MỤC LỤCSỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT YÊN ĐỊNH 3 SÁNG KIẾN KINH NGHIỆM HƯỚNG DẪN HỌC SINH LỚP 12 CƠ BẢN PHÂN DẠNG VÀ NẮM ĐƯỢC PHƯƠNG PHÁP GIẢI BÀI TẬP... Trong khuônkhổ nhà
Trang 1MỤC LỤC
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ
TRƯỜNG THPT YÊN ĐỊNH 3
SÁNG KIẾN KINH NGHIỆM
HƯỚNG DẪN HỌC SINH LỚP 12 CƠ BẢN PHÂN DẠNG VÀ NẮM ĐƯỢC PHƯƠNG PHÁP GIẢI BÀI TẬP
Trang 21 MỞ ĐẦU 2
1.1 Lí do chọn đề tài 2
1.2 Mục đích nghiên cứu 2
1.3 Đối tượng nghiên cứu 3
1.4 Phương pháp nghiên cứu 4
2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 4
2.1 Cơ sở lí luận của sáng kiến kinh nghiệm 4
2.1.1 Cơ sở của việc dạy - học bộ môn 4
2.1.2 Cơ sở của kiến thức - kỹ năng 4
2.1.2.1 Hiện tượng nhiễu xạ ánh sáng 4
2.1.2.2 Hện tượng giao thoa ánh sáng 4
2.1.2.3 Khái niệm ánh sáng trắng 6
2.2 Thực trạng của vấn đề trước khi áp dụng sáng kiến kinh nghiệm 7
2.3 Phân dạng bài tập 7
2.3.1 DẠNG 1: XÁC ĐỊNH TỌA ĐỘ CÁC VÂN SÁNG, VÂN TỐI VÀ TÍNH CHẤT VÂN TẠI ĐIỂM M BIẾT TRƯỚC TỌA ĐỘ .7
2.3.2 DẠNG 2: TÍNH SỐ VÂN SÁNG HAY TỐI TRÊN TRƯỜNG GIAO THOA 8
2.3.3 DẠNG 3: BÀI TOÁN TRÙNG VÂN 10
2.3.4 DẠNG 4: GIAO THOA VỚI ÁNH SÁNG TRẮNG 12
2.4 Hiệu quả của sáng kiến kinh nghiệm 13
2.4.1 Những kết quả đã đạt được 13
2.4.2 Một số mặt hạn chế 13
2.4.3 Bài học kinh nghiệm 13
3 KẾT LUẬN KIẾN NGHỊ 14
3.1 Kết luận 14
3.2 Kiến nghị 14
PHỤ LỤC 15
TÀI LIỆU THAM KHẢO 21
Trang 31 MỞ ĐẦU
1.1 Lí do chọn đề tài:
- Từ vị trí của bộ môn vật lí trong cấp học THPT hiện nay:
Môn vật lí cũng như nhiều môn học khác được xem là môn khoa học
cơ bản, học vật lí càng cần phát triển năng lực tư duy, tính chủ động, độc lập,sáng tạo của học sinh để tìm hiểu và lĩnh hội các tri thức khoa học Trong khuônkhổ nhà trường phổ thông, các bài tập vật lí thường là những vấn đề không quáphức tạp, có thể giải được bằng những suy luận lôgic, bằng tính toán hoặc thựcnghiệm dựa trên cơ sở những qui tắc vật lí, phương pháp vật lí đã qui định trongchương trình học; bài tập vật lí là một khâu quan trọng trong quá trình dạy vàhọc vật lí
Việc giải bài tập vật lí giúp củng cố đào sâu, mở rộng những kiến thức
cơ bản của bài giảng, xây dựng, củng cố kỹ năng, kỹ xảo vận dụng lí thuyết vàothực tiễn, là biện pháp quý báu để phát triển năng lực tư duy của học sinh, cótác dụng sâu sắc về mặt giáo dục tư tưởng Vì thế trong giải bài tập vật lí việctìm ra phương án tối ưu nhất để giải nhanh, chính xác, đúng bản chất vật lí làđiều vô cùng quan trọng
- Đặc trưng của môn vật lí lớp 12 THPT:
Chương trình vật lí lớp 12 THPT bao gồm cả cơ, quang, điên xoay chiều và
