1. Trang chủ
  2. » Giáo án - Bài giảng

Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture

9 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Mechanical Characterisation of Agarose-Based Chromatography Resins for Biopharmaceutical Manufacture
Tác giả Mauryn C. Nweke, R. Graham McCartney, Daniel G. Bracewell
Trường học University College London
Chuyên ngành Biochemical Engineering
Thể loại research article
Năm xuất bản 2017
Thành phố London
Định dạng
Số trang 9
Dung lượng 2,3 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mechanical characterisation of agarose-based resins is an important factor in ensuring robust chromatographic performance in the manufacture of biopharmaceuticals. Pressure-flow profiles are most commonly used to characterise these properties.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Mauryn C Nwekea, R Graham McCartneyb, Daniel G Bracewella,∗

a r t i c l e i n f o

Keywords:

Pressure-flow

a b s t r a c t

Mechanicalcharacterisationofagarose-basedresinsisanimportantfactorinensuringrobust chro-matographicperformanceinthemanufactureofbiopharmaceuticals.Pressure-flowprofilesaremost commonlyusedtocharacterisetheseproperties.Thereareanumberofdrawbackswiththismethod, includingthepotentialneedforseveralre-packstoachievethedesiredpackingquality,theimpactof walleffectsonexperimentalsetupandthequantitiesofchromatographymediaandbuffersrequired

Toaddresstheseissues,wehavedevelopedadynamicmechanicalanalysis(DMA)techniquethat char-acterisesthemechanicalpropertiesofresinsbasedontheviscoelasticityofa1mlsampleofslurry Thistechniquewasconductedonsevenresinswithvaryingdegreesofmechanicalrobustnessandthe resultswerecomparedtopressure-flowtestresultsonthesameresins.Resultsshowastrong correla-tionbetweenthetwotechniques.Themostmechanicallyrobustresin(CaptoQ)hadacriticalvelocity 3.3timeshigherthantheweakest(SepharoseCL-4B),whilsttheDMAtechniqueshowedCaptoQto haveaslurrydeformationrate8.3timeslowerthanSepharoseCL-4B.Toascertainwhetherpolymer structureisindicativeofmechanicalstrength,scanningelectronmicroscopyimageswerealsousedto studythestructuralpropertiesofeachresin.ResultsindicatethatDMAcanbeusedasasmallvolume, complementarytechniqueforthemechanicalcharacterisationofchromatographymedia

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Manufacturersmustensurethatchromatographymediameet

a broad range of requirements before use for the

sepa-ration/purification of biological products These requirements

include a number of safety considerations (leachables,

toxicol-ogy),performance(capacity,specificity,throughput),cost(capital

investment,longevity)andstability,amongothers[1].Stabilitycan

besplitbroadlyintotwocategories−chemicalandmechanical.The

chemicalresistanceofchromatographymediaisdependentonthe

couplingchemistryaswellasthechoiceofspacerandligand

chem-istryandstability.Whereas,themechanicalstabilityisdependent

largelyonthechoiceandcompositionofthebasematerial,particle

sizedistribution,particleporosity,andtoalesserextent,ligandand

liganddeployment[2,3]

Thebasematerialischosenbasedonanumberoffactorssuch

ascost,thepropertiesofthematerialtobeprocessedandsurface

areaandmasstransfercharacteristics,givingrisetoparameters

such as dynamic binding capacity (DBC) maximum flow rates, maximumnumberofcyclesetc.Basedonthis,different manufac-turersusedifferentcompositematerialsfortheirchromatographic media[4].Agaroseis acommonlyusedbasematrixmaterialin biopharmaceuticalpurificationasitrelativelystraightforwardto manufacture and customise certainproperties suchas porosity andspecificbindingproperties.Thispaperfocusesparticularlyon MabSelectTM,SepharoseTM and CaptoTM media(GEHealthcare, Uppsala,Sweden)

Agaroseisoneoftwomainconstituentsofagarandisgenerally extractedfromseaweed.Itiscomposedofapolysaccharide poly-mermaterialformedofrepeatingunitsof1–3-linked␤-Dgalactose and1,4-linked3,6-anhydro-␣-l-galactose[5].Oncetheagarhas beenprocessed,theagaroseisintheformofadrypowder.Itis thendissolvedinanaqueoussolution>85◦C,causingthechains

todegrade[3,6].Whenthesolutionreachesacertainviscosity,it

iscooledand poured,whilstsimultaneouslybeingstirredintoa non-polarorganicsolventwhichcontainsanemulsifier.These con-ditionsinducetheformationofsphericalbeads(emulsification) Thestirringandcoolingratesareakeyparametersindetermining certainstructuralcharacteristicssuchasporosity,poresize

distri-https://doi.org/10.1016/j.chroma.2017.11.038

Trang 2

Fig 1. General method for making porous agarose beads The agarose solid is dissolved in water heated to about 90 ◦ C This is then added to a stirred vessel containing a

butionandparticlesizedistribution,whichtendstorangefrom20

to300␮m[4](Fig.1)

