Mechanical characterisation of agarose-based resins is an important factor in ensuring robust chromatographic performance in the manufacture of biopharmaceuticals. Pressure-flow profiles are most commonly used to characterise these properties.
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Mauryn C Nwekea, R Graham McCartneyb, Daniel G Bracewella,∗
a r t i c l e i n f o
Keywords:
Pressure-flow
a b s t r a c t
Mechanicalcharacterisationofagarose-basedresinsisanimportantfactorinensuringrobust chro-matographicperformanceinthemanufactureofbiopharmaceuticals.Pressure-flowprofilesaremost commonlyusedtocharacterisetheseproperties.Thereareanumberofdrawbackswiththismethod, includingthepotentialneedforseveralre-packstoachievethedesiredpackingquality,theimpactof walleffectsonexperimentalsetupandthequantitiesofchromatographymediaandbuffersrequired
Toaddresstheseissues,wehavedevelopedadynamicmechanicalanalysis(DMA)techniquethat char-acterisesthemechanicalpropertiesofresinsbasedontheviscoelasticityofa1mlsampleofslurry Thistechniquewasconductedonsevenresinswithvaryingdegreesofmechanicalrobustnessandthe resultswerecomparedtopressure-flowtestresultsonthesameresins.Resultsshowastrong correla-tionbetweenthetwotechniques.Themostmechanicallyrobustresin(CaptoQ)hadacriticalvelocity 3.3timeshigherthantheweakest(SepharoseCL-4B),whilsttheDMAtechniqueshowedCaptoQto haveaslurrydeformationrate8.3timeslowerthanSepharoseCL-4B.Toascertainwhetherpolymer structureisindicativeofmechanicalstrength,scanningelectronmicroscopyimageswerealsousedto studythestructuralpropertiesofeachresin.ResultsindicatethatDMAcanbeusedasasmallvolume, complementarytechniqueforthemechanicalcharacterisationofchromatographymedia
©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Manufacturersmustensurethatchromatographymediameet
a broad range of requirements before use for the
sepa-ration/purification of biological products These requirements
include a number of safety considerations (leachables,
toxicol-ogy),performance(capacity,specificity,throughput),cost(capital
investment,longevity)andstability,amongothers[1].Stabilitycan
besplitbroadlyintotwocategories−chemicalandmechanical.The
chemicalresistanceofchromatographymediaisdependentonthe
couplingchemistryaswellasthechoiceofspacerandligand
chem-istryandstability.Whereas,themechanicalstabilityisdependent
largelyonthechoiceandcompositionofthebasematerial,particle
sizedistribution,particleporosity,andtoalesserextent,ligandand
liganddeployment[2,3]
Thebasematerialischosenbasedonanumberoffactorssuch
ascost,thepropertiesofthematerialtobeprocessedandsurface
areaandmasstransfercharacteristics,givingrisetoparameters
such as dynamic binding capacity (DBC) maximum flow rates, maximumnumberofcyclesetc.Basedonthis,different manufac-turersusedifferentcompositematerialsfortheirchromatographic media[4].Agaroseis acommonlyusedbasematrixmaterialin biopharmaceuticalpurificationasitrelativelystraightforwardto manufacture and customise certainproperties suchas porosity andspecificbindingproperties.Thispaperfocusesparticularlyon MabSelectTM,SepharoseTM and CaptoTM media(GEHealthcare, Uppsala,Sweden)
Agaroseisoneoftwomainconstituentsofagarandisgenerally extractedfromseaweed.Itiscomposedofapolysaccharide poly-mermaterialformedofrepeatingunitsof1–3-linked-Dgalactose and1,4-linked3,6-anhydro-␣-l-galactose[5].Oncetheagarhas beenprocessed,theagaroseisintheformofadrypowder.Itis thendissolvedinanaqueoussolution>85◦C,causingthechains