vật lí hạt nhân, hầu như đều là các kiến thức mới với các em, đã thế lí thuyết rấtdài, nhiều công thức phức tạp, nhiều hằng số với các đơn vị rất khó nhớ lại đòihỏi phải chính xác tuyệt đối Từ đó đòi hỏi người giáo viên dạy bộ môn phảikhông ngừng nâng cao kiến thức, chuyên môn nghiệp vụ, phải có phương pháptốt trong ôn tập và kiểm tra
-Từ thực tế của việc học tập bộ môn:
Nhiều học sinh có ý thức học môn vât lí để thi khối A, A1, nhưng phương phápcòn bị động, đối phó, trông chờ, ỷ lại vào giáo viên
-Từ yêu cầu ngày càng cao của thi cử:
Hiện nay, trong xu thế đổi mới của ngành giáo dục về phương pháp kiểmtra đánh giá kết quả giảng dạy và thi tuyển trắc nghiệm khách quan đã trở thànhphương pháp chủ đạo trong kiểm tra đánh giá chất lượng dạy và học trong nhàtrường THPT Điểm đáng lưu ý là nội dung kiến thức kiểm tra đánh giá tươngđối rộng đòi hỏi học sinh phải học kỹ nắm vững toàn bộ kiến thức của chươngtrình, tránh học tủ học lệch Đối với các kỳ thi ĐH và CĐ, học sinh khôngnhững phải nắm vững kiến thức mà còn đòi hỏi học sinh phản ứng nhanh đốivới các dạng toán, đặc biệt là các dạng toán mang tính chất khảo sát mà các emthường học
- Kết quả bồi dưỡng HSG và học sinh vào các trường ĐH – CĐ:
Trong quá trình giảng dạy bản thân đã không ngừng học hỏi, tích lũy đượcnhiều kinh nghiệm hay để có thể áp dụng trong thực tế Việc bồi dưỡng họcsinh giỏi đã có kết quả nhất định Trong các kỳ thi vào ĐH – CĐ hàng nămcũng có nhiều học sinh đạt điểm cao
Trang 4Tôi nghiên cứu đề tài này nhằm:
+ Giúp học sinh lớp 12 ban cơ bản học tự chọn môn vật lí có thêm được cáckiến thức và kỹ năng cơ bản trong ôn tập phần “Giao thoa ánh sáng”,giúp các
em ôn luyên lí thuyết, phân dạng bài tập và có các phương pháp tối ưu để giảicác bài tập phần này
+ Tìm cho mình 1 phương pháp để tạo ra các phương pháp giảng dạy phù hợpvới đối tượng học sinh nơi mình công tác, tạo ra không khí hứng thú và lôi cuốnnhiều học sinh tham gia giải các bài tập, giúp các em đạt kết quả cao trong các
kỳ thi
+ Được nghe lời nhận xét góp ý từ đồng nghiệp, đồng môn
+ Nâng cao chất lượng học tập bộ môn, góp phần nhỏ bé vào công cuộc CNH –HĐH đất nước
+ Mong muốn được HĐKH các cấp nhận xét, đánh giá, ghi nhận kết qủa nỗ lựccủa bản thân giúp cho tôi có nhiều động lực mới hoàn thành tốt nhiệm vụ đượcgiao
Đề tài được sử dụng vào việc:
- Ôn tập chính khóa và ôn thi tốt nghiệp ( chỉ là phụ )
- Ôn thi HSG và CĐ – ĐH ( là chính )
- Giáo viên hướng dẫn học sinh ôn tập trên cơ sở: ôn tập lí thuyết, phân dạngbài tập, giải các bài tập mẫu, ra bài tập ôn luyện có đáp án để học sinh tự làm
1.3 Đối tượng nghiên cứu.