Uponformation,thebeadsareinsolubleandsedimentintothe

higher density water phase, as opposed tothe organicsolvent

phase Thebeads are subsequently cross-linked witha reagent

suchasepichlorohydrin.Theextenttowhichthisisdoneisone

ofthecritical factors thatdeterminetherigidity of thematrix

However,cautionmustbetakenatthisstepasover-cross-linking

mayreduceporosity,liganddeploymentandcompressibility

char-acteristics[7,8].Whentheprocessiscompleted,theresincanbe

usedinvariousapplicationssuchassizeexclusionanddesalting.It

mayalternativelygoontobefunctionalisedwithdifferentligand

chemistries,afterwhichitcanbeusedinanumberofmodesfor

variousbiopharmaceuticalapplications[1,3,9–11]

Toensureconsistencyinthestructuralandmechanical

prop-erties of chromatography media, the media has to be well

characterised.Structuralintegritytestinginvolveslookingatpore

sizeandparticlesizedistributionsandporosity,whichcan

gener-allybeascertainedindirectlybyobservingtitrationcurvesorstatic

capacity.Therehavealsobeenreportsondevelopinglab-based

pro-ceduresthatinvolvetheuseofmicromanipulation[9,12].Abetter

ideaofmechanicalandcolumnperformanceisusuallydetermined

bypressure-flowcharacterisation.Thistechniqueinvolves

gradu-allyincreasingtheflowrateandobservingariseinthepressure

profileinthecolumn.Atacertainflowvelocity,thepressureinthe

columnwillcontinuetorisewithoutfurtherincreasetotheflow

rate.Itisatthispointthatthecriticalvelocityhasbeenreachedand

thecolumnhas‘failed’[13]

Theadvantagesofthismethodincludetheabilitytodetermine

thebehaviourofchromatographymediainapackedbedandhow

mechanicalpropertiesvarywithmediaviscosity,pH,ionicstrength

etc.However,adrawbackofthismethodisthatitrequiresthatthe

operatoradherestostringentpackingcriteriatoobtainmeaningful

data.Whenpackingcolumns,severalre-packsmayberequiredto

achievethedesiredasymmetryandeachresin,dependingonits

chemicalandmechanicalproperties,hasitsownspecificpacking

criteria.Furthermore,itisnecessarytouseacolumnofasuitable

diameter,suchthatwalleffectsthatsupporttheresininnarrow

columnsdonotdominate[14].Thebedheightalsoneedstobe

rep-resentative,aspressuredropdirectlycorrelatestotheheightofthe

bed,meaningheightsof15cmorgreateraretypicallyused[15].For

thesereasons,thepressure-flowtechniqueconsumeslarge

quan-titiesofchromatographicmediaandbuffers,whichiscostly[16]

To address these drawbacks, we have developed the use

of dynamic mechanical analysis (DMA) (Fig.2).This technique

involvesapplyingasmalldeformationtoasampleinacyclic man-nerandallowsforthesamplematerialtorespondtochangesin stress,temperature,strain,frequency,forceaswellasother param-eters.Itisusedwidelyinthebioengineeringsectorandthefieldof biosciencestocharacterisetheviscoelasticpropertiesofvarious biologicaltissueand otherbiomaterials.Traditionally,thestress andstrainparametersareusedtocalculateYoung’smodulusto giveanindicationofchangesinelasticproperties.Moronietal.,

2006[17]usedthetechniquetoinvestigatetheuseofscaffoldsto mimichumantissue.Theyfoundthatthetechniquewas partic-ularlysensitivetoporesizechangesinscaffolds.Withincreasing porosityinthescaffolds,therewasadecreaseinelasticproperties, whichcorrespondedtoanincreaseinstrain.Ithasalsobeenused

tolookatthemechanicalpropertiesofmaterialssimilartoagarose gels,suchashydrogels.Meyvis&Stubbe2002[18]usedDMAasa comparativetechniquetoshearrheometrytoinvestigate mechan-icalpropertiesofpharmaceuticalhydrogels.Theyfoundastrong correlationbetweenthetwotechniquesbutobservedthatDMA canbeusedtoinvestigatemanymoremechanicalparametersthan solelyviscoelasticity