todegrade[3,6].Whenthesolutionreachesacertainviscosity,it
iscooledand poured,whilstsimultaneouslybeingstirredintoa non-polarorganicsolventwhichcontainsanemulsifier.These con-ditionsinducetheformationofsphericalbeads(emulsification) Thestirringandcoolingratesareakeyparametersindetermining certainstructuralcharacteristicssuchasporosity,poresize
distri-https://doi.org/10.1016/j.chroma.2017.11.038
Trang 2Fig 1. General method for making porous agarose beads The agarose solid is dissolved in water heated to about 90 ◦ C This is then added to a stirred vessel containing a
butionandparticlesizedistribution,whichtendstorangefrom20
to300m[4](Fig.1)
Uponformation,thebeadsareinsolubleandsedimentintothe
higher density water phase, as opposed tothe organicsolvent
phase Thebeads are subsequently cross-linked witha reagent
suchasepichlorohydrin.Theextenttowhichthisisdoneisone
ofthecritical factors thatdeterminetherigidity of thematrix
However,cautionmustbetakenatthisstepasover-cross-linking
mayreduceporosity,liganddeploymentandcompressibility
char-acteristics[7,8].Whentheprocessiscompleted,theresincanbe
usedinvariousapplicationssuchassizeexclusionanddesalting.It
mayalternativelygoontobefunctionalisedwithdifferentligand
chemistries,afterwhichitcanbeusedinanumberofmodesfor
variousbiopharmaceuticalapplications[1,3,9–11]
Toensureconsistencyinthestructuralandmechanical
prop-erties of chromatography media, the media has to be well
characterised.Structuralintegritytestinginvolveslookingatpore
sizeandparticlesizedistributionsandporosity,whichcan
gener-allybeascertainedindirectlybyobservingtitrationcurvesorstatic
capacity.Therehavealsobeenreportsondevelopinglab-based
pro-ceduresthatinvolvetheuseofmicromanipulation[9,12].Abetter
ideaofmechanicalandcolumnperformanceisusuallydetermined
bypressure-flowcharacterisation.Thistechniqueinvolves
gradu-allyincreasingtheflowrateandobservingariseinthepressure
profileinthecolumn.Atacertainflowvelocity,thepressureinthe
columnwillcontinuetorisewithoutfurtherincreasetotheflow
rate.Itisatthispointthatthecriticalvelocityhasbeenreachedand
thecolumnhas‘failed’[13]
Theadvantagesofthismethodincludetheabilitytodetermine
thebehaviourofchromatographymediainapackedbedandhow
mechanicalpropertiesvarywithmediaviscosity,pH,ionicstrength
etc.However,adrawbackofthismethodisthatitrequiresthatthe
operatoradherestostringentpackingcriteriatoobtainmeaningful
data.Whenpackingcolumns,severalre-packsmayberequiredto
achievethedesiredasymmetryandeachresin,dependingonits
chemicalandmechanicalproperties,hasitsownspecificpacking
criteria.Furthermore,itisnecessarytouseacolumnofasuitable
diameter,suchthatwalleffectsthatsupporttheresininnarrow
columnsdonotdominate[14].Thebedheightalsoneedstobe
rep-resentative,aspressuredropdirectlycorrelatestotheheightofthe
bed,meaningheightsof15cmorgreateraretypicallyused[15].For
thesereasons,thepressure-flowtechniqueconsumeslarge
quan-titiesofchromatographicmediaandbuffers,whichiscostly[16]
To address these drawbacks, we have developed the use
of dynamic mechanical analysis (DMA) (Fig.2).This technique
involvesapplyingasmalldeformationtoasampleinacyclic man-nerandallowsforthesamplematerialtorespondtochangesin stress,temperature,strain,frequency,forceaswellasother param-eters.Itisusedwidelyinthebioengineeringsectorandthefieldof biosciencestocharacterisetheviscoelasticpropertiesofvarious biologicaltissueand otherbiomaterials.Traditionally,thestress andstrainparametersareusedtocalculateYoung’smodulusto giveanindicationofchangesinelasticproperties.Moronietal.,