Là học sinh lớp 12C1, 12C2 trường THPT Yên Định 3
Tham khảo cho học sinh lớp 12 Ban KHTN
+ Số học sinh ban cơ bản học tự chọn vật lí ở 2 lớp 12C1, 12C2 chỉ có:
25% có nhu cầu thực sự: có học lực TB khá quyết tâm học để theo khối
A, A1
40% học để thi tốt nghiệp và theo khối (vì 2 khối này có nhiều ngànhnghề để lựa chọn), số này có học lực TB
35% không thể thi khối khác (vì xác định không đậu đại học, cao đẳng sẽ
đi học nghề thì môn vật lí cũng rất cần thiết trong học tâp và xét tuyển sau này),
Trang 5- Phương pháp áp dụng vào việc:
+ Ôn tập chính khóa và ôn thi tốt nghiệp (chỉ là phụ)
+ Ôn thi học sinh giỏi và ôn thi vào đại học – cao đẳng (là chính )
2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM
2.1 Cơ sở lí luận của sáng kiến kinh nghiệm
2.1.1 Cơ sở của việc dạy - học bộ môn: Dạy học là quá trình tác động 2 chiều
giữa giáo viên và học sinh, trong đó học sinh là chủ thể của quá trình nhận thức,còn giáo viên là người tổ chức các hoạt động nhận thức cho học sinh Nếu giáo viên có phương pháp tốt thì học sinh sẽ nắm kiến thức một cách dễ dàng và ngược lại
2.1.2 Cơ sở của kiến thức - kỹ năng:
+ Về mặt kiến thức: Sau khi học xong, học sinh phải nhớ được, hiểu được cáckiến thức cơ bản trong chương trình sách giáo khoa Đó là nền tảng vững chắc
để phát triển năng lực cho học sinh ở cấp cao hơn
2.1.2.1 Hiện tượng nhiễu xạ ánh sáng.
- Hiện tượng truyền sai lệch so với sự truyền thẳng khi ánh sáng gặp vật cảngọi là hiện tượng nhiễu xạ ánh sáng
- Hiện tượng nhiễu xạ ánh sáng có thể giải thích được nếu thừa nhận ánh sáng
có tính chất sóng Hiện tượng này tương tự như hiện tượng nhiễu xạ của sóngtrên mặt nước khi gặp vật cản Mỗi chùm sáng đơn sắc coi như chùm sóng cóbước sóng xác định
2.1.2.2 Hện tượng giao thoa ánh sáng
a Thí nghiệm I- âng về giao thoa ánh sáng
Chiếu ánh sáng từ đèn D, qua kính lọc sắc K đến nguồn S Từ nguồn S ánh sángđược chiếu đến hai khe hẹp S1 và S2 thì ở màn quan sát phía sau hai khe hẹp thuđược một hệ gồm các vân sáng, vân tối xen kẽ nhau đều đặn Hiện tượng trênđược gọi là hiện tượng giao thoa ánh sáng
Hình 1 Hình ảnh quan sát được hiện tượng giao thoa ánh sáng
Trang 6Hình 2 Hình ảnh quan sát được các vân sáng, vân tối
b Điều kiện để có giao thoa ánh sáng
- Nguồn S phát ra sóng kết hợp, khi đó ánh sáng từ các khe hẹp S1 và S2 thỏa làsóng kết hợp và sẽ giao thoa được với nhau Kết quả là trong trường giao thoa
sẽ xuất hiện xen kẽ những miền sáng, miền tối Cũng như sóng cơ chỉ có cácsóng ánh sáng kết hợp mới tạo ra được hiện tượng giao thoa
- Khoảng cách giữa hai khe hẹp phải rất nhỏ so với khoảng cách từ màn quansát đến hai khe
c Xác định vị trí vân giao thoa.
