1. Trang chủ
  2. » Giáo án - Bài giảng

Precursor ion approach for simultaneous determination of nonethoxylated and ethoxylated alkylsulfate surfactants

11 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Precursor ion approach for simultaneous determination of nonethoxylated and ethoxylated alkylsulfate surfactants
Tác giả Katarzyna Pawlak, Kamil Wojciechowski
Trường học Faculty of Chemistry, Warsaw University of Technology
Chuyên ngành Analytical Chemistry / Surfactant Analysis
Thể loại Research article
Năm xuất bản 2021
Thành phố Warsaw
Định dạng
Số trang 11
Dung lượng 2,39 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We present a new liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of sodium lauryl sulfate and sodium laureth sulfate homologues in the range of alkyl chain length C12–C16 with 0–5 ethoxy groups. The method is based on scanning the precursor ions fragmenting to m/z 80 and 97 (Precursor Ion Scanning mode), which makes it specific for species with easily cleavable sulfate groups.

Trang 1

journalhomepage:www.elsevier.com/locate/chroma

Katarzyna Pawlaka, Kamil Wojciechowskia,b,∗

a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland

b SaponLabs Ltd, Noakowskiego 3, Warsaw 00-664, Poland

a r t i c l e i n f o

Article history:

Received 29 March 2021

Revised 16 July 2021

Accepted 16 July 2021

Available online 22 July 2021

a b s t r a c t

Wepresentanewliquidchromatography–tandemmassspectrometry(LC-MS/MS)methodfor simultane-ousdeterminationofsodiumlaurylsulfateandsodiumlaurethsulfatehomologuesintherangeofalkyl chainlengthC12 –C16 with0–5ethoxygroups.Themethodisbasedonscanningtheprecursorions frag-mentingtom/z80and97(PrecursorIonScanningmode),whichmakesitspecificforspecieswitheasily cleavablesulfategroups.Bymonitoringfragmentationofthusdiscoveredquasi-molecularionswewere abletounequivocally identifyallsulfatespecies presentincomplex mixtures ofalkyland alkyl-ether sulfateswithmolecularweightrangingfrom200to600m/z.Becauseoftheintrinsicsulfate-sensitivity, the presented methodcanbe alsoappliedto non-sodiumsalts ofalkyl- and alkyl-ethersulfates (e.g ammonium,mono-ortriethanolamine,etc.),whichareoftenusedbycosmeticmanufacturerstojustify themisleadingSLS-andSLES-freeclaims(whereSLSandSLESrefertosodiumlaurylsulfateandsodium laurethsulfate,respectively).Theuseofreversedphaseliquidchromatography(RPLC)columnwithC4 insteadofC18shortenedsignificantlytheoverallanalysistimeandallowedustouseasemiquantitative method(basedonsinglestandardforQuantitativeAnalysisofMulti-componentSystem,QAMS)to deter-mineseveralSLSandSLEShomologuesinonerunwiththelimitofquantification(LOQ)=0.4μg/mLand

ofdetection(LOD)intherange0.12–0.97μg/mL.Themethodwassuccessfullyappliedto17commercially availablecosmetic/householdproductsallowingverificationoftheirmanufacturers’declarations

© 2021TheAuthor(s).PublishedbyElsevierB.V ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Anionic surfactants are major constituents ofmost detergents

andcosmeticcleaning/washingproductsbutarealsoubiquitousin

many other formulations, where wetting, dispersing, emulsifying

orfoaming activitiesarerequired[1].Mostofthecurrently

avail-able shampoos,shower gels,liquidsoapsanddishwashingliquids

are based on alkyl andalkyl-ether sulfates produced by

sulfona-tion ofalkyl alcoholsandethoxylated alkylalcohols Inindustrial

practicepurealcoholsareveryrarelyused,typicallytheirmixtures

areemployedinstead(e.g.amixtureobtainedfromhydrolyzedand

hydrogenated coconut and palm oils, as inthe case of the most

popularalkylsulfate– sodiumlaurylsulfate(SLS)).Itsethoxylated

analogue (sodiumlaureth sulfate, SLES) is produced analogously,

withanadditionalintermediate alcoholethoxylationstep[2].The

∗ Corresponding author at: Faculty of Chemistry, Warsaw University of Technol-

ogy, Noakowskiego 3, Warsaw 00-664, Poland

E-mail addresses: kpawlak@ch.pw.edu.pl (K Pawlak),

kamil.wojciechowski@ch.pw.edu.pl (K Wojciechowski)

“lauryl” nameand its derivative“laureth” were introducedto high-lighttheill-definedstructuresoftheresultingmixtures,incontrast

to singlespecies,e.g sodium dodecylsulfate(SDS) The ethoxyla-tionstep introduces anotherheterogeneity ofchemical structures

ofSLES (number ofthe ethoxy units), inaddition tothe variable length of the alkyl chain presentin SLS Consequently,the com-merciallyavailablealkylandalkyl-ethersulfatesshowwide distri-bution ofchemical structures andsurfactantproperties[3,4] De-spitetheirgreatefficacityinloweringsurfacetensionand sustain-ing foams, SLS and SLES may pose some environmental hazards caused by their limitedbiodegradability and persistentfoam for-mation [5] Their high detergent power may also lead to exces-sive lipidand proteinremovalwhen used ona daily basis [6–8] Thispromptssomeconsumerstoavoidproductswithsodium lau-rylandlaurethsulfatesandlookfortheir“milder” alternatives.In response, numerouscosmetic producers replace the sodium salts withthose of ammonium, lithium, ethanolamine,etc., or replace SLSandSLES withtheir homologousmixtures (e.g.“sodium coco sulfate”) to misguide the consumer with a different INCI (Inter-national Nomenclature of Cosmetic Ingredients) name [9] Given

https://doi.org/10.1016/j.chroma.2021.462421

0021-9673/© 2021 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Trang 2

the variety of homologous alkyl and alkyl-ether sulfate

surfac-tants,thereisanurgentneedforarobustanduniversalanalytical

methodcapableofdifferentiationbetweennotonlythealkylchain

lengthbutalsotheextentofethoxylationofSLES

One ofthemajorobstacles inquantitative analysisofcomplex

mixtures ofnaturalorsyntheticcompounds isthelackof

analyt-ical standards Incontrast tomanywell-defined compounds with

distinctstructures,noreferencematerialsareavailableformostof

the complex molecules(like proteins, lipids oralkaloids) or

mix-tures ofhomologues(suchasalkylandalkyl-ethersulfatesinthe

presentcase) Thisproblemcan be circumvented using

computa-tionalmethodsbasedonQuantitativeStructureandIonization

In-tensity Relationship(QSIIR).The methodwassuccessfullyapplied

to predictrelative levelsof29organicacids incomplexmatrices,

registered by product ionscanning.It offered accurate results(in

therangeof80–120%)for16organicacidsforwhichtheabsolute

concentrationswere quantified andusedasreference.Forthe

re-mainingorganicacids,suchaccuracycouldnotbeachieveddueto

lackofstandardsortoolowconcentrationoftheacidinthe

sam-ples [10] Suchapproachenablesdevelopmentofmethodsrelying

on a singlestandardforQuantitative esofMulti-component

Sys-tem(QAMS)[11,12]