2006[17]usedthetechniquetoinvestigatetheuseofscaffoldsto mimichumantissue.Theyfoundthatthetechniquewas partic-ularlysensitivetoporesizechangesinscaffolds.Withincreasing porosityinthescaffolds,therewasadecreaseinelasticproperties, whichcorrespondedtoanincreaseinstrain.Ithasalsobeenused
tolookatthemechanicalpropertiesofmaterialssimilartoagarose gels,suchashydrogels.Meyvis&Stubbe2002[18]usedDMAasa comparativetechniquetoshearrheometrytoinvestigate mechan-icalpropertiesofpharmaceuticalhydrogels.Theyfoundastrong correlationbetweenthetwotechniquesbutobservedthatDMA canbeusedtoinvestigatemanymoremechanicalparametersthan solelyviscoelasticity
We have applied the use of DMA to investigate the vis-coelastic properties of small quantities of seven agarose-based
Trang 3Table 1
Sepharose 4 FF, Sepharose 6 FF, Q Sepharose HP 400 cm/hr − 2 min
resins,namely:SepharoseCL–4B(SCL4B),Sepharose4FF(S4FF),
SepharoseCL–6B(SCL6B),Sepharose6FF(S6FF),Q-SepharoseHigh
Performance (Q-HP), MabSelectTM (MabSelect) and CaptoTM Q
(CaptoQ)(GEHealthcare,Uppsala,Sweden).Weinvestigatehow
the slurriesrespond to strain over a fixed period of time We
thenlooktodrawcorrelationsbetweentheresultsobtainedfrom
pressure-flowandDMAexperimentstoascertainwhetherDMA
canbeusedascomplementarytechniqueforthemechanical
char-acterisationofchromatographymedia
2 Materials and methods
2.1 Pressure-flow
2.1.1 Equipment
Abench-scalecolumnwithadjustablecolumnlengthandinner
diameterof1.6cm(modelXK16,GEHealthcare,Uppsala,Sweden)
wasused.ThiswasoperatedontheAKTAPure(GEHealthcare,
Upp-sala,Sweden).Columnpressuredrop(P)wasmeasuredusing
theinternalpressuremeasurement devicesinstalledinthefeed
deliverysystemoftheAKTAPureandthevolumetricflowratewas
measuredmanuallyusingthemethodemployedby[15]
2.1.2 Chromatographymedia
Sepharose CL-4B, Sepharose CL-6B, Sepharose 4 Fast Flow,
Sepharose6 FastFlow,Q SepharoseHighPerformance,
MabSe-lectandCaptoQ(GEHealthcare,Uppsala,Sweden)wereusedin
thisstudy.Theseagarose-basedchromatography resinshavean
averageparticlesizeof 80m, withabeadsize distributionof
between24and165m.Themechanicaldifferencesbetweenthe
sevenresinslieintheagarosecontentandtheextentofstructural
cross-linkingpresent
MabSelectandCaptoQaremadeofhighlycross-linkedagarose,
whereas Sepharose CL-4B/CL-6B, Sepharose 4 FF/6 FF and Q
Sepharose HP are structurally simplerin terms of their
cross-linking However Sepharose 6 FF, CL-6B, Q Sepharose HP and
MabSelectallcontainthesamepercentageofagaroseintheir
matri-ces(6%),whileSepharoseCL–4BandSepharose4FFcontain4%and
CaptoQ7%
2.1.3 Procedure
Packing–Allchromatographymediawasmadeupto50%slurry
concentration The same procedurewas repeated for all seven
resins.30mlofslurrywaspouredintothecolumnandallowedto
gravitysettleovernight.Theadaptorwasloweredintothe
super-natanttostarttheflowpack.Allcolumnswerepackedat15cm/hr
for60minandsubsequentlyat30cm/hrfor30min.Thecolumns
showninTable1werefurtherconsolidated.Thetopadaptorwas
thenloweredtothetopofthebed.Thepackingmediumusedfor
allbufferswasdistilledH2O(dH2O)
Performancetesting – 2% v/vof acetonewas measuredand
addedinto30mlofdH2Oina50mlfalcontube(CELLSTAR®,UK)
1ml of this solution wasinjected into a 600l loop and then
loadedontothecolumn.TheeluentusedinthisstudywasdH2O
at30cm/hr.Apeakwasthengeneratedwithin30min.The
asym-metrywascalculatedusingthein-builtfunctionontheUnicorn6.4
software