We have applied the use of DMA to investigate the vis-coelastic properties of small quantities of seven agarose-based

Trang 3

Table 1

Sepharose 4 FF, Sepharose 6 FF, Q Sepharose HP 400 cm/hr − 2 min

resins,namely:SepharoseCL–4B(SCL4B),Sepharose4FF(S4FF),

SepharoseCL–6B(SCL6B),Sepharose6FF(S6FF),Q-SepharoseHigh

Performance (Q-HP), MabSelectTM (MabSelect) and CaptoTM Q

(CaptoQ)(GEHealthcare,Uppsala,Sweden).Weinvestigatehow

the slurriesrespond to strain over a fixed period of time We

thenlooktodrawcorrelationsbetweentheresultsobtainedfrom

pressure-flowandDMAexperimentstoascertainwhetherDMA

canbeusedascomplementarytechniqueforthemechanical

char-acterisationofchromatographymedia

2 Materials and methods

2.1 Pressure-flow

2.1.1 Equipment

Abench-scalecolumnwithadjustablecolumnlengthandinner

diameterof1.6cm(modelXK16,GEHealthcare,Uppsala,Sweden)

wasused.ThiswasoperatedontheAKTAPure(GEHealthcare,

Upp-sala,Sweden).Columnpressuredrop(P)wasmeasuredusing

theinternalpressuremeasurement devicesinstalledinthefeed

deliverysystemoftheAKTAPureandthevolumetricflowratewas

measuredmanuallyusingthemethodemployedby[15]

2.1.2 Chromatographymedia

Sepharose CL-4B, Sepharose CL-6B, Sepharose 4 Fast Flow,

Sepharose6 FastFlow,Q SepharoseHighPerformance,

MabSe-lectandCaptoQ(GEHealthcare,Uppsala,Sweden)wereusedin

thisstudy.Theseagarose-basedchromatography resinshavean

averageparticlesizeof 80␮m, withabeadsize distributionof

between24and165␮m.Themechanicaldifferencesbetweenthe

sevenresinslieintheagarosecontentandtheextentofstructural

cross-linkingpresent

MabSelectandCaptoQaremadeofhighlycross-linkedagarose,

whereas Sepharose CL-4B/CL-6B, Sepharose 4 FF/6 FF and Q

Sepharose HP are structurally simplerin terms of their

cross-linking However Sepharose 6 FF, CL-6B, Q Sepharose HP and

MabSelectallcontainthesamepercentageofagaroseintheir

matri-ces(6%),whileSepharoseCL–4BandSepharose4FFcontain4%and

CaptoQ7%

2.1.3 Procedure

Packing–Allchromatographymediawasmadeupto50%slurry

concentration The same procedurewas repeated for all seven

resins.30mlofslurrywaspouredintothecolumnandallowedto

gravitysettleovernight.Theadaptorwasloweredintothe

super-natanttostarttheflowpack.Allcolumnswerepackedat15cm/hr

for60minandsubsequentlyat30cm/hrfor30min.Thecolumns

showninTable1werefurtherconsolidated.Thetopadaptorwas

thenloweredtothetopofthebed.Thepackingmediumusedfor

allbufferswasdistilledH2O(dH2O)

Performancetesting – 2% v/vof acetonewas measuredand

addedinto30mlofdH2Oina50mlfalcontube(CELLSTAR®,UK)

1ml of this solution wasinjected into a 600␮l loop and then

loadedontothecolumn.TheeluentusedinthisstudywasdH2O

at30cm/hr.Apeakwasthengeneratedwithin30min.The

asym-metrywascalculatedusingthein-builtfunctionontheUnicorn6.4

software

Pressure-flowmethod–Theflowrateofthepackingbufferwas continuallygraduallyincreaseduntila35kPaincreaseinpressure dropwasobserved,asdescribedbyTranetal.,2007[15].Atthis point,theflowrateand anychangesinbedheightwere manu-allyrecorded.Atacertainflowrate,thepressurebegantoincrease exponentiallywithnofurtherchangetotheflowvelocity.Atthis pointitwasdeemedthatthecriticalvelocityforthecolumnhad beenreached

2.2 Dynamicmechanicalanalysis 2.2.1 Column/holderdesign

10identicalcylindricalblocksoftransparentacrylicweredrilled withaninnerdiameterof11mm,anouterdiameterof14mmand

a heightof 15mm.Thebottomwaswrappedina thinsheetof parafilm(0.1mmthickness)tocontaintheslurry