Currently, most analytical methods for determination of alkyl

and alkyl-ether sulfate are based on spectrophotometric,

electro-chemical andchromatographictechniques[13–15].The officialEU

methodfordeterminationofanionicsurfactantsindetergents

de-scribed in Regulation (EC) No 648/2004 of the European

Parlia-ment and of the CouncilandinISO7875-1(1996)standardisbased

on formation of blue-colored salts of anionic surfactants with

the methylene blue dye, whichare determined

spectrophotomet-rically afterextractiontochloroform (MethyleneBlue Active

Sub-stancetest,MBAS).Althoughthemethodiscontinuouslyimproved

[16,17],theion-pairformationreactiondoesnotprovidesufficient

selectivitytoenabledistinctionnotonlybetweenthenatureofthe

anionicgroup(phosphate,carboxylic,sulfateorsulfonate)butalso

thealkylchainstructure

Another groupof non-chain-length-selectivemethods isbased

on formation ofionic associates betweenanionic surfactants and

cationic speciesusing potentiometric sensors [18] orsuppression

ofionicconductivityusingionchromatography[19].Usinga

sim-ilar approach,Levine et al.were capable ofdetermining

concen-tration of ammonium lauryl sulfate, sodium laureth sulfate and

sodium alkyl (C10SO4−– C16SO4−) ether sulfates present in

com-mercially available detergents (dynamic linear ranges: 1.0–500,

2.5–550 and 3.0–630 mg/L, respectively) [20] After

chromato-graphicseparation,amixtureoffourlinearalkylbenzenesulfonates

(C10SO4−- C13SO4−) was detected by UV spectroscopy[21] anda

mixtureofanionicandnonionicsurfactants(includingsodium

lau-rylsulfateandα-olefinsulfonate) usinganevaporativelight

scat-teringdetector(ELSD)[22].Nevertheless,selectivityisoftenwhen

suchdetectorsareemployed[21,23,24]

Regardless ofthedetectionmethod,anionic surfactantscanbe

separatedusingionexchangechromatography[19].However,most

commonlytheseparation isachievedthankstodifferencesinthe

affinity ofaliphaticchains to ahydrophobic stationaryphase For

this purpose, deprotonated anionic surfactants (pH > 7) can be

separated as neutral ion pairs formed with quaternary

ammo-nium cations (ion pair liquid chromatography, IPLC [25]) orin a

non-dissociatedform (pH< 7), usingreversed-phase liquid

chro-matography, RPLC The former method is, however, not suitable

for mass spectrometry because of significant signal suppression

[26] The advantage oflowering pHof the mobile phase is a

re-duction ofhydrophilicinteractions interferingwiththe

chromato-graphicprocess.Ontheotherhand,reducedpHmaylower

ioniza-tion efficiencyinmassspectrometry[26].Matthusandcolleagues

[27] separated the alkylbenzene sulfonate (LAS), alcohol

ethoxy-lates (AE), and alcohol ethoxylated sulfates (AES) by reversed-phasechromatographyusingaC18columnandammoniumacetate

tostabilizepH ofthemobile phase.The partiallyseparated com-pounds were detected using a fluorescence detection (FLD) and

a thermospraymassspectrometer workinginthe scanning mode (m/zrange200–800).Thisprovidedmoredetailedstructural infor-mationattheexpenseofsensitivity.Thepotentialforquantitative analywasexemplifiedbydeterminationofthetotalconcentration

ofactivesubstancesinsewageinrelationtotheAESandLAS com-mercial mixtures Dufour et al.employed ultra-high-performance liquid chromatography with high-resolution mass spectrometry (UPLC-HR-MS) to separate four homologues of alkylbenzene sul-fonate(4-dodecylbenzenesulfonicacid,DBSA).Thehomologues dif-fered in their alkyl chain lengths (decylbenzenesulfonate, unde-cylbenzenesulfonate,dodecylbenzenesulfonate, tridecylbenzenesul-fonate) and could be separated in the RPLC mode using C4, C18 andC30columns[28].Levineetal.employed RPLCcoupledwith electrospray ionization quadrupole ion trap mass spectrometry (ESI-Q-IT-MS)to simultaneouslydetermine threecommon surfac-tants:anamphotericcocoamphoacetate,anonionicalcohol ethoxy-lateandananionicSLES(dynamiclinearrange1.5–40mg/Lfor to-talamount ofSLES normalizedagainst commercialmixture)[29] Fouralkyl sulfateand2 ethoxymers ofalkyl-ether sulfate homo-logues were determined in the SPE-preconcentrated wastewater samplesusing a liquidchromatography–tandemmass spectrome-try(LC–MS/MS) withelectrosprayionization (ESI)innegativeion mode Based on the commercial mixture producer’s declarations, the limits of quantification(LOQ) inthe range0.3–0.4 μg/Land 0.5–1.5μg/LwerereportedfortheSLSandSLEShomologues, re-spectively [30] Another interesting approach to separate surfac-tantspresent incommercial mixtures of SLS andSLES employed theionmobilitymass spectrometry[31] Theionized compounds were distinguished based on their drift time inan electric field, whichdependedontheirmolecular weight.Theauthorsobtained six peaks for the SLS mixture and twelve for the SLES one, al-thoughtheiridentitywasnotdeterminedduetolackofstandards Nevertheless,thedevelopedmethodcouldbeappliedtodetermine thetotalSLSandSLEScontent(withrespecttocommercially avail-ableSLSandSLESmixtures)adsorbedbydifferentdishsurfaces

In this contribution we further extend the analytical capa-bilities of LC-MS/MS technique by employing for the first time

an MS/MS scanning of the precursor ions to follow the sulfate-bearing species We propose a novel method for determination

of individual alkyl and alkyl-ether sulfates in mixtures of cos-metic/householdingredientsandproductsusingasingleandeasily availablestandard(SDS)forquantitativeanalyofmulti-component system(QAMS).Weshowhowtheexperimentallyobserved depen-dencyof signal intensityon theretention, numberof fragmenta-tionionsobtainedinacollisioncellandrecoveryfromastationary phasecan beaccountedforinQAMSmethodsto obtaingood ac-curacy.SDScouldbeemployedasauniversalandsolestandard,as

itwaspresentineverysample.Thenewmethodallowedusto de-tect5non-ethoxylatedand20ethoxylatedsulfatesincommercial SLESproducts.Toshowtheunprecedentedapplicationpotentialof thenewmethodforreal-lifesamplesanalyweverifiedthe manu-facturers’declarationsaboutthepresence/absenceofSLSandSLES ingredientsin17cosmetic/householdcommercialproducts

2 Experimental

Separationofthealkylandalkyl ethersulfateswascarriedout using a 1220 Infinity II LC Systems (Agilent Technologies, USA), whereastheir identificationandquantitationwasachievedwitha

6460Triple Quadtandem mass spectrometric detectorwithaJet Streamionsource(AgilentTechnologies,USA).Analyteswere sep-aratedby anAerisWidepore C4column(2.1× 150mm,3.6μm,

Trang 3

Fig 1 Product ion mass spectra registered for dodecylsulfate anion (DS − , C 12 SO 4 − , m/z 265) and a selected anion present in SLES with their fragmentation ions