Pressure-flowmethod–Theflowrateofthepackingbufferwas continuallygraduallyincreaseduntila35kPaincreaseinpressure dropwasobserved,asdescribedbyTranetal.,2007[15].Atthis point,theflowrateand anychangesinbedheightwere manu-allyrecorded.Atacertainflowrate,thepressurebegantoincrease exponentiallywithnofurtherchangetotheflowvelocity.Atthis pointitwasdeemedthatthecriticalvelocityforthecolumnhad beenreached
2.2 Dynamicmechanicalanalysis 2.2.1 Column/holderdesign
10identicalcylindricalblocksoftransparentacrylicweredrilled withaninnerdiameterof11mm,anouterdiameterof14mmand
a heightof 15mm.Thebottomwaswrappedina thinsheetof parafilm(0.1mmthickness)tocontaintheslurry
2.2.2 Samplepreparation
Analiquot of 10ml ofeach resin wasplaced intoa labelled
50mlfalcontubeandcentrifugedfor5minat3000rpm (Eppen-dorfcentrifuge5810R,ThermoFisherScientific,UK)andtheslurry concentrationwasnotedbasedonthevolumeratioofliquid to slurryin thefalcon tube.Thestorage buffer(20%ethanol) was decanted,replacedwiththeirrespectivepackingbuffersandthe slurrysolutionwasmadeuptoa70%slurryconcentration.The aliquotswereresuspendedandtheprocedurewasrepeateduntil thestoragebufferhadbeencompletelyremoved.1.42mlofeach aliquotwaspipettedintotheirrespectivelylabelledholderandleft
tosettleovernight,suchthattheirsettledbedheightwas1cm.A consistentslurryconcentrationisimportantinachievingauniform settledbedvolumeandheightforcomparablestrainmeasurements acrossallresins
2.2.3 DMAprocedure DMAwascarriedoutontheDMA7ehardware,withaTAC7/DX controllerandPyrisManagersoftware(PerkinElmer,UK).Inthis proceduretheforcereadingiszeroed,theweightoftheprobeis taredandtheprobepositioniszeroedwhenthelidisloweredtothe baseofthepan.Thelidisliftedandtheholdercontainingtheslurry
isplacedontothepan.Thelidisloweredtothetopoftheresinbed, theheightisreadandthemethodologyisstarted.Inthis method-ology,thelidappliesaforceof100mN/minatafrequencyof1Hz for80minandatime-strainplotisgeneratedsimultaneously.Upon completionofthemethodology,theslopeofthelineismanually fit-tedfromtheorigintothepointbeforeultimatecompression(Fig.6) usingthein-builtslopefunctioninthePyrisManagersoftware 2.3 Scanningelectronmicroscopy
Allsampleswerecriticalpointdriedandimagedusingthesame protocoldescribedinNwekeetal.,2016[19]
3 Results & discussion
Theresinsusedinthisstudywereselectedbasedontheir dif-ferencesinpercentageofagarosecontentanddifferencesobserved
intheirfibrousstructure,poresizedistributionandcross-linking viascanningelectronmicroscopy(Fig.5,Table2).Their mechani-calpropertiesarecharacterisedusingthestandardpressure-flow methodandthiswillthenbecomparedtoresultsfromdynamic mechanicalanalysis
3.1 Pressure-flow
Inthis technique,theflowrateismanuallyincreaseduntila runawayriseinthepressureprofileisobserved.Theflowrateat
Trang 4Table 2
Resin Bead size range (m) Pore size range (nm) % agarose Extent of cross-linking
whichthisoccursisconvertedtolinearvelocity.Thisisthepoint
atwhichthecolumnhas‘failed’andistermedthecriticalvelocity
Themorerigidtheresinis,thehigherthecriticalvelocity.Three
repeatsoftheprocedure(section2.1)wereconductedforallseven
resinsandtheaveragesareplotted.Thestandarddeviationsfrom
theaverage(basedontherepeats)arerepresentedbytheerror
bars(Fig.3).Thedegreetowhichanyindividualrepeatmayvary
isreliantmainlyoncolumnpackingandtheresultingasymmetry
Theprobabilitythatacolumnwillpackinexactlythesameway,
