Dạng 2: các bài toán sử dụng phép đặt trong các tích phân chứa các hàm số có tính chất đặc biệt dựa trên phương trình hàm... Các dạng bài tập trong sách được viết theo dạng tự luận, cần
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN
SÁNG KIẾN
LĨNH VỰC TOÁN HỌC
Nghệ An, tháng 4 năm 2022
Trang 2SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN
SÁNG KIẾN
LĨNH VỰC TOÁN HỌC
Nghệ An, tháng 4 năm 2022
Trang 3MỤC LỤC
I Lý do chọn đề tài 1
Những nội dung cơ bản của sáng kiến 2
II Nội dung sáng kiến 3
1 Về câu hỏi/đề thi trắc nghiệm khách quan 4
2 Về câu hỏi mcq (multiple choise questions) 4
3 Định nghĩa tích phân: 7
3.1 Tính chất của tích phân: 7
3.2 Phương pháp đổi biến số: 7
3.3 Phương pháp từng phần: 8
3.4 Công thức đạo hàm một tích, một thương: 8
4 Các bài toán về định nghĩa tích phân: 8
4.2 Các bài toán khai thác các tính chất: 9
4.2.1 Sử dụng các phép toán về tích phân: 9
4.2.2 Sử dụng công thức tách cận tích phân: 10
4.2.3 Sử dụng tính chất tích phân của hàm số không âm: 11
4.2.4 Sử dụng tính chất nguyên hàm kết hợp: 16
4.3 Các bài toán sử dụng phép đặt ẩn phụ: 22
4.3.1 Dạng 1 Cho hàm số y f x( ) thỏa mãn f u x ( ) v x trong đó u x( )là hàm đơn điệu trên R tính tích phân ( ) b a I f x dx 22
4.3.2 Dạng 2: các bài toán sử dụng phép đặt trong các tích phân chứa các hàm số có tính chất đặc biệt dựa trên phương trình hàm 27
4.3 4 Dạng 4 Tích phân liên quan đến dạng: f x f x g x( ) 28
4.3.5 dạng 5 Tích phân liên quan đến dạng: f x p x f x( ). g x( ) 29
4.3.6 dạng 6 Tích phân liên quan đến dạng: cho f x là hàm liên tục trên r và ( ) f x f x g x Tính tích phân a a I f x dx, a 0 29
4.3.7 dạng 7 Tích phân liên quan đến dạng: cho f x là hàm liên tục trên r và ( ) f x f a b x g x Tính tích phân b a I f x dx, 30
4.3.8 Dạng 8: các bài toán sử dụng phép đặt trong các tích phân dạng giả thiết chứa đẳng thức dạng f u x( ( )) g x( ) 35
Trang 44.3.9 dạng 9: các bài toán sử dụng phép đặt trong các tích phân dạng giả thiết chứa
đẳng thức dạng f x g f x'( ) ( ( )) u x( ): 37
5 Các bài toán sử dụng phép tích phân từng phần: 39
Phần III Kết luận và kiến nghị 42
1 Kết luận 42
2 Kiến nghị 42
2.1 Với bộ giáo dục: 42
2.2 Với sở gd&đt: 42
2.3 Với bgh nhà trường 42
2.4 Với giáo viên giảng dạy môn toán 43
2.5 Với phhs 43
Nội dung thực nghiệm 43
3 Những ưu điểm của sáng kiến 50
Trang 5I LÝ DO CHỌN ĐỀ TÀI
Trong chương trình toán THPT các bài toán tích phân luôn là các bài toán khiến học sinh gặp nhiều khó khăn và lúng túng Các bài toán trong chương trình SGK lớp 12 hiện hành viết còn rất sơ sài và chủ yếu dừng lại ở mức độ thông hiểu Các dạng bài tập trong sách được viết theo dạng tự luận, cần có lời giải tường minh
để đi đến kết quả trong khi đó MTCT có chức năng tính chính xác kết quả của một số tích phân và có thể sử dụng để kiểm tra kết quả của các bài toán tính toán về tích phân Trong khi đó ở kỳ thi THPT Quốc gia năm 2017 và năm 2018, 2019, 2020,
2021 và trong các đề thi minh họa của Bộ giáo dục và Đào tạo trong những năm vừa qua, nội dung này được đánh giá ở mức độ vận dụng, vận dụng cao Các bài toán tính toán về tích phân thường trải theo các mức độ khác nhau của đề thi Ở các mức độ nhận biết và thông hiểu thì các bài toán được trình bày khá cơ bản và có nhiều con đường tiếp cận Tuy nhiên các bài toán thuộc mức độ vận dụng và vận dụng cao thì các bài toán về nguyên hàm, tích phân và các ứng dụng được khai thác một cách khéo léo và vận dụng nhiều kiến thức có liên quan Để giải quyết được bài toán này học sinh không những phải nắm được các kiến thức cơ bản về nguyên hàm và tích phân, các ý nghĩa, giải thành thạo các bài toán mà còn phải sử dụng các công cụ, các tính chất liên hệ để làm bài tập
Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh lớp 12 và nó
có mặt hầu hết trong các kỳ thi như thi THPT- QG, thi học sinh giỏi các cấp Hiện nay với xu hướng thi trắc nghiệm, phần tích phân còn được yêu cầu rộng hơn và đòi hỏi học sinh phải tư duy linh hoạt hơn và tích phân của một số hàm ẩn đã được đưa vào để yêu cầu học sinh, mặc dù đã được học kỹ các phương pháp tính tích phân, nhưng đứng trước yêu cầu về tính tích phân của hàm ẩn đa số các em còn nhiều lúng túng và thậm chí là không định hình được lời giải khi đứng trước các bài toán dạng này
Muốn học sinh học tốt được tích phân thì mỗi người Giáo viên không phải chỉ truyền đạt, giảng giải theo các tài liệu đã có sẵn trong Sách giáo khoa, trong các sách hướng dẫn và thiết kế bài giảng một cách gập khuôn, máy móc, làm cho học sinh học tập một cách thụ động Nếu chỉ dạy học như vậy thì việc học tập của học sinh sẽ diễn
ra thật đơn điệu, tẻ nhạt và kết quả học tập sẽ không cao Nó là một trong những nguyên nhân gây ra cản trở việc đào tạo các em thành những con người năng động, tự tin, sáng tạo sẵn sàng thích ứng với những đổi mới diễn ra hàng ngày
Yêu cầu của giáo dục hiện nay đòi hỏi phải đổi mới phương pháp dạy học môn toán theo hướng phát huy tính tích cực, chủ động sáng tạo của học sinh Vì vậy người giáo viên phải gây được hứng thú học tập cho các em bằng cách thiết kế bài giảng lại
khoa học, hợp lý, phải gắn liền với ứng dụng, liên hệ thực tế
Vì những lí do đó, để giúp học sinh có cơ sở khoa học, có có hệ thống kiến thức về tính tích phân và tháo gỡ những vướng mắc trên, nhằm nâng cao chất lượng dạy và học, đáp ứng nhu cầu đổi mới giáo dục, tôi đã chọn đề tài sáng kiến kinh
nghiệm
Trang 6Những nội dung cơ bản của sáng kiến
- Sáng kiến được hình thành theo dạng một chủ đề dạy học Hệ thống lý thuyết được trình bày một cách cô đọng và ngắn gọn nhất Các dạng bài tập được xây dựng một cách hệ thống, có phân chia các mức độ Bài tập được thiết kế theo hình thức trắc nghiệm để tạo điều kiện cho học sinh có khả năng phát huy hết năng lực của bản thân
- Trình bài lại hệ thống các kiến thức cơ bản trong chương trình sách giáo khoa
mà tối thiểu học sinh cần nắm được Mỗi phần kiến thức học sinh được tiếp nhận đều
có các dạng bài tập vận dụng với các mức độ và yêu cầu khác nhau để học sinh luyện tập
- Nêu và định hướng một số phương pháp mới để giải các bài tập trong các đề thi đại học với kiến thức cơ bản nhất Giúp học sinh vận dụng được trực tiếp kiến thức đang học vào sử lý các bài toán liên quan, hình thành con đường tư duy liên tục
và các kỹ năng vận dụng kiến thức vào các tình huống cụ thể
- Trong quá trình hình thành lời giải có sự phân tích về cách tư duy và con đường tìm lời giải trên cơ sở giả thiết từ đó giúp học sinh tạo được thói quen tư duy liên kết khi gặp các bài toán lạ
- Phân tích lời giải và tư duy để hình thành con đường đi đến lời giải một cách