Để xét xem tại điểm M trên màn
quan sát là vân sáng hai vân tối
thì chúng ta cần xét hiệu quang lộ
từ M đến hai nguồn (giống như
sóng cơ học)
c.1 Vị trí vân sáng
- Tại M là vân sáng khi d2 - d1 = kλ → = kλ xs = (1)
Công thức (1) cho phép xác định tọa độ của các vân sáng trên màn Với k = 0,
thì M ≡ O là vân sáng trung tâm
Với k = 1 thì M là vân sáng bậc 1
Với k = 2 thì M là vân sáng bậc 2…
c.2 Vị trí vân tối
- Tại M là vân tối khi
d2 - d1 = (2k+1) → = (2k+1) xt = (2)
Công thức (2) cho phép xác định tọa độ của các vân tối trên màn Với k = 0 và
k = –1 thì M là vân tối bậc 1
Với k = 1 và k = –2 thì M là vân tối bậc 2…
- Khoảng vân (i): Là khoảng cách giữa hai vân sáng hoặc hai vân tối gần nhaunhất
Ta có i = xs(k +1) - xs(k) = - = → i = (3)
(3) là công thức cho phép xác định khoảng vân i.
Trang 7Hệ quả :
- Từ công thức tính khoảng vân i = →
- Theo công thức tính tọa độ các vân sáng, vân tối và khoảng vân ta có
- Giữa N vân sáng thì có (n – 1) khoảng vân, nếu biết khoảng cách L giữa Nvân sáng thì khoảng vân i được tính bởi
công thức i =
Chú ý:
- Trong công thức xác định tọa độ của các vân sáng thì các giá
trị k dương sẽ cho tọa độ của vân sáng ở chiều dương của màn quan sát, còn các giá trị k âm cho tọa độ ở chiều âm Tuy nhiên các tọa độ này có khoảng cách đến vân trung tâm là như nhau Tọa độ của vân sáng bậc k là x = k.i Vân sáng gần nhất cách vân trung tâm một khoảng đúng bằng khoảng vân i.
- Tương tự, trong công thức xác định tọa độ của các vân tối
thì các giá trị k dương sẽ cho tọa độ của vân sáng ở
chiều dương của màn quan sát, còn các giá trị k âm cho tọa độ ở chiều âm Vân tối bậc k xét theo chiều dương ứng với giá trị (k – 1) còn xét theo chiều âm ứng với giá trị âm của k, khoảng cách gần nhất từ vân tối bậc 1 đến vân trung tâm
là i/2.
2.1.2.3 Khái niệm ánh sáng trắng:
- Ánh sáng trắng như chúng ta biết là tập hợp của vô số các ánh sáng đơn sắc.Mỗi một ánh sáng đơn sắc sẽ cho trên màn một hệ vân tương ứng, vậy nên trênmàn có những vị trí mà ở đó các vân sáng, vân tối của các ánh sáng đơn sắc bịtrùng nhau
- Bước sóng của ánh sáng trắng dao động trong khoảng 0,38 (μm) ≤ λ ≤ 0,76(μm)
+ Về kỹ năng: Học sinh biết vận dụng kiến thức đã học để trả lời được các câu hỏi lí thuyết, vận dụng lí thuyết giải được các bài tập Việc bồi dưỡng các kiến thức kỹ năng phải dựa trên cơ sở năng lực, trí tuệ của học sinh ở các mức độ từ đơn giản đến phức tạp Như vậy, việc dạy bài mới trên lớp mới chỉ
cung cấp kiến thức cho học sinh Học sinh muốn có kiến thức, kỹ năng phảiđược thông qua một quá trình khác: Đó là quá trình ôn tập Trong 6 mức độ của
nhận thức, tôi chú ý đến 2 mức độ là: Mức độ vận dụng và mức độ sáng tạo
Mức độ vận dụng là mức độ học sinh có thể vận dụng các kiến thức
cơ bản đã học để giải đươc các dạng BT áp dụng công thức thay số và tính toán
Còn mức độ sáng tạo yêu cầu học sinh phải biết tổng hợp lại, sắp xếp lại,
thiết kế lại những thông tin đã có để đưa về các dạng BT cơ bản hoặc bổ sung
Trang 8thông tin từ các nguồn tài liệu khác để phân thành các dạng BT và nêu các phương pháp giải sao cho phù hợp với các kiến thức đã học.