300 ˚A,Phenomenex).Thechromatographicseparationemployeda

gradient elution from (40%acetonitrile: 60% water) to (95%

ace-tonitrile: 5% water),both containing0.15% (v/v) formicacid, over

8 minataflow rateof0.2mL/min Boththe columnandmobile

phasewerethermostatedat45°C

Themassspectrometer wasoperatedinnegativeionmode

es-tablishedby ionizationvoltageof3000Vandnozzlevoltage0V

Heated(300°C)nebulizationgasflowof8L/minappliedat30psi

wasselectedasthemostappropriatetoenhancetheionization of

low molecularweightcompounds.The PrecursorIon(PrecI)

scan-ningwasappliedforthediscoveryofSLSandSLEShomologues.A

tandem massspectrometer operatinginthe PrecImode findsthe

parentions(thefirstquadrupole,Q1,operatesinthem/z200–800

scanning mode)forthem/z valuesofcharacteristicfragmentions

(the secondquadrupole,Q3,operatesintheselectedion

monitor-ing mode) The negative fragmentation ionsSO3− at m/z 80 and

HSO4− at m/ 97 were selected as characteristic of the

sulfate-bearing compounds (Fig 1, Table SM1) Structurally similar

sul-fonate ions would produce the m/z 81 signals of HSO3− ions in

addition to m/z 80 The m/z values of the parent ions were

se-lectively discoveredby themass spectrometer Theanalyses were

controlled and processedby a MassHunter Workstation software

(Agilent Technologies, USA) The employed chromatographic and

MSconditionsarecollectedinTableSM1

The commercial shampoos, hair conditioner and liquid soap

were purchasedinalocalcosmeticstoreinWarsaw(Poland).The

referenceshampoowithoutSLSandSLESwasprovidedby

Sapon-labsLtd.(Poland).ThreeSLESandfourSLS-typemixtureswiththe

specified amountof active substances(27–70%w/w) and

ethoxy-lation degree were obtainedfroman industrialsupplier All SLES

were declared assodiumsaltsofethoxylated sulfatesof

predom-inantly C12C14 alcohols with different ethoxylation degree and

average molecular weights (Mav ∼ 340 g/mol, ethoxylation

de-gree 1–2.5: SLES-340; Mav ∼ 384 g/mol, ethoxylation degree 1–

2.5:SLES-384;Mav ∼432g/mol,ethoxylationdegree>2.5:

SLES-432) The following SLS-type products were used: sodium

lau-ryl sulfate (SLS), ammonium lauryl sulfate(ALS), triethanolamine

lauryl sulfate (TEALS), monoethanolamine laurylsulfate (MEALS)

Sodiumdodecylsulfate,SDS(purissACSreagent,≥ 99.0%)was

pur-chased from Sigma Aldrich (Poland) Acetonitrile (LC/MS purity) from POCH (Gliwice, Poland); formic acid (LC/MS purity), from FisherScientific (FairLawn,NJ,USA).Demineralizedwaterfroma Milli-QsystemModelMilliporeElix3(Molsheim,France)was em-ployed

StandardsolutionofSDS(1.0mg/mL)waspreparedinMilli Q-water.ThesurfactantSLESmixtures(0.2–0.5mg/mL)and commer-cialcosmeticformulations(0.7–1.4mgofcosmetic/mL)were pre-pared by dissolving them inMilli Q-water For semi-quantitative analyzesofalkylandalkyl-ethoxysulfates,toassurethatthe con-centrationofallsulfatesiswithinthelinearresponserangeof cal-ibrationcurve,all sampleswere dilutedattwo ormorelevels.All solutionswerefilteredthrough0.45μmsyringefilterspriorRPLC analy

3 Results and discussion

3.1 Optimization of the detection conditions

Inordertosimultaneouslyquantifyallalkylandalkyl-ether sul-fate homologues, the separation method should allow for selec-tionofallspeciesyieldinghydrogensulfateion(HSO4−,m/z=97) and/or radical sulfate anion (•SO3 −, m/z = 80) upon fragmenta-tion.Thesespecies,resultingfromdissociationofthe C-O-Sbond

inthesulfategroup,canbeconvenientlyselectedbyscanningions withm/zbeingreducedto80and97inthePrecursorIonScanning (PrecI)Mode Althoughthelatteroffers additionalintrinsic speci-ficityin MS analy, untilnow the PrecI modehas been employed almost solely in lipidomic and proteomics analyses [32] and its potentialinalkylsulfateanalyhasbeenlargelyunexploited There-fore,inthefirstpartofthestudy,thedetectionconditionsfor elec-trospraytandem massspectrometer (ESI-MS/MS) were optimized using sodium dodecylsulfate (SDS) and a cosmetic/household in-gredient SodiumLaureth Sulfatewithdeclared averagemolecular weightof384g/molandaverageethoxylationdegree1–2.5 (SLES-384) To this aim, an SDS solution of 1 μg/ml was introduced (5 μL) into the mobile phase stream (acetonitrile:water, 50:50 (v/v)) at a flow rateof 0.2ml/min (FIA-ESI-MS) Using SDS, the ionization voltage, gas flow rateand temperature, aswell asion

Trang 4

transmission voltage (fragmentor voltage) providing the highest

signalsobservedatm/z265(correspondingtododecylsulfate

an-ion, CH3-(CH2)11-SO4−,(“C12SO4−” or “DS−“),were optimized (see

Table SM1 in Supplementary Materials) As alkyl and alkyl-ether

sulfates tendtoformstableanionsalsoinacidicsolutions dueto

high dissociationconstant ofsulfate group (pKa= ~2.4) the

mo-bile phasewasacidifiedwithformicacid(0.15%(v/v)) to

sensitiv-itybyeliminationofadductsformationandtoreducethenoiseof

themassspectrum[26].Analogousanalyemployingtheoptimized

conditionswasperformedforSLES-384,wherethehighestsignals

were observed atm/z 265,309,381 and441.They corresponded

to the C12 anion (CH3-(CH2)11-SO4−) previously found in SDS)

and to different laureth sulfate anions predominant in the

mix-ture:CH3-(CH2)11-(OCH2)1-SO4−,CH3-(CH2)13-(OCH2)2-SO4−,CH3

(CH2)11-(OCH2)4-SO4−,respectively(C12EO1SO4−,C14EO2SO4− and

C12EO4SO4−,respectively).Theselecteddodecylandlaurethsulfate

ionsweresubjectedtofragmentation(ProductIonScanning)using

the10,20,30,40eVcollisionenergy.Allresultingspectrafeatured

the m/z97signal,corresponding toHSO4−anion,confirmingthat

allselectedionsindeedcontainedthesulfategroup.Insomecases,

additionalsignalatm/z80,correspondingtoaradicalanionSO3−,

was alsoobserved Other signals, ifpresent, correspondedto the

breakdownoftheC OorC Cbondswithintheethoxylatedpartof

SLES molecules(Fig.1).Thehighestsignalswereobtainedforthe

collision energyof20and40 eV,andtheseconditionswere

em-ployedinsubsequentoptimizationofseparationconditions

3.2 Optimization of the separation conditions by RPLC

Having selected the optimum conditions for detecting the

speciesreleasingSO3− andHSO4−(m/z80and97)inPrecImode,

we optimizedthechromatographicmethod,startingwitha

selec-tion of mobile and stationaryphases Formic acid allowed

sepa-ration of SLS and SLES homologues with a selectivity

compara-ble to that achievedin the presence of trifluoroacetic acid(TFA)

in the mobile phase andbetter than that forammonium acetate

[23,24] Thepresenceofformicacidinthemobilephase helpsto

reduce the hydrophilicandenhance the hydrophobic interactions

ofseparatedcompoundswiththealkylatedsilicastationaryphase

It should be notedthat formic acid, incontrastto TFA, isnot an

ion-pairingagent,henceitspresencedoesnotdeterioratethe

sen-sitivityofMS-basedmethod.Theabilityofthemobilephase(0.15%

aqueoussolutionofformicacidwitha linearlyincreasingamount

of acetonitrile from0 to98% in20 min) to recoverSDS and the

SLES-384componentsfromthesurfaceofahydrophobicstationary

phase wastestedusingtwoPhenomenex150× 2,1mm columns

One was loaded with fully porous silica particles modified with

C18 aliphatic chains (Luna) andthe other withcore-shell silica

particles ofwide pores modifiedwithC4 aliphaticchains (Aeris)