tự nhiên nhất Liên kết giữa các dạng toán giúp học sinh hình thành những suy luận hợp lý, tổng quát được bài toán theo nhiều hướng khác nhau
- Các bài toán được nhóm tác giả chia theo trình tự của nội dung các kiến thức được trình bày trong sách giáo khoa để đảm bảo cho học sinh có thể dễ dàng tiếp cận ngay từ khi được cung cấp kiến thức về lý thuyết Bài tập và ví dụ minh họa được sắp xếp theo hệ thống kiến thức phân dạng mức độ từ nhận biết, thông hiểu, vận dụng và vận dụng cao Do đó học sinh có thể dễ dàng tiếp cận kiến thức và vận dụng trực tiếp các kiến thức vào các mức độ khác nhau của bài toán Bên cạnh việc hướng dẫn chi tiết về lời giải tác giả còn đưa ra các nhận xét, phân tích con đường đi đến lời giải một cách hợp lý và nêu ra các suy luận dựa trên những kiến thức cơ bản đã được học vận dụng vào các tình huống cụ thể Điều đó ngoài việc giúp học sinh tìm ra được đường lối tư duy cơ bản khi giải bài tập còn giúp các em có thể tự tư duy tìm đường
đi hợp lý cho các bài toán khác
Dưới đây là sơ đồ minh họa các nội dung kiến thức cơ bản của bài toán tính tích phân trong SGK và các dạng toán được xây dựng dựa trên cơ sở của các kiến thức đó
Trang 7II NỘI DUNG SÁNG KIẾN
Sáng kiến được thiết kế theo dạng chủ đề dạy học đã được nhóm tác giả áp dụng trong quá trình giảng dạy ôn tập tại nhà trường Tùy theo mức độ của học sinh từng lớp mà các tác giả đã đưa vào các phần nội dung để giảng dạy cho phù hợp với tình hình thực tiễn
Nội dung sáng kiến được chia thành nhiều phần theo trình tự các kiến thức mà học sinh được tiếp nhận từ các tiết học trên lớp Mỗi mảng kiến thức liên quan đều được trình bày khoa học với hệ thống Ví dụ minh họa được phân thành các mức độ từ nhận biết, thông hiểu, vận dụng và vận dụng cao để thích hợp cho các đối tượng học sinh khác nhau ở trường THPT
Dạy học ngoài việc cung cấp những kiến thức cơ bản, phát triển các kỹ năng cần thiết cho học sinh, giáo viên cần chú ý lựa chọn về nội dung phương pháp dạy học phù hợp với trình độ năng lực nhận thức và nguyện vọng của học sinh Trong quá trình thiết kế bài học cũng như khi tiến hành tổ chức các hoạt động dạy học Giáo viên cần hộ trợ đẻ học sinh phát triển được tối đa khả năng của bản thân Bài viết đề cập đén việc xây dựng, sử dụng hệ thống bài tập trắc nghiệm chủ đề Tích phân ôn thi THPTQG Nhằm phát huy năng lực của từng học sinh, kích thích tính tích cực chủ động sáng tạo của các em trong quá trình chiếm lĩnh tri thức
Trong dạy học Toán giáo viên xây dựng và sử dụng được một hệ thống bài tập
sẽ đem lại hiệu quả cao trong mỗi giờ học Để xây dựng được hệ thống bài tập phù hợp với khả năng của mỗi đối tượng học sinh, giáo viên cần chú ý đến những đặc điểm sau:
Xây dựng một hệ thống bài tập có thể phân hóa được nhiều mức độ khác nhau
từ nhận biết, thông hiểu, vận dụng, vận dụng cao
Sắp xếp hệ thống bài tập theo mục tiêu dạy học: GV cần dẫn dắt học sinh suy
nghĩ từ điều đã biết dến điều chưa biết, từ vốn kiến thức đã có đến vốn kiến thức mới Các bài tập được nêu dưới nhiều hình thức khác nhau Các bài tập cần có tác dụng với nhiều đối tượng HS sao cho với bài tập nhận biết, thông hiểu, vận dụng, vận dụng cao luôn tạo hứng thú cho HS theo dõi
Các bài tập cần đảm bảo sự phân loại cho học sinh nhận biết, thông hiểu, vận
dụng, vận dụng cao