2.2.2 Samplepreparation

Analiquot of 10ml ofeach resin wasplaced intoa labelled

50mlfalcontubeandcentrifugedfor5minat3000rpm (Eppen-dorfcentrifuge5810R,ThermoFisherScientific,UK)andtheslurry concentrationwasnotedbasedonthevolumeratioofliquid to slurryin thefalcon tube.Thestorage buffer(20%ethanol) was decanted,replacedwiththeirrespectivepackingbuffersandthe slurrysolutionwasmadeuptoa70%slurryconcentration.The aliquotswereresuspendedandtheprocedurewasrepeateduntil thestoragebufferhadbeencompletelyremoved.1.42mlofeach aliquotwaspipettedintotheirrespectivelylabelledholderandleft

tosettleovernight,suchthattheirsettledbedheightwas1cm.A consistentslurryconcentrationisimportantinachievingauniform settledbedvolumeandheightforcomparablestrainmeasurements acrossallresins

2.2.3 DMAprocedure DMAwascarriedoutontheDMA7ehardware,withaTAC7/DX controllerandPyrisManagersoftware(PerkinElmer,UK).Inthis proceduretheforcereadingiszeroed,theweightoftheprobeis taredandtheprobepositioniszeroedwhenthelidisloweredtothe baseofthepan.Thelidisliftedandtheholdercontainingtheslurry

isplacedontothepan.Thelidisloweredtothetopoftheresinbed, theheightisreadandthemethodologyisstarted.Inthis method-ology,thelidappliesaforceof100mN/minatafrequencyof1Hz for80minandatime-strainplotisgeneratedsimultaneously.Upon completionofthemethodology,theslopeofthelineismanually fit-tedfromtheorigintothepointbeforeultimatecompression(Fig.6) usingthein-builtslopefunctioninthePyrisManagersoftware 2.3 Scanningelectronmicroscopy

Allsampleswerecriticalpointdriedandimagedusingthesame protocoldescribedinNwekeetal.,2016[19]

3 Results & discussion

Theresinsusedinthisstudywereselectedbasedontheir dif-ferencesinpercentageofagarosecontentanddifferencesobserved

intheirfibrousstructure,poresizedistributionandcross-linking viascanningelectronmicroscopy(Fig.5,Table2).Their mechani-calpropertiesarecharacterisedusingthestandardpressure-flow methodandthiswillthenbecomparedtoresultsfromdynamic mechanicalanalysis

3.1 Pressure-flow

Inthis technique,theflowrateismanuallyincreaseduntila runawayriseinthepressureprofileisobserved.Theflowrateat

Trang 4

Table 2

Resin Bead size range (␮m) Pore size range (nm) % agarose Extent of cross-linking

whichthisoccursisconvertedtolinearvelocity.Thisisthepoint

atwhichthecolumnhas‘failed’andistermedthecriticalvelocity

Themorerigidtheresinis,thehigherthecriticalvelocity.Three

repeatsoftheprocedure(section2.1)wereconductedforallseven

resinsandtheaveragesareplotted.Thestandarddeviationsfrom

theaverage(basedontherepeats)arerepresentedbytheerror

bars(Fig.3).Thedegreetowhichanyindividualrepeatmayvary

isreliantmainlyoncolumnpackingandtheresultingasymmetry

Theprobabilitythatacolumnwillpackinexactlythesameway,

despiteusingthesameprocedureislow.Thisisrepresentedbythe asymmetryvalueobtained.Althoughtheasymmetrydifferedforall repeats,itwasmaintainedintherangeof0.8-1.2(whichmayhave requiredmultiplerepackstoachieve).Areductioninbedheight duringthechangestoflowvelocitymayalsobeobserved[15] Fig 4 shows the critical velocities for each resin using the pressure-flowcharacterisation techniqueusinganXK16column withabedheightof15cm.CaptoQhasthehighestcritical veloc-ityat492cm/hr,followedbyMabSelect−423cm/hr,Q-Sepharose