Chromatographic performance duringgradient elution wasbetter

fortheC4-bedcore-shellcolumnwhichproducedsignificantly

bet-ter shape ofthe peaks(intensity 3to 10times higherandlower

width, see Fig SM1) The shape of the peak can be by: (1) too

stronginteractionsofthecompoundwiththestationaryphasenot

balancedby thecompositionofthemobilephasesolution,(2)the

rateofmovementofthecompounds inthecolumndependingon

the temperature, (3)particle orporesize inthe stationaryphase

[33–35].Consideringthat thecolumnsize,particlesizeand

gradi-entelutionmethodwerethesameinbothcases,theobserved

re-ductionofthepeakwidthmustberelatedtothesizeofthe

parti-cles’pores.Duetobetterchromatographicefficiency(peaks’shape)

withoutselectivityincomparisontothefullyporousC18column,

the core-shell C4 column was chosen for all subsequent

experi-ments Then,optimizationofthechromatographicseparation

pro-cess wascarriedout byexamining the gradient elutionprogram,

temperatureofthemobilephaseandcolumn,samplevolumeand sampledilution(Fig.SM2)

In order to validate selectivity of the MS detection in PrecI modeunderoptimizedconditions,twoother SLESmixtures

(SLES-340withdeclaredaveragemolecularweightof340g/moland av-erageethoxylation degree 1–2.5, and SLES-432with declared av-erage molecular weight of 432 g/mol and average ethoxylation degree > 2.5) were analyzed using the method developed with SLES-384.Thechemicalidentity oftheanionsdiscoveredby PrecI wasassignedusingtheProductIonScanningmode.Fragmentation ions m/z 80and 97, confirmedthe presence ofthe sulfate group

in all cases The difference between theoretical and experimen-tally established monoisotopicmass M parameter(defined as

M =|Mtheoretical-Mexperimental|/Mtheoretical·106) varied between 71 and 639 ppm (Table SM2), which is typical for low-molecular-weight-compoundsanalyzedwithquadrupoleanalyzers,duetothe intrinsiclowresolutionofthelatter[36]

AlltestedSLESmixturesshowsimilarchromatogramswiththe proportionofmorelipophilicderivativesincreasinginorder:

SLES-340< SLES-384 < SLES-432.A more detailedanalyshowed that retentiontime withthenumberofboth alkyl andalkoxylgroups (Fig.SM3),whichwasusedtoadditionallyconfirmidentityofthe homologues This wasespecially usefulwhen the compound sig-nalwastoosmalltoobtainarichProductIonspectrum.Alltested SLES sampleswere abundantin ethoxylatedspeciesspanningthe alkylchainlengthsfrom12to16carbonatoms,andthenumberof ethoxy groupsfrom1to5 (Fig.2, TableSM2).Surprisingly, how-ever, all samples featured also signals that could be assigned to non-ethoxylated sulfates(C12SO4−- C16SO4− typicalfor SLS-type products

3.3 LC-MS calibration using SDS

Inordertoallowforasemi-quantitativeanalyofthealkyland alkyl-ether sulfates in cosmetic/household ingredients and prod-ucts, the LC-MS system was calibrated using SDS as a standard (notethatincontrasttoSLES,SDSisasinglemoleculewithknown anddefinedstructure) As showninFig 3(inset), the calibration curve for the m/z 265 signal in PrecI mode is linear up to at least10μg/mLofSDS,confirmingthat theproposed methodcan

beusedforquantitativedeterminationofindividual alkylsulfates Nevertheless, an analogous quantitative analy of alkyl-ether sul-fates(SLES-type)ismoredemandingfortworeasons:(1)pure ref-erencesubstancesarenoteasilyavailable,(2)thehomologuesmay differnotonlyinthealkyl chainlength(Cn)butalsoin ethoxyla-tiondegree(EOm).Especiallythelatterfactmaycomplicate quanti-tativeanalysincethealkylandethoxychainscontributedifferently

topartitioningandfragmentationbehaviorofSLESmolecules(see Fig.SM3)

Astheconcentrationsofindividualcomponentsoftheanalyzed SLES mixtures were not known, calibration was performed by a series of dilutions to obtain concentrations ranging from 0.1 to

10 μg of raw material/SLES mixture in 1 ml of water SLES-432 wasused forthis purpose,as it contains the highestnumber of different SLS- and SLES-type molecules (Fig 2) The diluted so-lutions were analyzed using the protocol describedabove (PrecI mode) For each compound detected in the mixture,a good cor-relationwas achievedbetweenthe peak area andthe amountof SLES-432insolution(Fig.3,TableSM3).Forcomparison,alsothe curve forSDS isincludedinthesamegraph(m/z265).The slope

oftheresultingcurvesisproportionaltotheretentiontimeforall compounds detected inSLES-432,which isclearlya consequence

ofdifferentcontributions ofthe-CH2 and-OC2H5 groupstothe solubilityandconsequently– tothepartition coefficientof differ-entSLSandSLEShomologues.Theobservedreductionofthe

Trang 5

sen-Fig 2 Extracted ion chromatograms (EIC) of SLES-384 (A) and SLES-432 (B) obtained for the precursor ions (indicated in A) discovered for the fragmentation ion m/z 97

(PrecI: ∗∗ → 97 (40 eV)), see Table SM1 for experimental details) The colors visible in the on-line version correspond to the calibration curves in Fig 3

sitivityforthecomponentselutedafterlongertimemaybecaused

byseveralreasons:

reducedchromatographicrecoveryofanalytes[37]

lower ion transport efficiency fromthe ionization to the

vac-uumchamberforhighermolecularweightions[38]

suppressionofionsignalintensitybystrongionparingagents

andlower stabilityofionsin ESIchamber orcollisioncell for

highlyethoxylatedhomologues[26]

Without the use ofanalytical standards, the observed

depen-dence of sensitivity on retention time excludes a direct

quanti-tative determination of multiple components To circumvent this

problem, we propose a simple correction scheme usingthe

cali-bration data forSDS As shownin Fig 2,the latter ispresent in

all tested SLES mixtures, and its amount can be reliably

quanti-fied using the calibrationcurve fromFig 3.Note that in a more

general case, for samples devoid of SDS, it can always be added

to the sample in known amount as an internal standard In the

proposed scheme,each anionsignal isnormalized tothat ofDS−

(dodecylsulfate, C12SO4 − First, acalibration curve forDS− anion

wasobtainedusingsolutionswiththeSDSstandard.Next,changes

ofsignalsforeachiondetectedinthemixtureSLES-482(this

mix-turewasselectedforits highestnumberofdetectedSLSandSLES homologues)were acquiredbyserialdilutions.Thedependenceof signalheightonconcentrationwasthenestablishedusingalinear curvey=ax+b,whereyisthepeakareaandxisthe concentra-tionofthesample(ingredient, cosmeticproduct,etc.)inthe ana-lyzed solution(expressedinμg/mL,seeFig.SM4).Thesensitivity coefficient,fi,foranygivenalkyloralkyl-ethersulfateion(i)inthe sampleiscalculatedby normalizingtheslope (a) forthei-thion

tothatforDS− (Eq.(1)):

f i = a i , sample

Thedependenceoff i onretentiontimeisshowninFig.4andthe numerical values are collected in Table SM4 The retention time significantly with the length of the alkyl chain forboth SLSand SLES.Thesensitivityofthemethodisprimarilydependentonthe numberof-CH2 groupsintheSLShomologuesandethoxygroups presentintheSLEShomologues.Ithasalreadybeenreportedthat thelengthofalkyl chaininfluencesthechromatographicrecovery [37]aswell astheefficiency ofionizationprocess andion trans-missionfromtheelectrospraytovacuumchamber [38].However, forSLES homologues, the decreasein sensitivityismore notable