Chú ý: Trong nội dung của sáng kiến, chúng tôi không đi sâu vào việc tính tích phân của một hàm số đã xác định công thức cụ thể mà chỉ đi khai thác trực tiếp các tính chất được trình bày trong SGK, đưa vào các Ví dụ minh họa áp dụng trực tiếp các nội dung kiến thức đã học và mở rộng các bài toán trên cơ sở lý thuyết của
bài kết hợp với các tính chất về đạo hàm và nguyên hàm mà học sinh đã được học
Về thực trạng biên soạn câu hỏi TNKQ của giáo viên, làm bài tập TNKQ của HS
Qua một số năm thực hiện việc biên soạn đề thi, tôi nhận thấy việc biên soạn câu hỏi TNKQ của một số giáo viên môn Toán còn gặp nhiều lúng túng, khó khăn, một số câu hỏi TNKQ chưa rõ ràng, hỏi nhiều vấn đề khác nhau trong một câu hỏi, việc biên
Trang 8soạn các phương án trả lời chưa hợp lý, chưa có các phương án nhiễu phù hợp với từng câu hỏi
Thực nghiệm cho học sinh làm đề minh họa kỳ thi THPT quốc gia của Bộ GD&ĐT,
đề thử
nghiệm của Bộ, kết quả thu được không cao do học sinh chưa phân biệt được câu hỏi nào thuộc cấp độ nào, vẫn còn dành nhiều thời gian để làm một câu trắc nghiệm
1 Về câu hỏi/đề thi trắc nghiệm khách quan
- Có rất nhiều loại câu hỏi TNKQ như: Trắc nghiệm nhiều lựa chọn (MCQ: Multiple choise questions); trắc nghiệm đúng, sai; trắc nghiệm điền khuyết; trắc nghiệm ghép đôi
- Trong đề thi THPT quốc gia, chỉ xét câu hỏi TNKQ nhiều lựa chọn (MCQ)
với 4 phương án để thí sinh trả lời, trong đó chỉ có một phương án đúng Câu MCQ gồm 2 phần:
Phần 1: Câu phát biểu căn bản, gọi là câu dẫn hoặc câu hỏi
Phần 2: Các phương án để thí sinh lựa chọn, trong đó chỉ có 1 phương án đúng hoặc đúng nhất, các phương án còn lại là phương án nhiễu
- Trong phạm vi của đề tài này, tôi chỉ xét đến câu hỏi TNKQ nhiều lựa chọn (MCQ) với 4 phương án trả lời, trong đó chỉ có một phương án đúng
2 Về câu hỏi MCQ (Multiple choise questions)
a) Đặc tính của câu hỏi trắc nghiệm khách quan nhiều lựa chọn
- Phân biệt các cấp độ của câu hỏi MCQ (theo GS Boleslaw Niemierko)
Cấp độ Mô tả
Nhận biết Học sinh nhớchúng khi được yêu cầu các khái niệm cơ bản, có thể nêu lên hoặc nhận ra
Thông hiểu Học sinh hiểu các khái niệm cơ bản và có thể vận dụng chúng, khi chúng được thể hiện theo cách tương tự như cách giáo viên đã
giảng hoặc như các ví dụ tiêu biểu về chúng trên lớp học
Vận dụng
Học sinh có thể hiểu được khái niệm ở một cấp độ cao hơn “thông hiểu”, tạo ra được sự liên kết logic giữa các khái niệm cơ bản và có thể vận dụng chúng để tổ chức lại các thông tin đã được trình bày giống với bài giảng của giáo viên hoặc trong sách giáo khoa
Vận dụng
cao
Học sinh có thể sử dụng các kiến thức về môn học - chủ đề để giải quyết các vấn đề mới, không giống với những điều đã được học, hoặc trình bày trong sách giáo khoa, nhưng ở mức độ phù hợp nhiệm vụ, với kỹ năng và kiến thức được giảng dạy phù hợp với mức độ nhận thức này Đây là những vấn đề, nhiệm vụ giống với các tình huống mà Học sinh sẽ gặp phải ngoài xã hội
Trang 9- Theo lí thuyết khảo thí hiện đại, các câu hỏi MCQ có thể phân chia thành các cấp độ như sau:
Lời giải chỉ bao gồm 1 bước tính toán, lập luận
Mối quan hệ giữa giả thiết và kết luận là trực tiếp
Câu hỏi đề cập tới các nội dung kiến thức sơ cấp, trực quan, không phức tạp, trừu tượng
Câu hỏi trung
Lời giải bao gồm từ 1 tới 2 bước tính toán, lập luận
Giả thiết và kết luận có mối quan hệ tương đối trực tiếp
Câu hỏi đề cập tới các nội dung kiến thức tương đối cơ bản, không quá phức tạp, trừu tượng