HP−353cm/hr,Sepharose6FF−348cm/hr,SepharoseCL–6B−

283cm/hr, Sepharose4FF −204cm/hr and SepharoseCL–4B−

149cm/hr

TheresultsshowthatCaptoQistheleastcompressibleofthe7 resins,followedbyMabSelect.Thisisexpectedasbothresinsare madeofhighlycross-linkedagarosepolymersandcontain7%and 6%agaroserespectively.Q-HPandS6FFarecross-linkedresinsthat contain6%agarose.Thesetworesinshavequasi-identicalcritical velocities.Theirmainstructuraldifferencesareobservedintheir averagebeadsizeandtheiraverageporesizedistributions(Fig.5, Table2)sotheirdynamicbehaviourinthecolumnisnotexactlythe same(Fig.3 –Q-HPexhibitsslightlyhigherpressuredrop).S6FF resinsare2–3timeslargerinsize(dp)comparedtoQ-HP, how-evertheaverageporesizeofS6FF(andFastFlowresinsingeneral)

isapproximately2–3timessmallerthanthatofQ-HP[20–22].It hasbeenestablishedthatbothporesizedistributionandbeadsize contributetothemechanicalpropertiesofchromatographymedia [23,9].Thetrade-offbetweenthesetwoparameters,aswellastheir identicalmechanicaltraits,mayexplainwhybothresinshavevery similarcriticalvelocityvalues

Theresultsalsoshowthedifferencesin mechanicalstrength betweenSCL6BandS6FF,aswellasSCL4BandS4FF.Bothpairsof resinsarecross-linkedandcontain6%and4%agaroseintheir matri-cesrespectively,howeverbothfastflowresinsaremechanically

Trang 5

Fig 5. Scanning electron micrographs showing: Sepharose 4FF (4% cross-linked agarose), Sepharose CL–4 B (4% cross-linked agarose), Sepharose 6FF (6% cross-linked agarose),

strongerthantheir–CLcounterparts.Inbothcases,thefastflow

resinswithstandmuchhigherflowratesaccordingtothe

manu-facturer’sspecification,whichmayindicatethattheircross-linking

wasmoreextensive.Scanningelectronmicrographswereobtained

toshowthestructuralpropertiesofeachresin,whichwereusedto ascertainwhetherpolymerstructure isindicativeofmechanical strength.Theirmicrographsshowthattheyarestructurally differ-ent(Fig.5).SCL6B,forexample,appearstobemorefibrousand

Trang 6

Fig 6.Schematic of DMA methodology The lid is equipped with a sensor that records the initial height of the sample When the methodology is started the descending lid

morediscontinuouscomparedtoitsfastflowcounterpartwhich

hasamorehomogenous,continuousstructure,whichmay

indi-categreatermechanicalstrength.Itshouldbenotedthatthecited

literatureplots[14],[15]depictaxeswithvaryingmetrics.These

citationsareusedtodescribethemethodbywhichpressure-flow

characterisationwascarriedoutinthisstudy.GEHealthcaredata

sheetsdepictsimilarprofilestotheonesobtainedin thisstudy

[25],[26].Differencesincritical velocityvaluesreportedin this

studymaybe attributedtodifferent packingtechniquesin the

differentcolumnsused[27].Thepressure-flowprofilesobtained

byGEHealthcareuseproductionscalecolumns(AxiChrom,BPG)