despiteusingthesameprocedureislow.Thisisrepresentedbythe asymmetryvalueobtained.Althoughtheasymmetrydifferedforall repeats,itwasmaintainedintherangeof0.8-1.2(whichmayhave requiredmultiplerepackstoachieve).Areductioninbedheight duringthechangestoflowvelocitymayalsobeobserved[15] Fig 4 shows the critical velocities for each resin using the pressure-flowcharacterisation techniqueusinganXK16column withabedheightof15cm.CaptoQhasthehighestcritical veloc-ityat492cm/hr,followedbyMabSelect−423cm/hr,Q-Sepharose
HP−353cm/hr,Sepharose6FF−348cm/hr,SepharoseCL–6B−
283cm/hr, Sepharose4FF −204cm/hr and SepharoseCL–4B−
149cm/hr
TheresultsshowthatCaptoQistheleastcompressibleofthe7 resins,followedbyMabSelect.Thisisexpectedasbothresinsare madeofhighlycross-linkedagarosepolymersandcontain7%and 6%agaroserespectively.Q-HPandS6FFarecross-linkedresinsthat contain6%agarose.Thesetworesinshavequasi-identicalcritical velocities.Theirmainstructuraldifferencesareobservedintheir averagebeadsizeandtheiraverageporesizedistributions(Fig.5, Table2)sotheirdynamicbehaviourinthecolumnisnotexactlythe same(Fig.3 –Q-HPexhibitsslightlyhigherpressuredrop).S6FF resinsare2–3timeslargerinsize(dp)comparedtoQ-HP, how-evertheaverageporesizeofS6FF(andFastFlowresinsingeneral)
isapproximately2–3timessmallerthanthatofQ-HP[20–22].It hasbeenestablishedthatbothporesizedistributionandbeadsize contributetothemechanicalpropertiesofchromatographymedia [23,9].Thetrade-offbetweenthesetwoparameters,aswellastheir identicalmechanicaltraits,mayexplainwhybothresinshavevery similarcriticalvelocityvalues
Theresultsalsoshowthedifferencesin mechanicalstrength betweenSCL6BandS6FF,aswellasSCL4BandS4FF.Bothpairsof resinsarecross-linkedandcontain6%and4%agaroseintheir matri-cesrespectively,howeverbothfastflowresinsaremechanically
Trang 5Fig 5. Scanning electron micrographs showing: Sepharose 4FF (4% cross-linked agarose), Sepharose CL–4 B (4% cross-linked agarose), Sepharose 6FF (6% cross-linked agarose),
strongerthantheir–CLcounterparts.Inbothcases,thefastflow
resinswithstandmuchhigherflowratesaccordingtothe
manu-facturer’sspecification,whichmayindicatethattheircross-linking
wasmoreextensive.Scanningelectronmicrographswereobtained
toshowthestructuralpropertiesofeachresin,whichwereusedto ascertainwhetherpolymerstructure isindicativeofmechanical strength.Theirmicrographsshowthattheyarestructurally differ-ent(Fig.5).SCL6B,forexample,appearstobemorefibrousand
Trang 6Fig 6.Schematic of DMA methodology The lid is equipped with a sensor that records the initial height of the sample When the methodology is started the descending lid
morediscontinuouscomparedtoitsfastflowcounterpartwhich
hasamorehomogenous,continuousstructure,whichmay
indi-categreatermechanicalstrength.Itshouldbenotedthatthecited
literatureplots[14],[15]depictaxeswithvaryingmetrics.These
citationsareusedtodescribethemethodbywhichpressure-flow
characterisationwascarriedoutinthisstudy.GEHealthcaredata
sheetsdepictsimilarprofilestotheonesobtainedin thisstudy
[25],[26].Differencesincritical velocityvaluesreportedin this
studymaybe attributedtodifferent packingtechniquesin the
differentcolumnsused[27].Thepressure-flowprofilesobtained
byGEHealthcareuseproductionscalecolumns(AxiChrom,BPG)
andmainlypack-in-placeandaxialmechanicalcompression
pack-ing,whilstthisstudyuseslab-scaleXK16columnsundertheflow
packingtechnique.Itisworthhighlightingthatthemostcritical
aspectofthisstudyisthatthesamebatchofresinswereusedin
theapplicationofalltechniquesreportedinthisstudy
3.2 Dynamicmechanicalanalysis(DMA)
Thistechniquecharacterisesmechanical propertiesbasedon