Giả thiết và kết luận không có mối quan hệ trực tiếp
Lời giải bao gồm từ 2 bước trở lên
Câu hỏi đề cập tới các nội dung kiến thức khá sâu sắc, trừu tượng
b) Một số nguyên tắc khi viết câu hỏi MCQ
- Câu hỏi viết theo đúng yêu cầu của các thông số kỹ thuật trong ma trận chi tiết đề thi đã phê duyệt, chú ý đến các qui tắc nên theo trong quá trình viết câu hỏi
- Câu hỏi không được sai sót về nội dung chuyên môn
- Câu hỏi có nội dung phù hợp thuần phong mỹ tục Việt Nam; không vi phạm
về đường lối chủ trương, quan điểm chính trị của Đảng, của nước Cộng hoà Xã hội Chủ nghĩa Việt Nam
- Câu hỏi phải là mới; không sao chép nguyên dạng từ sách giáo khoa hoặc các nguồn tài liệu tham khảo; không sao chép từ các nguồn đã công bố bản in hoặc bản điện tử dưới mọi hình thức
- Câu hỏi cần khai thác tối đa việc vận dụng các kiến thức để giải quyết các tình huống thực tế trong cuộc sống
- Các ký hiệu, thuật ngữ sử dụng trong câu hỏi phải thống nhất
Trang 10c) Kĩ thuật viết câu hỏi MCQ
- Mỗi câu hỏi phải đo một kết quả học tập quan trọng (mục tiêu xây dựng): Cần xác định đúng mục tiêu của việc kiểm tra, đánh giá để từ đó xây dựng câu hỏi cho phù hợp
- Tập trung vào một vấn đề duy nhất: một câu hỏi tự luận có thể kiểm tra được một vùng kiến thức khá rộng của một vấn đề Tuy nhiên, đối với câu MCQ, người viết cần tập trung vào một vấn đề cụ thể hơn (hoặc là duy nhất)
- Dùng từ vựng một cách nhất quán với nhóm đối tượng được kiểm tra
- Tránh việc một câu trắc nghiệm này gợi ý cho một câu trắc nghiệm khác, giữ các câu độc lập với nhau
- Tránh các kiến thức quá riêng biệt hoặc câu hỏi dựa trên ý kiến cá nhân
- Tránh sử dụng các cụm từ đúng nguyên văn trong sách giáo khoa
- Tránh việc sử dụng sự khôi hài
- Tránh viết câu không phù hợp với thực tế
d) Một số lưu ý khi viết phần dẫn
- Đảm bảo rằng các hướng dẫn trong phần dẫn là rõ ràng và việc sử dụng từ ngữ cho phép thí sinh biết chính xác họ được yêu cầu làm cái gì
- Để nhấn mạnh vào kiến thức thu được nên trình bày câu dẫn theo định dạng câu hỏi thay vì định dạng hoàn chỉnh câu
- Nếu phần dẫn có định dạng hoàn chỉnh câu, không nên tạo một chỗ trống ở giữa hay ở bắt đầu của phần câu dẫn
- Tránh sự dài dòng trong phần dẫn
- Nên trình bày phần dẫn ở thể khẳng định, Khi dạng phủ định được sử dụng,
từ phủ định cần phải được nhấn mạnh hoặc nhấn mạnh bằng cách đặt in đậm, hoặc gạch chân, hoặc tất cả các cách trên
e) Kỹ thuật viết các phương án lựa chọn
- Phải chắc chắn có và chỉ có một phương án đúng hoặc đúng nhất đối với câu chọn một phương án đúng/đúng nhất
- Nên sắp xếp các phương án theo một thứ tự nào đó
- Cần cân nhắc khi sử dụng những phương án có hình thức hay ý nghĩa trái ngược nhau hoặc phủ định nhau
- Các phương án lựa chọn phải đồng nhất theo nội dung, ý nghĩa
- Các phương án lựa chọn nên đồng nhất về mặt hình thức (độ dài, từ ngữ,…)
- Tránh lặp lại một từ ngữ/thuật ngữ nhiều lần trong câu hỏi
- Viết các phương án nhiễu ở thể khẳng định
Trang 11- Tránh sử dụng cụm từ “tất cả những phương án trên”, “không có phương án nào”
- Tránh các thuật ngữ mơ hồ, không có xác định cụ thể về mức độ như “thông thường”, “phần lớn”, “hầu hết”, hoặc các từ hạn định cụ thể như “luôn luôn”,
“không bao giờ”, “tuyệt đối”
- Phương án nhiễu không nên “sai” một cách quá lộ liễu.
3 Định nghĩa tích phân:
Cho f x( ) là hàm số liên tục trên [ ; ]a b Giả sử F x( ) là một nguyên hàm của
( )
f x trên [ ; ]a b
Hiệu số F b( )F a( ) được gọi là tích phân từ a đến b (hay tích phân xác định
trên đoạn [ ; ]a b ) của hàm số f x( ), kí hiệu: ( ) ( ) ( ) ( )
b
b a a
3.2 Phương pháp đổi biến số:
Cho hàm số f x( ) liên tục trên [ ; ]a b Giả sử hàm số x( )t có đạo hàm liên tục trên đoạn [ ; ] sao cho ( )a , ( )b và a ( )t b với mọi
Chú ý: Trong nhiều trường hợp ta sử dụng phép đổi biến số ở dạng như sau:
Cho hàm số f x( ) liên tục trên [ ; ]a b Để tính ( )
f x dx g u du
Trang 12Nhất lô, Nhì đa, Tam lượng, Tứ mũ
Để tính nhanh tích phân từng phần ta có thể dùng hai kỹ thuật như:
Sơ đồ chéo ( bản chất là thu gọn phép đặt)
Trang 13Vậy đáp án đúng là A
Ví dụ 3: Cho biết 1
2 0
I x x D 1
2 0
Với hai phép toán trên ta có dấu hiệu để nhận biết : Cận số trong các tích
phân không thay đổi và bài toán chỉ liên quan đến các hàm số đã cho và các phép toán giữa chúng
Ví dụ 1: Cho hàm số y f x y( ); g x( ) liên tục trên 1;3 và thỏa mãn
Trang 14Với công thức trên ta thấy dấu hiệu thường sử dụng là cận tích phân có thể thay đổi
nhưng hàm số dưới dấu tích phân là không đổi
Ví dụ 2: Cho hàm số y f x( ) liên tục trên 1;3 và thỏa mãn
Trang 15Dựa vào tính chất nói trên, ta có thể đi giải một số bài toán có dạng như sau
Cho hàm f x vàg x có đạo hàm liên tục trên a b; thoả mãn
Trang 16Bước 1: Gọi G x là một nguyên hàm của hàm g x Áp dụng tích phân từng phần
b a
Bước 3: Từ f ' x k G x với các giả thiết đã cho tìm được f x
Như vậy, có hai mấu chốt của dạng toán này là:
Ví dụ 1: Cho hàm số f x( ) liên tục, có đạo hàm trên đoạn 0;1 Biết1
( )
( )
Trang 17Hướng dẫn giải: Mức độ: Vận dụng cao
Nhận xét : Tương tự như bài toán trên nhưng trong bài toán này các giả thiết
cho rời rạc Do đó để tìm cách gắn kết các đại lượng với nhau để tìm ra các yếu tố liên hệ trong bài toán Rõ ràng ta cần phải có mối liên hệ về 3 đại lượng có mặt trong giả thiết của bài toán Ta thấy để các giả thiết đều được liên hệ với nhau nhờ
Trang 18Ví dụ 3: Cho hàm số f x có đạo hàm liên tục trên đoạn 0;1 thỏa mãn f 1 0,
Nhận xét : Đây là một câu từng xuất hiện trong đè thi minh họa 2018 và sau
đó trở thành một trào lưu trong các đề thi thử tuy nhiên lời giải trên mạng hầu hết sử dung bất đẳng thức cauchy – Schwarz tuy nhiên đây không phải ý tưởng ra đề của
Bộ bởi nó là kiến hức của bậ Đại học Ý tưởng của bài Toán là đưa về bình phương
f x
và 2
x f x không có mối liên hệ với nhau
Tuy nhiên trong bài toán có xuất hiện các biểu thức dưới dạng tích điều đó cho ta
1 3 0 1
Lời giải Từ giả thiết: 1 2
0
1 d 3
Trang 19Nhận xét : Tương tự như bài toán trên ta tìm cách đưa bài toán về dạng tích
hiện các đại lượng có liên quan trong giả thiết
Trang 20khi đó 2 2
0 0
Nhận xét: Đặc điểm của dạng toán khi áp dụng các tính chất này là ta phải tìm ra
được các mối liên hệ giữa các đại lượng trong dấu tích phân xem chúng có thể là dạng vi phân của biểu thức nào Với các tích phân mà hàm số cho dưới dấu biểu thức tích phân có dạng tường minh thì con đường tiếp cận lời giải khá đơn giản Tuy nhiên khi các hàm số được cho không cụ thể chúng ta cần xem xét, đôi khi cần biến đổi bài toán để đưa đến dạng các biểu thức vi phân của các dạng hàm số Trong các dạng toán này cần đặc biệt chú ý đến các dạng công thức đạo hàm của các biểu thức tổng, hiệu, tích thương và các dạng đạo hàm của biểu thức chứa căn
Ví dụ 1: Cho hàm số f x( ) thỏa mãn f(1) 4 và 3 2
( ) ( ) 2 3
f x xf x x x với mọi x 0
Trang 22Sau đây là một số ví dụ minh họa về dạng toán này được tác giả đưa ra theo cách tiếp cận và suy luận dựa trên các công thức đạo hàm các hàm số dạng tích thương Đặc điểm dễ nhận ra trong các công thức này là sự xuất hiện đồng thời của các biểu thức f x( ), f '( )x với đạo hàm dạng tích và 2
( ), '( ), ( )
f x f x f x với đạo hàm dạng thương
Ví dụ 1: Cho hàm số f x 0, x R và có đạo hàm liên tục trên R thỏa mãn
Trang 23Hướng dẫn: Mức độ: Thông hiểu
Với bài toán này con đường tiếp cận lời giải khá đơn giản Với sự xuất hiện của hai đại lượng f x( );f '( )x cho phép ta nghĩ đến một số công thức có liên quan đến hai biểu thức này
( )
f x
biểu thức này khá đơn giản Do đó ta hoàn toàn có thể đi đến lời giải
e ( Vì hàm số u x( )
Với giả thiết bài toán dễ dàng nhận ra được k 2018 do e f x kx ( ) ' e f kx '( )x ke f x kx ( )
Do đó ta có thể đi đến lời giải
x
e f x x dx f e
Từ các ví dụ minh họa đơn giản trên ta có thể giải quyết các bài toán sau:
Ví dụ 3: Cho hàm số f x( ) đồng biến, có đạo hàm cấp hai trên đoạn 0; 2 và thỏa
Trang 24mãn 2 2
2 f x( ) f x f( ) ( )x f x ( ) 0 với x 0; 2 Biết 6
(0) 1, (2)
f f e , tính tích phân
Hướng dẫn: Mức độ: Thông hiểu
Nhận xét : Ta nhận thấy bài toán có mặt các đại lượng 2
( ), '( ), ( )
ta sẽ tìm cách biến đổi bài toán về dạng thức của đạo hàm dạng thương của các hàm
số dựa trên cơ sở của công thức đạo hàm một thương
thể tìm được lời giải hợp lý cho bài toán vừa nêu
Lời giải Do f x( ) đồng biến trên đoạn 0; 2 nên ta có 6
Trang 25Ví dụ 5: Cho hàm số y f x( ) có đạo hàm trên 1; 2 thỏa mãn
(x 1) ( )f x x f x ( ) 2e x với x 1; 2 Biết f(1) e, tính tích phân
Do có sự xuất hiện của các đại lượng (x 1) ( ); ( )f x x f x ở vế trái ta hướng đến
cos x để được bài toán sau:
Ví dụ 6: Cho hàm số y f x( ) có đạo hàm trên 0;
Trang 26Với dạng toán này các dấu hiệu đặc trưng được thể hiện khá rõ ràng Sự nhận
diện ra bài toán không quá khó dựa trên các đặc điểm về dạng hàm, vi phân và cận số
có liên quan giữa các điều kiện Với dạng toán này học sinh chỉ cần nắm vững nội dung của phương pháp đổi biến số trong SGK để thực hiện Đặt tu x( ) t u x dx
và f t( ) v x( ) Đổi cận x a t ,x b t Vì u x( )là hàm điệu điệu trên R
Sau đây ta sẽ đi xét một số ví dụ minh họa cụ thể
Ví dụ 1: (Đề 101 – THPT Quốc Gia 2017) Cho 6
Trang 27Lời giải : Đặt u 2x 1 du 2dx Đổi cận: x 1 u 3 x 6 u 13