andmainlypack-in-placeandaxialmechanicalcompression

pack-ing,whilstthisstudyuseslab-scaleXK16columnsundertheflow

packingtechnique.Itisworthhighlightingthatthemostcritical

aspectofthisstudyisthatthesamebatchofresinswereusedin

theapplicationofalltechniquesreportedinthisstudy

3.2 Dynamicmechanicalanalysis(DMA)

Thistechniquecharacterisesmechanical propertiesbasedon

theviscoelasticityofasmallsampleofresin.ConventionalDMAis

usedtocharacterisehomogeneouslyshapedbiomaterialsto

deter-mineelasticpropertiessuchasYoung’smodulus[17]however,we

haveadaptedthetechniquesuchthatitcharacterisesthe

proper-tiesofaslurry.Theequipmentiscomposedmainlyofapananda

lid,equippedwithsensors.Thelidinparticularisequippedwith

a sensor thatallows it tostopjust atthesurface of theslurry

onceindescent.Whenthemethodologyisstarted,a sinusoidal

forceisappliedataconstantfrequency.Astheliddescends,the

slurrymovesaround thesidesofthe lidandthis movement is

recordedasadisplacementpercentagewithtime Meanwhile,a

time-strainprofileisgenerated,wherestrainisthedisplacement

ofthelidthroughtheresinbedrecordedasapercentage.Oncea

strainthresholdisexceeded,therateofincreaseisvastlyreduced

ortheplotbeginstoleveloutcompletelyandatthispointultimate

compressionisreached.Thisiseitherwhenthelidhashitthe

bot-tomofthepan,orwhenlittleornofurtherdeformationoftheslurry

canbeachievedwithconstantforce.Forconsistency,theslopeof

thelineistakenbeforeultimatecompressionandthisprovides

informationaboutthemovementofthelidthroughtheslurrywith

constantforce.AstrainversustimeplotisgeneratedbythePyris Managersoftwareandtheslopeofthelinebeforeultimate com-pressiondeterminestheslurrydeformationrate.Theslopeofthe lineismanuallyfittedfromtheorigintothepointbeforeultimate compressionusingthein-builtslopefunctioninthePyrisManager software.Theunitsarerecordedas%/min(Fig.6).Thelessviscous themediais,thequickerthelidwillmovethroughtheslurry, there-forethehigherthe%strainperminute.Theprocedureisrepeated

3timesforeachresin(Fig.7)

Fig.8ashowstheslurrydeformationratesforeachresinusing theDMAtechnique.CaptoQhastheslowestslurrydeformation rateat0.36%/min,followedbyMabSelect–0.55%/min,Q-Sepharose

HPandSepharose6FF–1.1%/min,SepharoseCL–6B–1.7%/min, Sepharose4FF–2.5%/minandSepharoseCL–4B–3%/min Fig.8 showsthegraphobtainedbyplottingthereciprocalof theSDRvaluesforeachresin.Theresultingparameterwastermed

‘slurryresistance(1/%min−1)’.Thiswasdonetomoreclearlyshow the trend between the pressure-flow technique and the DMA technique with particular focus on the gapbetween the more mechanicallyrobustresinsandtheweakerresins.Theresultsshow CaptoQhasthehighestslurryresistanceof2.8,followedby Mab-Select−1.81,Q-HPandS6FF−0.90,SCL6B−0.59,S4FF−0.4and SCL4B−0.3

ThesametrendsobservedinFig.3areobservedinFig.8b.The resultsfromFig.8 showthatCaptoQismostresistantto deforma-tion,followedbyMabSelect,Q-SepharoseHighPerformanceand Sepharose6FastFlow,SepharoseCL-6B,Sepharose4FastFlow and SepharoseCL-4B Similartothetrendsobserved insection 3.1,theresultsalsoshowthatQ-SepharoseHighPerformanceand Sepharose6FastFlowexhibitverysimilarviscoelasticproperties Bothresinscontain6%agarosehowevertherearedifferencesin theiraveragebeadsizesandporesizes.Poresizeisinfluencedbya numberoffactors,includingtheextentofcrosslinkingwhich influ-encesmechanicalrigidity[1].Thisbecomesofrelevancewhenthe beadsmovepasteachotherthroughthegapsastheliddescends andthegapsizeof500␮mislargeenoughsuchthatitdoesnot allowforradialrestriction/compressionofsinglebeads.The trade-offbetweenthefactthatQ-HPhasalargeraverageporesizethan S6FF,butS6FFhasalargerbeadsizerange,wouldmeanthatthere arefewerS6FFbeadsforthesamegivenvolume.Thiscouldexplain

Trang 7

Fig 7. (a) Strain v time plot for 3 repeats of Sepharose CL–4 B (4% cross-linked agarose) (one solid line, one dashed line, one dotted line) (b) Averages of 3 out of 7 resins –

points.

Trang 8

thedifferencesinviscoelasticpropertiesbetweenSCL6BandS6FF,

aswellasSCL4BandS4FF.Furtherexplanationsfortheobserved

trendsareoutlinedinSection3.1.ThedatafromFigs.4and8are

plottedtoestablishatrend(Fig.9)