theviscoelasticityofasmallsampleofresin.ConventionalDMAis
usedtocharacterisehomogeneouslyshapedbiomaterialsto
deter-mineelasticpropertiessuchasYoung’smodulus[17]however,we
haveadaptedthetechniquesuchthatitcharacterisesthe
proper-tiesofaslurry.Theequipmentiscomposedmainlyofapananda
lid,equippedwithsensors.Thelidinparticularisequippedwith
a sensor thatallows it tostopjust atthesurface of theslurry
onceindescent.Whenthemethodologyisstarted,a sinusoidal
forceisappliedataconstantfrequency.Astheliddescends,the
slurrymovesaround thesidesofthe lidandthis movement is
recordedasadisplacementpercentagewithtime Meanwhile,a
time-strainprofileisgenerated,wherestrainisthedisplacement
ofthelidthroughtheresinbedrecordedasapercentage.Oncea
strainthresholdisexceeded,therateofincreaseisvastlyreduced
ortheplotbeginstoleveloutcompletelyandatthispointultimate
compressionisreached.Thisiseitherwhenthelidhashitthe
bot-tomofthepan,orwhenlittleornofurtherdeformationoftheslurry
canbeachievedwithconstantforce.Forconsistency,theslopeof
thelineistakenbeforeultimatecompressionandthisprovides
informationaboutthemovementofthelidthroughtheslurrywith
constantforce.AstrainversustimeplotisgeneratedbythePyris Managersoftwareandtheslopeofthelinebeforeultimate com-pressiondeterminestheslurrydeformationrate.Theslopeofthe lineismanuallyfittedfromtheorigintothepointbeforeultimate compressionusingthein-builtslopefunctioninthePyrisManager software.Theunitsarerecordedas%/min(Fig.6).Thelessviscous themediais,thequickerthelidwillmovethroughtheslurry, there-forethehigherthe%strainperminute.Theprocedureisrepeated
3timesforeachresin(Fig.7)
Fig.8ashowstheslurrydeformationratesforeachresinusing theDMAtechnique.CaptoQhastheslowestslurrydeformation rateat0.36%/min,followedbyMabSelect–0.55%/min,Q-Sepharose
HPandSepharose6FF–1.1%/min,SepharoseCL–6B–1.7%/min, Sepharose4FF–2.5%/minandSepharoseCL–4B–3%/min Fig.8 showsthegraphobtainedbyplottingthereciprocalof theSDRvaluesforeachresin.Theresultingparameterwastermed
‘slurryresistance(1/%min−1)’.Thiswasdonetomoreclearlyshow the trend between the pressure-flow technique and the DMA technique with particular focus on the gapbetween the more mechanicallyrobustresinsandtheweakerresins.Theresultsshow CaptoQhasthehighestslurryresistanceof2.8,followedby Mab-Select−1.81,Q-HPandS6FF−0.90,SCL6B−0.59,S4FF−0.4and SCL4B−0.3
ThesametrendsobservedinFig.3areobservedinFig.8b.The resultsfromFig.8 showthatCaptoQismostresistantto deforma-tion,followedbyMabSelect,Q-SepharoseHighPerformanceand Sepharose6FastFlow,SepharoseCL-6B,Sepharose4FastFlow and SepharoseCL-4B Similartothetrendsobserved insection 3.1,theresultsalsoshowthatQ-SepharoseHighPerformanceand Sepharose6FastFlowexhibitverysimilarviscoelasticproperties Bothresinscontain6%agarosehowevertherearedifferencesin theiraveragebeadsizesandporesizes.Poresizeisinfluencedbya numberoffactors,includingtheextentofcrosslinkingwhich influ-encesmechanicalrigidity[1].Thisbecomesofrelevancewhenthe beadsmovepasteachotherthroughthegapsastheliddescends andthegapsizeof500mislargeenoughsuchthatitdoesnot allowforradialrestriction/compressionofsinglebeads.The trade-offbetweenthefactthatQ-HPhasalargeraverageporesizethan S6FF,butS6FFhasalargerbeadsizerange,wouldmeanthatthere arefewerS6FFbeadsforthesamegivenvolume.Thiscouldexplain
Trang 7Fig 7. (a) Strain v time plot for 3 repeats of Sepharose CL–4 B (4% cross-linked agarose) (one solid line, one dashed line, one dotted line) (b) Averages of 3 out of 7 resins –
points.