2.2 Thực trạng của vấn đề trước khi áp dụng sáng kiến kinh nghiệm:
- Việc học tập của học sinh nhằm 2 mục đích: Học để biết và học để thi Nếu
chỉ học để biết thì học sinh chỉ cần “đọc” và “nhớ” Còn học để thi học sinhphải có kỹ năng cao hơn: Nhớ kiến thức -> Trình bày kiến thức -> Vận dụngkiến thức -> Sáng tạo thêm từ các kiến thức đã có -> Kết quả học tập
- Trong các đề thi ĐH - CĐ và HSG gần đây: Mỗi đề thi thường có một số câu
hỏi khó (câu hỏi nâng cao) mà nếu hoc sinh chỉ vận dụng công thức SGK thìkhông thể làm được Ví dụ :Chương Sóng ánh sáng ở SGK lớp 12 cơ bản có
Bài 35: Giao thoa ánh sáng; kiến thức lý thuyết chỉ nói chung chung, không
đi sâu vào từng vấn đề cụ thể nhưng các dạng bài tập đưa ra trong các kỳ thi ĐH
và CĐ lại phức tạp Với chỉ kiến thức SGK thì học sinh ban cơ bản không thểnào giải được đề thi ĐH và CĐ phần này Hơn nữa, “ Giao thoa ánh sáng” vớihọc sinh THPT thật phức tạp bởi nguốn sáng có thể là nguồn đơn sắc, nguồngồm hai, ba nguồn sáng đơn sắc hoặc nguồn ánh sáng trắng Trong quá trìnhgiảng dạy tôi nhận thấy học sinh thường chỉ biết làm những bài tập đơn giảnthay vào công thức có sẵn, còn các bài tập yêu cầu phải có khả năng phân tích
đề hoặc tư duy thì kết quả rất kém Để giúp học sinh có thể nắm được và vậndụng các phương pháp cơ bản để giải các bài tập trong các đề thi phần: giaothoa với nguồn sáng gồm hai, ba nguồn đơn sắc hoặc giao thoa với nguồn ánh
sáng trắng, tôi chọn đề tài: “Huớng dẫn học sinh lớp 12 ban cơ bản phân dạng và nắm được phương pháp giải bài tập phần: Giao thoa ánh sáng”.
Trong đề tài này, tôi tóm tắt những phần lý thuyết cơ bản, đưa ra các dạng bàitập và phương pháp giải, bài tập tự luyện nhằm giúp các em ôn tập lí thuyết,phân dạng bài tập và có phương pháp giải các dạng bài tập
- Tọa độ vân tối thứ k:
Để xác định tại M là vân sáng hay tối ta lập tỉ số
- Nếu = k Z thì M là vân sáng bậc k
- Nếu = k + 0,5, (k Z) thì M là vân tối thứ (k+1)
Ví dụ 1: Trong giao thoa vớí khe I-âng có a = 1,5 (mm), D = 3 (m), người tađếm có tất cả 7 vân sáng mà khoảng cách giữa hai vân sáng ngoài cùng là 9(mm) Xác định tọa độ của vân sáng bậc 4, vân tối thứ 3
HƯỚNG DẪN
Trang 9Theo bài, khoảng cách giữa 7 vân sáng là 9 (mm), mà giữa 7 vân sáng có 6
khoảng vân, khi đó 6.i = 9 (mm) → i = 1, 5 (mm) → =
0,75.10-6 (m) = 0,75 (μm)
Tọa độ của vân sáng bậc 4 là xs(4) = 4i = 6 (mm)
Vị trí vân tối thứ 3 theo chiều dương ứng với k = 2, nên có xt(2) = (2 + 0,5)i
= 3,75 (mm)
Khi đó tọa độ của vân tối thứ 3 là x = 3,75 (mm)
HƯỚNG DẪN
Ví dụ 2: Trong thí nghiệm I-âng về giao thoa ánh sáng, hai khe cách nhau a =
0,8 (mm) và cách màn là D = 1,2 (m) Chiếu ánh sáng đơn sắc bước sóng λ =0,75 (μm) vào 2 khe Điểm M cách vân trung tâm 2,8125 (mm) là vân sáng hayvân tối ? Bậc của vân tại M ?
HƯỚNG DẪN
Ta có khoảng vân i = = 1,125.10-3 (m) = 1,125 (mm)
tỉ số = = 2 + 0,5 →k = 2 Vậy tại M là vân tối thứ 3
Ví dụ 3: Trong một thí nghiệm I-âng về giao thoa ánh sáng, dùng bước sóng
đơn sắc có bước sóng λ= 0,5 (μm)
a) Xác định vân sáng bậc 2 và vân tối thứ 5
b) Tại điểm M và N cách vân sáng trung tâm lần lượt 5,75 (mm) và 7 (mm) làvân sáng hay vân tối ? Nếu có, xác định bậc của vân tại M và N
HƯỚNG DẪN
a) Tọa độ của vân sáng bậc hai (có k = 2) và vân tối thứ năm (ứng với k = 4) là:
b) Tại điểm M có = 11,5 = 11 + 0,5 Vậy tại M là vân tối thứ 12
Tại điểm N có = 14 nên N là vân sáng bậc 14
2.3.2 DẠNG 2: TÍNH SỐ VÂN SÁNG HAY TỐI TRÊN TRƯỜNG GIAO THOA
TH1: Trường giao thoa đối xứng
Một trường giao thoa đối xứng nếu vân trung tâm O nằm tại chính giữa củatrường giao thoa Gọi L là độ dài của trường giao thoa, khi đó mỗi nửa trườnggiao thoa có độ dài là L/2
Cách giải tổng quát:
Xét một điểm M bất kỳ trên trường giao thoa, khi đó điểm M là vân sáng hayvân tối thì tọa độ của M luôn thỏa mãn:
Trang 10
Số các giá trị k thỏa mãn hệ phương trình trên chính là số vân sáng, vân tối cótrên trường giao thoa
Cách giải nhanh:
Lấy (n là phần nguyên còn là phần thập phân)
NS= 2n+1
Nt = Ns- 1 nếu 0 <0,5 hoặc Nt= Ns+1 nếu 0,5
Ví dụ 1: Trong thí nghiệm I-âng về giao thoa ánh sáng, khoảng cách giữa hai
khe là a = 1 (mm), khoảng cách từ hai khe tới màn là D = 2 (m), ánh sáng cóbước sóng λ = 0,66 (μm) Biết độ rộng của vùng giao thoa trên màn có độ rộng
là 13,2 (mm), vân sáng trung tâm nằm ở giữa màn Tính số vân sáng và vân tốitrên màn
HƯỚNG DẪNTheo bài ta có L = 13,2 (mm)
Dễ dàng tính được khoảng vân i = 1,32 (mm)
Khi đó n= = 5, vậy ở đầu trường giao thoa là vân sáng, số vân sáng là 11 và sốvân tối là 10
TH2: Trường giao thoa không đối xứng
Dạng toán này thường là tìm số vân sáng hay vân tối có trên đoạn P, Q với P,
Q là hai điểm cho trước và đã biết tọa độ của chúng
Các giải ngắn ngọn hơn cả có lẽ là tính khoảng vân i, vẽ hình để tìm Trongtrường hợp khác ta có thể giải các bất phương trình xP ≤ xM ≤ xQ, với M là điểmxác định tọa độ của vân sáng hay vân tối cần tìm Từ đó số các giá trị k thỏamãn chính là số vân cần tìm
Ví dụ 2: Trong thí nghiệm giao thoa ánh sáng I-âng, khoảng cách hai khe S1S2
là 1 mm, khoảng cách từ S1S2 đếm màn là 1m, bước sóng ánh sáng là 0,5 (μm).Xét hai điểm M và N (ở cùng phía với O ) có tọa độ lần lượt là xM = 2 (mm) và
xN = 6,25 (mm)
a) Tại M là vân sáng hay vân tối, bậc của vân tương ứng là bao nhiêu?
b) Giữa M và N có bao nhiêu vân sáng và vân tối?
HƯỚNG DẪN:
a) Từ giả thiết ta tính được khoảng vân i = 0,5 (mm).
13
b) Số vân sáng trong MN là số giá trị k nguyên thỏa mãn 4 < k < 13 Vậy có 8
vân sáng