3.3 Datacorrelation–pressure-flowvsdynamicmechanical

analysis

Fig.9a shows a strongnegative correlationbetween critical

velocityandslurrydeformationratefor all7resinsusedinthis

study.ThismeansthatthestrongerresinssuchasMabSelectand

CaptoQhavelowSDRsandhighucritvaluesandtheoppositeistrue

formechanicallyweakerresinssuchasSCL4BandS4FF.Thetrend

beginsinalinearfashionwiththefirstfiveresinsbutthentailsoff

whenthemoremechanicallyrobustresinsappear.This

represen-tationofresultsindicatesthatastheresinsbecomemechanically

moresimilarandthedifferenceinmechanicalpropertiesbecomes

lesssignificant

Fig.9 showsaparityplotofFig.9aandthey-axisisrepresented

as‘slurryresistance’.Thevaluesarecalculatedbasedon1/SDRfor

eachresin.Thetrendobservedisapositivepolynomialtrendfor

slurryresistanceagainstcriticalvelocity.Thefirst5resinsshowa

gradualincreaseinmechanicalresistance,however,thedifference

inmechanicalstrengthbecomesmore apparentwhenthemore

robustresins(MabSelectandCaptoQ)areplotted.Thisplot

bet-terdemonstratesthedisparityinmechanicalbehaviourbetween

eachresinanddepictingthedatainthiswaycorrelatespositively

withthepressure-flowdataandismoreeasilycomparable.Both

plotsshowthatDMAcanbeusedasacombinatorytechniqueto

pressure-flowforthecharacterisationofchromatographymedia

DMAhasshownadditionalbenefitsinitsuseforresin

charac-terisation.Itallowsfortheuseofsmallquantitiesofsample(∼1ml)

andrequiresrelativelylittlepreparation.Thelowforceof100mN

appliedina sinusoidalmanneris non-destructivetothemedia

overanextendedperiodoftime(80min).Giventheseadvantages,

itcanpotentiallybeusedtoinvestigatethemechanical

proper-tiesof othermediatypes, e.g.non-agarosebasedresins.It may

alsobeusedinthedevelopmentofnewresinsforrapidtesting

post-emulsification

4 Conclusion and potential applications

Currently,manufacturersusethepressure-flow

characterisa-tiontechniquetodeciphermechanicallimitsofchromatography

mediabypackingcolumnsuptomanylitresinsize.Thisisnot

onlycostly,butitisalsotime-consuminginitspreparation and

itrequiresanumberofbufferstobeused.Wehavedevelopeda

DMAtechniquethatdoesnotrequiretheuseofmultiplebuffers

and uses a much reduced quantityof resin The development

ofthistechniqueconsideredanumberoffactorsalsoassociated

withpressure-flowcharacterisation,includingbeadsize,poresize

and slurry concentration This technique was tested on seven

resinswithvaryingmechanicalpropertiesandcomparedtotheir

pressure-flowcharacteristics.Theresultsshowa strong

correla-tionbetweenbothtechniques.Usingthepressure-flowmethod,the

mostrobustresin(CaptoQ)hadacriticalvelocity3.3timeshigher

thanSepharoseCL-4B,whilsttheDMAtechniqueshowedCaptoQ

tohaveaslurrydeformationrate8.3timeslowerthanSepharose

CL-4B.This couldbe duetoincreasedsensitivity of mechanical

changesasthesamplevolumeusedforDMAismuchsmallerthan

thatofpressure-flow.ThiscorrelationindicatesthatDMAcanbe

usedasacombinatorytechniquefordeterminingmechanical

per-formanceofa givenresin.Althoughadditionaltestscanalways

beperformedtoincrease confidence in itsapplication toother

mediatypes,theresultsfromthisstudyshowdefinitive correla-tionsbetweenthetwo techniquesforagarose-basedresins.The correlationfurthersuggeststhatDMAmaybeappliedtopredict pressure-flowcharacteristics.Thistechniquemayalsobeuseful forrapidtestingofarangeofresinspost-emulsificationandduring thedevelopmentofnewresins.Furthermore,itmayalsobeused

totestresinsexposedtodifferentconditionsinthecolumnaswell

asatdifferentstagesofitslifetimeduringbioprocessing.Itmay alsobeconsideredtoinvestigatetheimpactofexposuretovarying mechanicalstressesduringoperationoflarge-scale chromatogra-phy

Acknowledgments

This work was supported by theEPSRC, Eli Lilly & Co., UCL EastmanDentalInstituteandUCLDepartmentofBiochemical Engi-neering.Thesupportisgratefullyacknowledged

References

[1] N Ioannidis, Manufacturing of Agarose-based Chromatographic Media with Controlled Pore and Particle Size, University of Birmingham, 2009.

[2] G Jagschies, G Sofer, L Hagel, Handbook of Process Chromatography – Development, Manufacturing, Validation and Economics, 2nd ed., Elsevier, 2008.

[3] M Andersson, Characterisation of Chromatography Media Aimed for Purification of Biomolecules, Uppsala Universitet, 2014.

[4] A Jungbauer, Chromatographic media for bioseparation, J Chromatogr A

1065 (1) (2005) 3–12.

[5] A Gerstein, Molecular Biology Problem Solver: A Laboratory Guide, 2nd ed., Wiley, 2004.