Trang 8thedifferencesinviscoelasticpropertiesbetweenSCL6BandS6FF,
aswellasSCL4BandS4FF.Furtherexplanationsfortheobserved
trendsareoutlinedinSection3.1.ThedatafromFigs.4and8are
plottedtoestablishatrend(Fig.9)
3.3 Datacorrelation–pressure-flowvsdynamicmechanical
analysis
Fig.9a shows a strongnegative correlationbetween critical
velocityandslurrydeformationratefor all7resinsusedinthis
study.ThismeansthatthestrongerresinssuchasMabSelectand
CaptoQhavelowSDRsandhighucritvaluesandtheoppositeistrue
formechanicallyweakerresinssuchasSCL4BandS4FF.Thetrend
beginsinalinearfashionwiththefirstfiveresinsbutthentailsoff
whenthemoremechanicallyrobustresinsappear.This
represen-tationofresultsindicatesthatastheresinsbecomemechanically
moresimilarandthedifferenceinmechanicalpropertiesbecomes
lesssignificant
Fig.9 showsaparityplotofFig.9aandthey-axisisrepresented
as‘slurryresistance’.Thevaluesarecalculatedbasedon1/SDRfor
eachresin.Thetrendobservedisapositivepolynomialtrendfor
slurryresistanceagainstcriticalvelocity.Thefirst5resinsshowa
gradualincreaseinmechanicalresistance,however,thedifference
inmechanicalstrengthbecomesmore apparentwhenthemore
robustresins(MabSelectandCaptoQ)areplotted.Thisplot
bet-terdemonstratesthedisparityinmechanicalbehaviourbetween
eachresinanddepictingthedatainthiswaycorrelatespositively
withthepressure-flowdataandismoreeasilycomparable.Both
plotsshowthatDMAcanbeusedasacombinatorytechniqueto
pressure-flowforthecharacterisationofchromatographymedia
DMAhasshownadditionalbenefitsinitsuseforresin
charac-terisation.Itallowsfortheuseofsmallquantitiesofsample(∼1ml)
andrequiresrelativelylittlepreparation.Thelowforceof100mN
appliedina sinusoidalmanneris non-destructivetothemedia
overanextendedperiodoftime(80min).Giventheseadvantages,
itcanpotentiallybeusedtoinvestigatethemechanical
proper-tiesof othermediatypes, e.g.non-agarosebasedresins.It may
alsobeusedinthedevelopmentofnewresinsforrapidtesting
post-emulsification
4 Conclusion and potential applications
Currently,manufacturersusethepressure-flow
characterisa-tiontechniquetodeciphermechanicallimitsofchromatography
mediabypackingcolumnsuptomanylitresinsize.Thisisnot
onlycostly,butitisalsotime-consuminginitspreparation and
itrequiresanumberofbufferstobeused.Wehavedevelopeda
DMAtechniquethatdoesnotrequiretheuseofmultiplebuffers
and uses a much reduced quantityof resin The development
ofthistechniqueconsideredanumberoffactorsalsoassociated
withpressure-flowcharacterisation,includingbeadsize,poresize
and slurry concentration This technique was tested on seven
resinswithvaryingmechanicalpropertiesandcomparedtotheir
pressure-flowcharacteristics.Theresultsshowa strong
correla-tionbetweenbothtechniques.Usingthepressure-flowmethod,the
mostrobustresin(CaptoQ)hadacriticalvelocity3.3timeshigher
thanSepharoseCL-4B,whilsttheDMAtechniqueshowedCaptoQ
tohaveaslurrydeformationrate8.3timeslowerthanSepharose
CL-4B.This couldbe duetoincreasedsensitivity of mechanical
changesasthesamplevolumeusedforDMAismuchsmallerthan
thatofpressure-flow.ThiscorrelationindicatesthatDMAcanbe
usedasacombinatorytechniquefordeterminingmechanical
per-formanceofa givenresin.Althoughadditionaltestscanalways
beperformedtoincrease confidence in itsapplication toother
mediatypes,theresultsfromthisstudyshowdefinitive correla-tionsbetweenthetwo techniquesforagarose-basedresins.The correlationfurthersuggeststhatDMAmaybeappliedtopredict pressure-flowcharacteristics.Thistechniquemayalsobeuseful forrapidtestingofarangeofresinspost-emulsificationandduring thedevelopmentofnewresins.Furthermore,itmayalsobeused
totestresinsexposedtodifferentconditionsinthecolumnaswell
asatdifferentstagesofitslifetimeduringbioprocessing.Itmay alsobeconsideredtoinvestigatetheimpactofexposuretovarying mechanicalstressesduringoperationoflarge-scale chromatogra-phy
Acknowledgments
This work was supported by theEPSRC, Eli Lilly & Co., UCL EastmanDentalInstituteandUCLDepartmentofBiochemical Engi-neering.Thesupportisgratefullyacknowledged
References
[1] N Ioannidis, Manufacturing of Agarose-based Chromatographic Media with Controlled Pore and Particle Size, University of Birmingham, 2009.
[2] G Jagschies, G Sofer, L Hagel, Handbook of Process Chromatography – Development, Manufacturing, Validation and Economics, 2nd ed., Elsevier, 2008.
[3] M Andersson, Characterisation of Chromatography Media Aimed for Purification of Biomolecules, Uppsala Universitet, 2014.
[4] A Jungbauer, Chromatographic media for bioseparation, J Chromatogr A
1065 (1) (2005) 3–12.
[5] A Gerstein, Molecular Biology Problem Solver: A Laboratory Guide, 2nd ed., Wiley, 2004.
[6] Y Mu, A Lyddiatt, A.W Pacek, Manufacture by water/oil emulsification of porous agarose beads: effect of processing conditions on mean particle size, size distribution and mechanical properties, Chem Eng Process Process Intensif 44 (10) (2005) 1157–1166.