Trang 6

Fig 3 Dilution correlation for SLES-432 obtained by LC-MS/MS method using Precursor Ion Scanning mode Colors of points and trend lines in an electronic version

correspond to the peaks in Fig 2 The inset shows a calibration graph for DS − obtained for SDS

Fig 4 Dependence of sensitivity coefficient on retention time depending on the number of -CH 2 - ( n ) and ethoxy groups ( m ) in different SLS ( C n ) and SLES (C n EO m SO 4 − ) derivatives

Trang 7

Table 1

Comparison of the declared and semi-quantitatively (LC-MS/MS) determined amount of active ingredients and the average molecular weight for 7 cos- metic/household products ingredients

Product name Sum of active ingredients Average molecular weight and ethoxylation degree (in brackets)

Declared by manufacturer (%) Determined by LC-MS/MS (%) Declared by manufacturer Determined by LC-MS/MS

Thisismostlikelyrelatedtothenumberoffragmentationproducts

forSLES homologuescontaininghighernumberofethoxy groups,

whichlowerstheimpactofthem/z 97ion(Fig.1).Thechangeof

sensitivitywiththenumberofethoxygroupsislinearforthesame

lengthofalkylchainandconsequentlyalinearregressioncouldbe

applied Thelatter providesa convenientstatisticaldescription of

theagreementbetweenthefitandtheexperimentaldata,allowing

calculationsofstandarddeviationofrelativeconcentrationsofSLS

andSLEShomologues.Theconcentrationofeachsurfactantion(i)

canbethenestimatedusingthesensitivitycoefficient(Eq.(2)):

C i = (peak area)i − b DS , SDS

where:a DS , SDS andb DS , SDS arethecalibrationcurveparametersfor

DS− ionin a standard SDS solution (externalstandard), anddis

thesampledilution

The detectionlimitscanbecalculatedusingthesensitivity

co-efficients,f i ,andcalibrationparametersforDS−(Eq.(3))

LO D i =3.S D b,DS,SDS

whereS D b ,DS, SDS isthestandarddeviationofcalibrationcurve

pa-rameterbforDS−ioninastandardSDSsolution

Additionally,standarddeviation(SD)forthepeakareasinblank

samples (the shampoos devoid of SLS andSLES) wasestablished

(SDSh,n= 5) andit wasfound significantly lower thanSDb .The

LOD was in the range 0.12–0.97 mg/L, which is satisfactory for

determination ofSLSand SLEShomologuesin cosmeticproducts

Moreover,thesensitivityofthemethodcouldbefurtherimproved

by switchingtoaMultipleReaction Monitoring(MRM)mode and

monitoringthespecifiedpairsofparent/fragmentationions

3.4 Validation of the semi-quantitative method for alkyl and alkyl

ether sulfates determination

The method describedabove allows to correct forthe

experi-mentally observeddependenceofsensitivityon retentiontimein

mixtures ofpractically unlimited numberofSLS andSLES

homo-logues and enables their semi-quantitative determination In the

absenceofreliableanalyticalstandardsforanyotherthanSDS

ho-mologueofSLSandSLES,theanalyticalvalidityofthemethodwas

criticallyassessedbycomparingthesumofallsemi-quantitatively

determinedcomponentswiththetotalcontentofactivesubstance

(manufacturerdeclaration)insevencosmetic/householdingredient

products.ThreeSLESmixtures(SLES-340,SLES-384,SLES-432)and

four SLS-typederivatives:sodium laurylsulfate(SLS), ammonium

laurylsulfate(ALS),triethanolaminelaurylsulfate(TEALS)and

mo-noethanolamine lauryl sulfate (MEALS) were employed for this

purpose.Figs.5andSM5collecttheextractedionchromatograms

(EIC) showingthe signalintensityfromthenon-ethoxylated alkyl

sulfate anions (SLS-type, Fig.5A) and alkyl ethoxy sulfate anions

(SLES-type, Fig.5B) species(allselected in PrecImode) Thefirst

striking observation is that while the SLS-type ingredients (SLS,

ALS, TEALS andMEALS) aredevoid ofanyethoxylated impurities (Fig.5B)asexpected, theSLES-typeingredientscontainsignificant amountsofSLS-typederivatives(Fig.5A),asalreadynotedduring the qualitative analy(see Fig.2) Their presencecan be probably explainedbyincompleteethoxylationoftherawmaterialsusedfor theirproduction.Whensuch amixtureissubjectedtosulfonation reaction, the corresponding mixture of alkyl andalkyl-ether sul-fatesisobtained

The concentration of each alkyl sulfate and alkyl ethoxy sul-fateanionwascalculatedusingthesemi-quantitativemethod de-scribed in the preceding section and their sum in each of the products was compared with the active component content de-clared by the manufacturer (Table 1) The agreement between the declared and determined sums is satisfactory,especially tak-ingintoaccountthesemi-quantitativenatureofourmethod.Only forTEALSandMEALS thedifference ismore significant,probably dueto thelower dissociationdegree oftriethanolamine and mo-noethanolamine saltsof thealkyl sulfates which mayaffect both thechromatographicseparationandsubsequentMSdetection.The averageethoxylationdegree(seeSupportingMaterials)ofthethree SLESmixtureswithincreasingtheir averagemolecularweightand agreeswiththemanufacturer’sdeclaration.Theaveragemolecular weight of the alkyl and alkyl ether sulfates was also established

onthe basis oftheir composition(Table1) Also, inthiscasethe agreementwiththemanufacturer declarationsis satisfactory, fur-thervalidatingoursemi-quantitativemethod

Thepresentmethodhasbeendevelopedandvalidatedfor de-tection ofsulfate-based surfactantsbutcan be extended toother ionic surfactants It offers good sensitivity and allows the deter-mination ofSLS andSLES homologues usinga cheap and widely available standard substance– sodiumdodecyl sulfate(SDS) The employed PrecI mode allows even for detection of (ethoxylated) alkyl sulfates not yet described inthe literature In addition, the methoddoesnotrequireanya prioriknowledgeofm/zvalues spe-cificforeachparent andfragmentationion,which isan essential requirement of the MRM method Although the latter offers the highestsensitivity[39],thePrecImodestilloffers goodsensitivity andfacilitates interpretationofthedataascomparedtothemass spectraandchromatogramsobtainedinMSscanningmode

3.5 Alkyl (SLS-type) and alkyl ether sulfate (SLES-type) anions determination in cosmetic/household products

Havingestablishedandvalidatedthesemi-quantitativemethod for determination of SLS and SLES homologues, we analyzed 17 cosmetic/householdproductsandcomparedtheir contentofalkyl andalkylethoxy sulfates withthedeclarationsprovided by man-ufacturersintheINCI(InternationalNomenclatureofCosmetic In-gredients) lists The products were chosen in a wayto represent formulationswithdeclaredpresenceandabsenceofSLS-and SLES-typederivatives

Trang 8

Fig 5 Extracted multi-ion chromatograms (EIC) of: A (left panel) - alkyl (non-ethoxylated, SLS-type) and B (right panel) - alkyl ethoxy (ethoxylated, SLES-type) sulfates

detected in cosmetic/household ingredients using Precursor ion mode (PrecI: ∗∗ → 97 (40 eV))

According to declarations, some of the selectedproducts

con-tain other anionic surfactants similar to SLS andSLES: sulfonate,

sulfosuccinate,sulfoacetate,taurateorisethionate,wherethesulfur

atom intheheadgroup isbound directlytoC-atom(see Table2)

BecauseofmuchhigherenergyrequiredtodissociateanS Cbond,

underthepresentlyemployedfragmentationconditionanddueto

lack of the forth oxygen presentin sulfate group, thesemoieties

wouldnotbe abletoproduceboth m/z 80and97signals There-fore, they could not interfere withdetermination of the sulfate-basedsurfactantsusingourmethodbasedonPrecImode.Itshould

be notedthat thefragmentationion observedatm/z 97can also

be obtainedfor H2PO4− anionproduced during fragmentationof phospholipids.Nevertheless,suchsignalscouldbeexcludedonthe basisofdifferentretentiontimesduetolongeraliphaticchainsin

Trang 9

Table 2

SLS and SLES homologues content determined semi-quantitatively in cosmetic and household products compared with the producer’s declarations in the INCI lists (names in italics indicate alkyl (SLS-type) and alkyl-ether (SLES-type) sulfates)

No Product description

Sulfur-containing surfactants declared in

Alkyl ethoxy sulfates [%]

Compliance with INCI (SLS/SLES)

1 Moisturizing shampoo for dry hair Sodium Coco-Sulfate 14.69 ± 1.31 < LOD + / +

2 Nutrifying shampoo for dry hair Sodium Laureth Sulfate , Disodium Laureth

Sulfosuccinate, Sodium Lauryl Sulfoacetate

11.59 ± 0.53 11.25 ± 0.50 -/ +

4 Moisturizing shampoo for dry hair Sodium Methyl Cocoyl Taurate, Sodium

C14-16 Olefin Sulfonate 1.51 ± 0.79 < LOD -/ +

5 Shampoo for dry and damaged hair Sodium Lauryl Sulfate, Sodium Laureth

Sulfate , Sodium Xylenesulfonate

28.75 ± 1.39 4.54 ± 0.91 + / +

7 Moisturizing shampoo for normal and

dry hair

Sodium Coco-Sulfate 22.88 ± 1.03 < LOD + / +

8 Strengthening shampoo for greasy and

falling out hair

Ammonium Lauryl Sulfate, Sodium Laureth Sulfate

12.14 ± 0.52 0.62 ± 0.14 + / +

11 Anti-dandruff shampoo Sodium Laureth Sulfate, Sodium Lauryl

Sulfate , Sodium Xylenesulfonate, TEA-Dodecylbenzenesulfonate

9.22 ± 1.04 1.77 ± 0.42 + / +

12 Hypoallergenic shampoo for fair, dyed

and bleached hair

Sodium Laureth Sulfate , PEG-2

Dimeadowfoamamido-ethylmonium methosulfate

5.10 ± 1.06 4.31 ± 0.49 -/ +

13 Hair-repairing shampoo Sodium Coco-Sulfate 42.10 ± 1.87 < LOD + / +

15 Anti-dandruff shampoo Sodium Cocoyl Isethionate < LOD < LOD + / +

16 Shampoo for delicate and damaged

17 Bath and shower gel Sodium Laureth Sulfate 5.42 ± 0.32 5.97 ± 0.62 -/ +

phospholipids Anadditional verificationcould be done by

moni-toringthePO3−signal(m/z79)[40,41]

Thetestedcosmetic/householdproductsweredilutedwith

wa-ter andto ensurethat theresulting concentrationlies withinthe

linearrange,eachsamplewasadditionallydilutedtwicemore.The

total SLSand SLES homologues concentrations determined

semi-quantitatively are collected in Table 2 and the respective

chro-matograms are shown in Fig SM6 The majority of tested

prod-ucts indeed conforms to declarations and only in one case both

the alkyl and alkyl ethoxy sulfate anions were detected in

sig-nificant amounts ina shampoodeclared as devoidof any

sulfur-based surfactants (shampoo 6) Two other products declared as

free fromSLS-orSLES-typeingredients (ahairconditioneranda

shampoopreparedinourlabwithnoSLSorSLESadded)did

con-form to their INCI declarations It is worth stressing that one of

theproducts(shampoo12)accordingtotheproducer’sdeclaration

contained PEG-2 dimeadowfoamamidoethylmonium methosulfate

(Meadowquat),whereasulfategroup ispresentinthecounterion

(methosulfate) The latter would fragment producing the m/z 80

andm/z97ions.However,ourmethodisinsensitivetofalse

posi-tive resultsofthistype,since scanningforthePrecI-selectedions

isperformedonlyforionswithm/z above200.Thus,theamount

ofalkylsulfatesdeterminedusingourmethodisnotbiasedbythe

presenceofMeadowquat,andtheproductmostlikelyindeed

con-tainsnon-ethoxylatedSLS-typesurfactantsnotdeclaredintheINCI

list

In some cases (e.g shampoono.4) thelow amount of

unde-clared alkyl sulfates could be detected, suggesting their

uninten-tional use – forexample asan impurity presentin other

ingre-dients Given the abundance of alkyl sulfates in SLES-type

cos-metic/household ingredients depicted in Fig 5, the undeclared

quantities of SLShomologuescould have beeneven

unintention-ally introduced into final formulations (see e.g shampoos no 2,

12,14,17)

4 Conclusions

Inthiscontributionwe havedevelopeda newMS/MSmethod for selectivedetection of alkyl and alkyl ether sulfates based on PrecursorIonScanning(PrecI)Modefollowingtheirseparationon

aC4reversed-phaseLCcolumn.Forthispurpose,onlyions releas-ing the SO3− and HSO4− moieties (m/z 80 and 97, respectively) areselectedandfurthermonitored,providingselectivitytothe or-ganic sulfatespeciescharacteristic to homologuesofsodium lau-rylsulfate(SLS)andsodiumlaureth sulfate(SLES)withm/zinthe range 200–600 Other sulfur-bearing species commonly found in SLS-andSLES-freeproducts(sulfonate,sulfosuccinate,sulfoacetate, taurate or isethionate), where the sulfur atom in the headgroup

is bound directly to C-atom, are excluded based on the absence

ofHSO4− signal (m/z 97) Furtherwe havedevelopeda quantita-tive methodfordeterminationofdodecylsulfateionsanda semi-quantitativemethodfordeterminationofanyethoxylatedor non-ethoxylated alkyl sulfates The latter method is based on series

of dilutions providing the sensitivity coefficient (f i ) for each sig-nal,which enablessubsequentestimation ofconcentration ofthe givenspeciesin thesample(allin onerun using singlestandard – easilyaccessiblesodiumdodecylsulfate(SDS)).Theproposed LC-MS/MSmethodallowssimultaneousdeterminationofSLSandSLES homologues,confirmation oftheir identity,determinationof aver-agemolecularweightofsurfactantsanddegreeofethoxylation,as wellasdiscoveryofnewsulfatecompounds.Conventionally,these tasksrequiretheuseofthreedifferentmethods,whichcannowbe replaced bya singleone developedwithin thiswork The overall accuracyofthemethodstronglydependsonthequality of corre-lationbetweenf i andretentiontimeforeachgroupofhomologues established underthe samedetection conditions.Forthisreason,

we recommend to calibrate the method using mixtures with as manySLSandSLEShomologuesaspossible.Extensionofthe pre-sentedmethodtotheenvironmentalorfoodanalyisalsopossible, althoughbecause ofhigherrequiredsensitivity, thePrecursorIon