[6] Y Mu, A Lyddiatt, A.W Pacek, Manufacture by water/oil emulsification of porous agarose beads: effect of processing conditions on mean particle size, size distribution and mechanical properties, Chem Eng Process Process Intensif 44 (10) (2005) 1157–1166.

[7] Q.-Z Zhou, L.-Y Wang, G.-H Ma, Z.-G Su, Multi-stage premix membrane emulsification for preparation of agarose microbeads with uniform size, J Membr Sci 322 (1) (2008) 98–104.

[8] Q.-Z Zhou, G.-H Ma, Z.-G Su, Effect of membrane parameters on the size and uniformity in preparing agarose beads by premix membrane emulsification, J Membr Sci 326 (2) (2009) 694–700.

[9] Y Yan, Z Zhang, J.R Stokes, Q.Z Zhou, G.H Ma, M.J Adams, Mechanical characterization of agarose micro-particles with a narrow size distribution, Powder Technol 192 (1) (2009) 122–130.

[10] N Ioannidis, J Bowen, A Pacek, Z Zhang, Manufacturing of agarose-based chromatographic adsorbents – effect of ionic strength and cooling conditions

on particle structure and mechanical strength, J Colloid Interface Sci 367 (1) (2012) 153–160.

[11] K Keller, T Friedmann, A Boxman, The bioseparation needs for tomorrow, Trends Biotechnol 19 (11) (2001) 438–441.

[12] A Ellis, J.C Jacquier, Manufacture and characterisation of agarose microparticles, J Food Eng 90 (2) (2009) 141–145.

[13] P Gavara, N Bibi, M Sanchez, M Grasselli, M Fernandez-Lahore, Chromatographic characterization and process performance of column-packed anion exchange fibrous adsorbents for high throughput and high capacity bioseparations, Processes 3 (1) (2015) 204–221.

[14] J.J Stickel, A Fotopoulos, Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale, Biotechnol Progr 17 (4) (2001) 744–751.

[15] R Tran, J.R Joseph, A Sinclair, D Bracewell, Y Zhou, N.J Titchener-Hooker, A framework for the prediction of scale-up when using compressible chromatographic packings, Biotechnol Progr 23 (2) (2007) 413–422.

[16] T Warner, S Nochumson, Rethinking the economics of pensions, BioPharm Int 22 (3) (2003) 15–39.

[17] L Moroni, J.R De Wijn, C.A Van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials 27 (7) (2006) 974–985.

[18] T Meyvis, B Stubbe, A comparison between the use of dynamic mechanical analysis and oscillatory shear rheometry for the characterisation of hydrogels, Int J Pharm 244 (2002) 163–168.

[19] M.C Nweke, M Turmaine, R.G McCartney, D.G Bracewell, Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy, Biotechnol J 12 (2016) 1600583.

[20] P DePhillips, A Lenhoff, Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography, J Chromatogr A 883 (2000) 39–54.

[21] C Tarmann, A Jungbauer, Adsorption of plasmid DNA on anion exchange chromatography media, J Sep Sci 31 (14) (2008) 2605–2618.

Trang 9

[22] A.M Hardin, C Harinarayan, G Malmquist, A Axen, R van Reis, Ion exchange

chromatography of monoclonal antibodies: effect of resin ligand density on

dymanic binding capacity, J Chromatogr A 20 (1216) (2009) 4366–4371.

[23] Q.-Z Zhou, L.-Y Wang, G.-H Ma, Z.-G Su, Preparation of uniform-sized

agarose beads by microporous membrane emulsification technique, J Colloid

Interface Sci 311 (1) (2007) 118–127.

[25] G.E Healthcare, Packing MabSelect TM and MabSelect SuRe TM Media Using

Verified Methods, GE Healthcare, Uppsala, Sweden, 2015, pp 110.

[26] J Avallin, A Nilsson, M Asplund, N Pettersson, T Searle, C Jägersten,

Columns Upto 1600 Mm in Diameter Packed with Protein A Chromatography

Medium Using Axial Mechanical Compression, GE Healthcare, Uppsala, Sweden, 2016, pp 291.

[27] M Dorn, F Eschbach, D Hekmat, D Weuster-Botz, Influence of different packing methods on the hydrodynamic stability of chromatography columns,

J Chromatogr A (2017).

[28] L Hagel, M Ostberg, T Andersson, Apparent pore size distributions of chromatography media, J Chromatogr A 743 (1) (1996) 33–42.

[29] M Barrande, et al., Characterisation of porous materials for bioseparation, J Chromatogr A 1216 (41) (2009) 6906–6916.

Ngày đăng: 31/12/2022, 09:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm