AF-rProtein A HC-650F 3.4 3.4 3.5 3.5 3.5 3.4 3.2 3.3 3.7
Fig 4.D e /D 0 values for mAbs (top panel), bsAbs (middle panel), and Fc-fusion
pro-teins (bottom panel) measured on Protein A stationary phases D e -values obtained
from fit of breakthrough curves using Eqs (7) and (8) with parameters given in Table
S2 D 0 -values determined by DLS are given in Table 1.
captureofmAb1fromCCCB).Fig.5summarizestheprocess
perfor-manceandresultingproductqualityintheProteinAelutionpool
Ascanbeseeninthefigure,yieldswereconsistentlyabove90%,
withonlyminordifferencesobservedbetweenstationaryphases
Elutionpoolvolumeswereslightlymorevariable,fallingbetween
1.8–3.8columnvolumes;however,thevariabilitywastheresultof
afewproteinandstationaryphasecombinations,andmostofthe
resultsfallinanarrowerrangeof2–3columnvolumes.Insome
cases,higherbindingcapacity stationaryphasesdidhavelarger
elutionpoolscomparedtothelowercapacitystationaryphases,
butnotrendsamonghighcapacityresinswereobserved
ProteinAchromatographyismostoftenemployedasthe
cap-turecolumninapurificationtrainandisexpectedtoprovidehighly
selectivebindingwhileprocess-relatedimpuritiesremaininthe
columnflowthrough.Moreover,ProteinAchromatographyisnot
expectedtoreducethelevelofproduct-relatedimpurities,such
asaggregates,undertypicaloperatingconditions.Ascanbeseen
inFig.5,HCP,DNA,andaggregatelevelsintheelutionpoolwere relativelyconsistentbetweenstationaryphasesforagivenprotein withonlyminorexceptions.WhenconsideringHCPlevelsinthe elutionpool,therewasnostationaryphasethatprovidedthebest HCPremovalforallthreemoleculestested.Forexample,MabSelect SuReLXhadthehighestHCPlevelofallstationaryphasestestedfor mAb1,butthelowestforbsAb3.Similarly,ToyopearlAF-rProteinA HC-650FhadthelowestHCPformAb1,butthehighestformAb3 ForDNAclearance,notrendswereobserved;however,Monofinity
Afaredthebestofallthestationaryphasesforallthreeproteins tested.WhencomparingaggregatelevelsformAb1andmAb3in theelutionpoolacrossstationaryphases,onlysmalldifferencesare seen,whereasmorevariabilitywasobservedfortheaggregatelevel
inthebsAb3pools.Moreover,sometrendsinthebsAb3datacan
beseenwherehigher(AmsphereA3)orlower(MabSpeedrP202) aggregatelevelswereobservedinelutionpoolsthathadhigheror lowerproteinconcentrations,respectively(concentrationdatanot shown)
Whenmakingcomparisonsbetweenproteins,itwasobserved thatsomeproteinsarenotaseasilypurifiedfromCCCB,andhigher levelsofprocess-andproduct-relatedimpuritiesareseen.Aside fromtheexceptionsnotedabove,impuritylevelswerequite con-sistent when comparingstationary phases and no trendswere observedbasedonstationaryphasesproperties(e.g.higherbinding capacity vs lower binding capacity;natural vs synthetic poly-mericbackbonematerials)orprocessperformancedata(e.g.yield, pool volume, pool concentration) It should be noted that the capturepurificationexperimentsinthisworkonlyemployeda re-equilibrationstep(50mMTris,150mMsodiumchloride,pH7.4); however,amorestringentwashisoftenemployedtoreduce non-specificinteractionsofHCPandstationaryphasesand/orHCPand theproteinofinterest[58–60].Itisunclearifamorestringentwash wouldbenefitonestationaryphaseoveranother,butitisplausible thatthiscouldoccurandmaymeritinvestigationwhendeveloping
aProteinAcapturestep
3.7 Bivariatecorrelationanalysis Fig.6showsamatrixofbivariatescatterplotscorrelating sta-tionaryphasemorphologicalpropertieswithproteinbindingand mass transfer The scatterplot matrix was generated using the gplotmatrix function in MATLAB version R2014b The diagonal showsunivariatehistogramswiththehighestfrequencybin nor-malized to full scale on the ordinate axis Plots in the upper left-hand quadrant are sparser as they correlate morphologi-calproperties toothermorphological properties.Similartothe approachdescribedinproteinmasstransportabove,ε was