Trang 10

Scanning(PrecI) shouldpreferentiallybe replacedbytheMultiple

ReactionMonitoring(MRM)mode

Using thenewlydevelopedmethodwehaveassayedfour

SLS-type andthree SLES-type cosmetic/householdingredients forthe

presence of CnEOmSO4− species in the range of n (alkyl chain

length) 12–16 and m (number of ethoxy groups) 0–5.While the

SLS-typeingredientsareindeeddevoidofanyethoxylatedspecies,

the opposite is not true for the SLES-type ingredients which

are contaminated with non-ethoxylated derivatives Finally, the

method was applied to 17commercial cosmetic/household

prod-ucts to verifytheir consistency with the manufacturers’

declara-tionsintermsofpresenceofalkyl(SLS-type)andalkylether

(SLES-type)sulfates.WhiletheSLES-likesurfactantscontentwasusually

consistent with the declarations, several formulations contained

undeclared SLS-like ingredients, most likely originatingfrom

im-puritiesinSLES-typeingredients

Declaration of Competing Interest

Theauthorsdeclarethattheyhavenoknowncompeting

finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto

influencetheworkreportedinthispaper

CRediT authorship contribution statement

Katarzyna Pawlak:Conceptualization,Methodology,Validation,

Datacuration,Visualization.Kamil Wojciechowski:

Conceptualiza-tion,Writing– review&editing

Acknowledgment

Thiswork wasfinancially supportedbythe WarsawUniversity

of Technology, Poland Ms Aleksandra Chybicka is acknowledged

fortechnicalassistance

Supplementary materials

Supplementary material associated with this article can be

found,intheonlineversion,atdoi:10.1016/j.chroma.2021.462421

References

[1] M.J Rosen, J.T Kunjappu, Surfactants and Interfacial Phenomena, 4th ed., John

Wiley and Sons, 2012, doi: 10.1002/9781118228920

[2] D Myers, Surfactant Science and Technology, 3rd ed., John Wiley and Sons,

2005, doi: 10.1002/047174607X

[3] J Chen, X Hu, Y Fang, G Jin, Y Xia, What dominates the interfacial properties

of extended surfactants: amphipathicity or surfactant shape? J Colloid Inter-

face Sci 547 (2019) 190–198, doi: 10.1016/j.jcis.2019.04.002

[4] X Liu, Y Zhao, Q Li, T Jiao, J Niu, Adsorption behavior of fatty alcohol ether

sulfonate at different interfaces, J Surfactants Deterg 20 (2) (2017) 401–409,

doi: 10.1007/s11743- 016- 1918- 4

[5] S.A Mousavi, F Khodadoost, Effects of detergents on natural ecosystems and

wastewater treatment processes: a review, Environ Sci Pollut Res 26 (2019)

26439–26448, doi: 10.1007/s11356- 019- 05802- x

[6] J Bandier, B.C Carlsen, M.A Rasmussen, L.J Petersen, J.D Johansen, Skin re-

action and regeneration after single sodium lauryl sulfate exposure stratified

by filaggrin genotype and atopic dermatitis phenotype, Br J Dermatol 172 (6)

(2015) 1519–1529, doi: 10.1111/bjd.13651

[7] Jurek I., Góral I., Mierzy ´nska Z., Moniuszko-Szajwaj B., Wojciechowski K., Effect

of synthetic surfactants and soapwort (Saponaria Officinalis L.) extract on skin-

mimetic model lipid monolayers, Biochim Biophys Acta Biomembr 1861 (3)

(2019) 556–564, doi: 10.1016/j.bbamem.2018.12.005

[8] T Bujak, M Zagórska-Dziok, Z Nizioł-Łukaszewska, Complexes of ectoine with

the anionic surfactants as active ingredients of cleansing cosmetics with re-

duced irritating potential, Molecules 25 (6) (2020) 1433–1446, doi: 10.3390/

molecules25061433

[9] V.C Robinson, W.F Bergfeld, D.V Belsito, R.A Hill, C.D Klaassen, J.G Marks,

R.C Shank, T.J Slaga, P.W Snyder, F.A Andersen, Final report of the amended

safety assessment of sodium laureth sulfate and related salts of sulfated

ethoxylated alcohols, Int J Toxicol 29 (4) (2010) 151S–161S, doi: 10.1177/

1091581810373151

[10] L Wu, Y Wu, H Shen, P Gong, L Cao, G Wang, H Hao, Quantitative structure- ion intensity relationship strategy to the prediction of absolute levels without authentic standards, Anal Chim Acta 794 (2013) 67–75, doi: 10.1016/j.aca.2013 07.034

[11] A Stavrianidi, E Stekolshchikova, A Porotova, I Rodin, O Shpigun, Combina- tion of HPLC–MS and QAMS as a new analytical approach for determination

of saponins in ginseng containing products, J Pharm Biomed Anal 132 (2017) 87–92, doi: 10.1016/j.jpba.2016.09.041

[12] S.P Li, C.F Qiao, Y.W Chen, J Zhao, X.M Cui, Q.W Zhang, X.M Liu, D.J Hu,

A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of panax notoginseng used as a functional food, J Chromatogr A 1313 (2013) 302–307, doi: 10.1016/j chroma.2013.07.025

[13] E Olkowska, Z Polkowska, J Namie ´snik, Analytical procedures for the deter- mination of surfactants in environmental samples, Talanta 88 (2012) 1–13, doi: 10.1016/j.talanta.2011.10.034

[14] E Olkowska, Z Polkowska, J Namie ´snik, Analytics of surfactants in the envi- ronment: problems and challenges, Chem Rev 111 (2011) 5667–5700, doi: 10 1021/cr100107g

[15] Y.R Bazel, I.P Antal, V.M Lavra, Z.A Kormosh, Methods for the determina- tion of anionic surfactants, J Anal Chem 69 (2014) 211–236, doi: 10.1134/ S1061934814010043

[16] B Wyrwas, A Zgoła-Grze ´skowiak, Continuous flow methylene blue active sub- stances method for the determination of anionic surfactants in river water and biodegradation test samples, J Surfactants Deterg 17 (1) (2014) 191–198, doi: 10.1007/s11743- 013- 1469- x

[17] K Sini, M Idouhar, A C Ahmia, A Ferradj, A Tazerouti, Spectrophotometric de- termination of anionic surfactants: optimization by response surface method- ology and application to algiers bay wastewater, Environ Monit Assess 189 (12) (2017) 1–12, doi: 10.1007/s10661- 017- 6359- 7

[18] N.M Makarova, E.G Kulapina, New potentiometric sensors based on ionic as- sociates of sodium dodecylsulfate and cationic complexes of copper(II) with some organic reagents, Electroanalysis 27 (3) (2015) 621–628, doi: 10.1002/ elan.201400491

[19] M.C Bruzzoniti, R.M De Carlo, C Sarzanini, Determination of sulfonic acids and alkylsulfates by ion chromatography in water, Talanta 75 (3) (2008) 734–

739, doi: 10.1016/j.talanta.2007.12.026 [20] L.H Levine, J.E Judkins, J.L Garland, Determination of anionic surfactants dur- ing wastewater recycling process by ion pair chromatography with suppressed conductivity detection, J Chromatogr A 874 (2) (20 0 0) 207–215, doi: 10.1016/ S0 021-9673(0 0)0 0155-2