[7] Q.-Z Zhou, L.-Y Wang, G.-H Ma, Z.-G Su, Multi-stage premix membrane emulsification for preparation of agarose microbeads with uniform size, J Membr Sci 322 (1) (2008) 98–104.
[8] Q.-Z Zhou, G.-H Ma, Z.-G Su, Effect of membrane parameters on the size and uniformity in preparing agarose beads by premix membrane emulsification, J Membr Sci 326 (2) (2009) 694–700.
[9] Y Yan, Z Zhang, J.R Stokes, Q.Z Zhou, G.H Ma, M.J Adams, Mechanical characterization of agarose micro-particles with a narrow size distribution, Powder Technol 192 (1) (2009) 122–130.
[10] N Ioannidis, J Bowen, A Pacek, Z Zhang, Manufacturing of agarose-based chromatographic adsorbents – effect of ionic strength and cooling conditions
on particle structure and mechanical strength, J Colloid Interface Sci 367 (1) (2012) 153–160.
[11] K Keller, T Friedmann, A Boxman, The bioseparation needs for tomorrow, Trends Biotechnol 19 (11) (2001) 438–441.
[12] A Ellis, J.C Jacquier, Manufacture and characterisation of agarose microparticles, J Food Eng 90 (2) (2009) 141–145.
[13] P Gavara, N Bibi, M Sanchez, M Grasselli, M Fernandez-Lahore, Chromatographic characterization and process performance of column-packed anion exchange fibrous adsorbents for high throughput and high capacity bioseparations, Processes 3 (1) (2015) 204–221.
[14] J.J Stickel, A Fotopoulos, Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale, Biotechnol Progr 17 (4) (2001) 744–751.
[15] R Tran, J.R Joseph, A Sinclair, D Bracewell, Y Zhou, N.J Titchener-Hooker, A framework for the prediction of scale-up when using compressible chromatographic packings, Biotechnol Progr 23 (2) (2007) 413–422.
[16] T Warner, S Nochumson, Rethinking the economics of pensions, BioPharm Int 22 (3) (2003) 15–39.
[17] L Moroni, J.R De Wijn, C.A Van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials 27 (7) (2006) 974–985.
[18] T Meyvis, B Stubbe, A comparison between the use of dynamic mechanical analysis and oscillatory shear rheometry for the characterisation of hydrogels, Int J Pharm 244 (2002) 163–168.
[19] M.C Nweke, M Turmaine, R.G McCartney, D.G Bracewell, Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy, Biotechnol J 12 (2016) 1600583.
[20] P DePhillips, A Lenhoff, Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography, J Chromatogr A 883 (2000) 39–54.
[21] C Tarmann, A Jungbauer, Adsorption of plasmid DNA on anion exchange chromatography media, J Sep Sci 31 (14) (2008) 2605–2618.
Trang 9[22] A.M Hardin, C Harinarayan, G Malmquist, A Axen, R van Reis, Ion exchange
chromatography of monoclonal antibodies: effect of resin ligand density on
dymanic binding capacity, J Chromatogr A 20 (1216) (2009) 4366–4371.
[23] Q.-Z Zhou, L.-Y Wang, G.-H Ma, Z.-G Su, Preparation of uniform-sized
agarose beads by microporous membrane emulsification technique, J Colloid
Interface Sci 311 (1) (2007) 118–127.
[25] G.E Healthcare, Packing MabSelect TM and MabSelect SuRe TM Media Using
Verified Methods, GE Healthcare, Uppsala, Sweden, 2015, pp 110.
[26] J Avallin, A Nilsson, M Asplund, N Pettersson, T Searle, C Jägersten,
Columns Upto 1600 Mm in Diameter Packed with Protein A Chromatography
Medium Using Axial Mechanical Compression, GE Healthcare, Uppsala, Sweden, 2016, pp 291.
[27] M Dorn, F Eschbach, D Hekmat, D Weuster-Botz, Influence of different packing methods on the hydrodynamic stability of chromatography columns,
J Chromatogr A (2017).
[28] L Hagel, M Ostberg, T Andersson, Apparent pore size distributions of chromatography media, J Chromatogr A 743 (1) (1996) 33–42.
[29] M Barrande, et al., Characterisation of porous materials for bioseparation, J Chromatogr A 1216 (41) (2009) 6906–6916.