[21] S Wangkarn, P Soisungnoen, M Rayanakorn, K Grudpan, Determination of linear alkylbenzene sulfonates in water samples by liquid chromatography-UV detection and confirmation by liquid chromatography-mass spectrometry, Ta- lanta 67 (4) (2005) 686–695, doi: 10.1016/j.talanta.2005.03.011

[22] H.S Park, C.K Rhee, Simultaneous determination of nonionic and anionic industrial surfactants by liquid chromatography combined with evaporative light-scattering detection, J Chromatogr A 1046 (1–2) (2004) 289–291, doi: 10 1016/j.chroma.2004.06.061

[23] S.H Im, Y.H Jeong, J.J Ryoo, Simultaneous analysis of anionic, amphoteric, nonionic and cationic surfactant mixtures in shampoo and hair conditioner by RP-HPLC/ELSD and LC/MS, Anal Chim Acta 619 (1) (2008) 129–136, doi: 10 1016/j.aca.2008.03.058

[24] S.H Im, J.J Ryoo, Characterization of sodium laureth sulfate by reversed-phase liquid chromatography with evaporative light scattering detection and 1 H nu- clear magnetic resonance spectroscopy, J Chromatogr A 1216 (12) (2009) 2339–2344, doi: 10.1016/j.chroma.2009.01.005

[25] M.Y Ye, R.G Walkup, K.D Hill, Determination of surfactant sodium lauryl ether sulfate by ion pairing chromatography with suppressed conductivity detection,

J Liq Chromatogr 17 (19) (1994) 4087–4097, doi: 10.1080/10826079408013602 [26] M Hol ˇcapek, K Volná, P Jandera, L Koláˇrová, K Lemr, M Exner, A Církva, Effects of ion-pairing reagents on the electrospray signal suppression of sulphonated dyes and intermediates, J Mass Spectrom 39 (1) (2004) 43–50, doi: 10.1002/jms.551

[27] E Matthus, M.S Holt, A Kiewiet, G.B.J Rijs, Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, al- cohol sulfate, and soap, Environ Toxicol Chem 18 (11) (1999) 2634–2644, doi: 10.1002/etc.5620181133

[28] A Dufour, D Thiébaut, L Ligiero, M Loriau, J Vial, Chromatographic behavior and characterization of polydisperse surfactants using ultra-high-performance liquid chromatography hyphenated to high-resolution mass spectrometry, J Chromatogr A 1614 (2020) 460731–460742, doi: 10.1016/j.chroma.2019.460731 [29] L.H Levine, J.L Garland, J.V Johnson, Simultaneous quantification of poly- dispersed anionic, amphoteric and nonionic surfactants in simulated wastew- ater samples using C 18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry, J Chromatogr A 1062 (2) (2005) 217–225, doi: 10 1016/j.chroma.2004.11.038

[30] C Fernández-Ramos, O Ballesteros, A Zafra-Gómez, R Blanc, A Navalón, J.L Vílchez, Determination of alcohol sulfates and alcohol ethoxysulfates in wastewater samples by liquid chromatography tandem mass spectrometry, Mi- crochem J 106 (2013) 180–185, doi: 10.1016/j.microc.2012.06.007

[31] Y Valadbeigi, M Tabrizchi, Application of Ion mobility spectrometry in study

of surfactants adsorbed on different dish surfaces, Int J Ion Mobil Spectrom

17 (1) (2014) 35–41, doi: 10.1007/s12127- 013- 0142- 4 [32] I.H.K Dias, R Ferreira, F Gruber, R Vitorino, A Rivas-Urbina, J.L Sanchez- Quesada, J Vieira Silva, M Fardilha, V De Freitas, A Reis, Sulfate-based lipids:

Ngày đăng: 25/12/2022, 02:44

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed., John Wiley and Sons, 2012, doi: 10.1002/9781118228920 Sách, tạp chí
Tiêu đề: Surfactants and Interfacial Phenomena
Tác giả: M.J. Rosen, J.T. Kunjappu
Nhà XB: John Wiley and Sons
Năm: 2012
[33] R. Hayes, A. Ahmed, T. Edge, H. Zhang, Core-shell particles: preparation, funda- mentals and applications in high performance liquid chromatography, J. Chro- matogr. A 1357 (2014) 36–52, doi: 10.1016/j.chroma.2014.05.010 Sách, tạp chí
Tiêu đề: Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography
Tác giả: R. Hayes, A. Ahmed, T. Edge, H. Zhang
Nhà XB: J. Chromatogr. A
Năm: 2014
[36] M. Smoluch, G. Grasso, P. Suder, J. Silberring, Mass Spectrometry: An Applied Approach, 2nd ed., Wiley, 2019, doi: 10.1002/9781119377368 Sách, tạp chí
Tiêu đề: Mass Spectrometry: An Applied Approach
Tác giả: M. Smoluch, G. Grasso, P. Suder, J. Silberring
Nhà XB: Wiley
Năm: 2019
[37] A. Beyaz, W. Fan, P.W. Carr, A.P. Schellinger, Instrument parameters controlling retention precision in gradient elution reversed-phase liquid chromatography, J. Chromatogr. A 1371 (2014) 90–105, doi: 10.1016/j.chroma.2014.09.085 Sách, tạp chí
Tiêu đề: Instrument parameters controlling retention precision in gradient elution reversed-phase liquid chromatography
Tác giả: A. Beyaz, W. Fan, P.W. Carr, A.P. Schellinger
Nhà XB: J. Chromatogr. A
Năm: 2014
[39] V. Vidova, Z. Spacil, A review on mass spectrometry-based quantitative pro- teomics: targeted and data independent acquisition, Anal. Chim. Acta 964 (2017) 7–23, doi: 10.1016/j.aca.2017.01.059 Sách, tạp chí
Tiêu đề: A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition
Tác giả: V. Vidova, Z. Spacil
Nhà XB: Analytica Chimica Acta
Năm: 2017
[40] M. Hol ˇcapek, R. Jirásko, M. Lísa, Basic rules for the interpretation of atmo- spheric pressure ionization mass spectra of small molecules, J. Chromatogr. A 1217 (2010) 3908–3921, doi: 10.1016/j.chroma.2010.02.049 Sách, tạp chí
Tiêu đề: Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules
Tác giả: M. Holcapek, R. Jirásko, M. Lísa
Nhà XB: J. Chromatogr. A
Năm: 2010
[41] J. Pi, X. Wu, Y. Feng, Fragmentation patterns of five types of phospho- lipids by ultra-high-performance liquid chromatography electrospray ioniza- tion quadrupole time-of-flight tandem mass spectrometry, Anal. Methods 8 (6) (2016) 1319–1332, doi: 10.1039/c5ay00776c Sách, tạp chí
Tiêu đề: Fragmentation patterns of five types of phospholipids by ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry
Tác giả: J. Pi, X. Wu, Y. Feng
Nhà XB: Analytical Methods
Năm: 2016
[38] C. Patriarca, J.A. Hawkes, High molecular weight spectral interferences in mass spectra of dissolved organic matter, J. Am. Soc. Mass Spectrom. 32 (1) (2021) 394–397, doi: 10.1021/jasms.0c00353 Link
[34] F. Gritti, G. Guiochon, Mass transfer kinetics, band broadening and column ef- ficiency, J. Chromatogr. A 1221 (2012) 2–40, doi: 10.1016/j.chroma.2011.04.058 . [35] S. Fekete, E. Oláh, J. Fekete, Fast liquid chromatography: the domination ofcore-shell and very fine particles, J. Chromatogr. A 1228 (2012) 57–71, doi: 10.1016/j.chroma.2011.09.050 Khác

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm