1. Trang chủ
  2. » Giáo án - Bài giảng

Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling

9 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling
Tác giả Tijmen S. Bos, Leon E. Niezen, Mimi J. den Uijl, Stef R.A. Molenaar, Sascha Lege, Peter J. Schoenmakers, Govert W. Sommen, Bob W.J. Pirok
Trường học Vrije Universiteit Amsterdam
Chuyên ngành Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2021
Thành phố Amsterdam
Định dạng
Số trang 9
Dung lượng 1,72 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Rapid optimization of gradient liquid chromatographic (LC) separations often utilizes analyte retention modelling to predict retention times as function of eluent composition. However, due to the dwell volume and technical imperfections, the actual gradient may deviate from the set gradient in a fashion unique to the employed instrument.

Trang 1

journalhomepage:www.elsevier.com/locate/chroma

Tijmen S Bosa,c,∗, Leon E Niezenb,c, Mimi J den Uijlb,c, Stef R.A Molenaarb,c, Sascha Leged,

Peter J Schoenmakersb,c, Govert W Somsena,c, Bob W.J Pirokb,c

a Division of Bioanalytical Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV

Amsterdam, The Netherlands

b Van ’t Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

c Centre for Analytical Sciences Amsterdam (CASA), The Netherlands

d Agilent Technologies, R&D and Marketing GmbH, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany

a r t i c l e i n f o

Article history:

Received 28 July 2020

Revised 15 October 2020

Accepted 9 November 2020

Available online 13 November 2020

Keywords:

optimization

multi-step gradients

gradient deformation

retention modelling

response functions

a b s t r a c t

Rapid optimizationofgradient liquidchromatographic(LC) separationsoftenutilizesanalyteretention modellingtopredictretentiontimesasfunctionofeluentcomposition.However,duetothedwell vol-ume and technicalimperfections, the actual gradient may deviate fromthe set gradient in afashion uniquetotheemployedinstrument.ThismakesaccurateretentionmodellingforgradientLCchallenging,

inparticularwhenveryfastseparationsarepursued.Althoughgradientdeformationhasbeenaddressed

inmethod-transfersituations,itisrarelytakenintoaccountwhenreportinganalyteretentionparameters obtainedfromgradient LCdata,hamperingthecomparisonofdatafromvarioussources.Inthisstudy,

aresponse-function-basedalgorithmwasdevelopedtodetermineanalyteretentionparameterscorrected forgeometry-induceddeformations byspecificLC instruments.Outofanumber ofmathematical dis-tributionsinvestigatedas response-functions,theso-called“stablefunction” wasfoundtodescribethe formedgradientmostaccurately.Thefourparametersdescribingthemodelresemblethestatistical mo-mentsofthedistributionandarerelatedtochromatographicparameters,suchasdwellvolumeandflow rate.Theinstrument-specificresponsefunctioncanthenbeusedtopredicttheactualshapeofanyother gradientprogrammedonthatinstrument.Toincorporate thepredictedgradient inthe retention mod-ellingoftheanalytes,themodelwasextendedtofacilitateanunlimitednumberoflineargradientsteps

tosolvetheequationsnumerically.Thesignificanceandimpactofdistinctgradientdeformationforfast gradientswasdemonstratedusingthreedifferentLCinstruments.Asaproofofprinciple,thealgorithm and retentionparameters obtainedonaspecific instrumentwereused topredict theretention times

ondifferentinstruments.The relativeerrorinthepredicted retentiontimeswentdownfroman aver-ageof9.8%and12.2%onthetwootherinstrumentswhenusingonlyadwell-volumecorrectionto2.1% and6.5%,respectively,whenusingtheproposedalgorithm.Thecorrectedretentionparametersareless dependentongeometry-inducedinstrumenteffects

© 2020TheAuthors.PublishedbyElsevierB.V ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

The majorityofmethods inliquidchromatography(LC) utilize

gradient elution,wherethefractionofstrongsolvent(e.g.the

or-ganicmodifierinreversed-phaseLC)ϕisgraduallyincreased

Ana-∗ Corresponding author: Tijmen S Bos Division of Bioanalytical Chemistry, Am-

sterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam,

De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands Telephone number:

+ 31640951663

E-mail address: t.s.bos@vu.nl (T.S Bos)

lyteretentiondependsonthemobile-phasecompositionand,thus,

ontheappliedgradientwhentheanalytemovesthroughthe col-umn.Consequently,modelsthat describetheretentionofanalytes whenusingagradientmustaccuratelyaccountforthetrueshape

oftheprogrammedgradient.Toautomateandacceleratethe devel-opmentofeffectivegradient-elutionmethods,computer-aided op-timizationtools,suchasChromSword[1],PEWS[2],Drylab[3]and MOREPEAKS(formerlyPIOTR)[4],employscanningexperimentsto establishtherequiredretentionparametersforeachanalyte [5,6] The gradient delayarising from thedwell volume (V D) of the LC system[7,8]is generallytakeninto accountduringretention

pre-https://doi.org/10.1016/j.chroma.2020.461714

0021-9673/© 2020 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Trang 2

it isgenerallyassumedthat apartfromthisdelaytheactual

gra-dientdeliveredtothecolumnisidenticaltotheprogrammed

gra-dient.However,otherinstrument-relatedfactors,suchaserrorsin

temperatureandflowrate,willalsoinfluencetheseparation[9,10]

Gritti et al. have extensivelyinvestigated gradientdeformation in

reversed-phase LCand theeffects thereof onthe separation [11–

13].They were able to improveretention predictionfor fast

gra-dients ona singleinstrumentbytakingthe adsorption isotherms

ofindividual analytesintoaccount [11].Inthe samestudyitwas

shownthatforless-retainedcompoundstheresolutionwould

col-lapsewhenfastgradientsareappliedandtheauthorsproposedto

modifythegradienttopreventthisbehaviour

Gradientdeformationscanbecaused,forexample,byflow

im-perfectionscausedbyamixerorbyregulardispersioninthe

con-nection tubing Modest gradient deformation may be of limited

concern when theretention parameters obtainedusinga specific

instrument are exclusively used for optimization of gradients on

thesameinstrument However,becausedeformation ofthe

gradi-ent is dependent on themobile-phase delivery assembly, the

in-stalled injection devices and the (pre-column) connectors of the

instrument, the obtainedretention parameters cannot be usedto

accuratelypredictanalyteretentiononotherLCsystems.Acorrect

comparisonof(reported)retentionparametersacquiredonvarious

LC gradient instruments is only possible afteraccounting forthe

differencesintheactualgradientshapes[14]

Geometry-induceddeviationsfromprogrammedeluent

compo-sitionsarerelativelymostprominentinveryfastgradients,suchas

thoseencounteredinultra-high-performanceLC(UHPLC)orinthe

second dimensionofcomprehensivetwo-dimensionalliquid

chro-matography (LC× LC).Quarry et al. showedalreadyinthe1980s

thattheactualshapeoffastgradientprogramsinparticularcanbe

significantly deformed[15] Deformations can be induced by the

specific (mixing) properties and interactions of the two solvents

formingthegradient,aswellasbythegeometricalfeaturesofthe

LCinstrument.Retention-scanningexperimentscaninprinciplebe

conductedusingisocraticelution.However,whenapplyingthe

re-tention parameters thus obtained for predictinggradient

separa-tions,correctionforgradientdeformationisstillrequired[15,16]

The deformationofalineargradient dependsontheflow rate

(F)andtheslopeofthegradient,whichisthechangeinthe

vol-umefractionofmodifier( ϕ )dividedbytheduration ofthe

lin-ear segment of the gradient (t G) [17] The most-accurate

experi-mental methodto reveal the truegradient profile isthrough

de-tection ofachromophoricagentdissolved inoneofthe

gradient-forming solvents[15].Anotherapproachis throughinterpretation

ofisocraticallyacquiredretentionparameters[18],butthisrequires

a large number of runs [19] In silico accounting for the

gradi-ent deformation arising fromthe LC system wouldbe an

attrac-tive next step,as it can potentially be automated and requiresa

minimal numberof measurements Ideally, itwould improvethe

accuracyofpredictedoptimalgradientseparations

Inthispaper,wepresentanovelcomputationalstrategyto

es-tablish the effects ofgradient deformationscausedby the

geom-etry of the instrument, yielding geometry-independent retention

parameters from a limited number of gradient experiments We

demonstrate that theinfluence ofgradient deformation is

poten-tially significant and that it is worthwhile to correctfor this As

input data, ouralgorithm employs a measured gradient delay in

a water-watersystem Forouralgorithm,multiple response

func-tions were tested to determine the most accurate and best

in-terpretable model To incorporate the gradient deformation into

retention modelling, new models were derived that support any

numberofgradientsteps.Theusedexperimentalsetupexclusively

provides informationon thegeometry-inducedgradient

deforma-tion,butexcludesanyeffectsofthesolventandmixtures,suchas

viscosity,densityandmiscibilityeffects.Solventadsorption[20,21] andsolvatochromiceffectswerenotstudied

2 Theory

In this paper we employ the log-linear (“linear solvent strength”,LSS)modelforretentionprediction,butother retention modelsmaybeusedaswell

2.1 Retention time in LSS gradient elution with linear gradient

Inthelog-linearmodel(Eqn.1),k0representstheextrapolated retentionfactoratϕ=0andS representsthemagnitudeofchange

inlnkwithincreasingeluentstrength(ϕ)

This model is often referred to as the linear solvent strength (LSS)modelincombinationwithlineargradients[23]

Intheeventthatananalyteelutesbeforeaprogrammed gradi-ent,theretentiontime(t R ,before)isgivenby

wherekinitistheanalyteretentionfactoratthestartofthe gradi-entandt0 depictsthecolumndeadtime.ByincorporatingtheLSS modelintothegradientequationitfollowsthat

1

B

ϕfinal

ϕinit

dϕ

k ϕ +t Rτ− t G

k final =t 0−t init+t D

k init

(3)

whereB (dϕ/d t) is theslope of a gradientrunning fromϕinit to

ϕfinal, tinit is the initial isocratic time, t D the dwell time, k ϕ the retentionfactoratacertainfractionofstrongsolventandτ=t D+

tinit+t0.Schoenmakerset al.derivedequationstopredictretention timesduringalineargradient[5]

t R ,gradient= 1

SB ln



1+SB · kinit



t 0−t init+t D

k init

 

aswellasretentiontimesintheeventthattheanalyteelutesafter thegradient,withretentionfactoratthefinalconditionskfinal,and gradienttimet G

t R,after= k final



t 0−t init+t D

k init



BS



1−k final

k init

2.2 Describing the shape of the geometry-corrected gradient

Characterizing the shape of the geometry-corrected gradient (GCG) startsby finding a modeland relatedparameters that ac-curatelydescribeshowtheprogrammedgradientisinfluencedby the instrument Thisresponse of thesystemcan be expressed in the form of a distribution or a so-called response function The whole gradient experiences the same geometrical effects as ex-pressedthroughthisresponsefunction.Summingall priorsignals resultingfromthe response function atanypoint intime results

intheGCG.Examplesofaprogrammedgradient,the correspond-ingresponsefunctionandtheGCGaredepictedinFig.1

The response function can be expressed using a mathemati-cal distribution, the properties of which can be described using itsstatisticalmoments [24].Agraphicaloverviewofthemoments [25] and their parametrized symbols, which are used inthis pa-perasinstrumentparameters,isshowninFig.2.The correspond-ingequationscanbefoundinSupplementaryMaterialsectionS-1 The zeroth moment (A) isthe area Inour case, thismoment is adjustedtobeidenticaltothecompositionatacertaintimepoint The first moment (μ ) is normalized for the area and gives the centreofgravity ofthedistribution(mean), whichisequaltothe dwelltime ofthesetup.Thevariance(σ2)orscaleisthe central-izedsecondmoment(i.e.correctedtothefirstmoment)andwhich

Trang 3

Fig 1 Schematic illustrating the conversion of a programmed linear gradient to the

GCG using response curves at different time points Blue line: programmed gradi-

ent Red lines: Response function Magenta: GCG shape

Fig 2 The common properties of a distribution with the corresponding moment,

visualisation thereof, traditional symbols and symbols ( A , μ , σ , S, K) of the param-

eterized moments ( ∼, δ , γ , β , α )

iscorrelatedtothewidthofthedistribution,whichcapturessome

of the flow profile of the instrument The skewness (i.e

magni-tudeoftailing/fronting)isthestandardizedandcentredthird

mo-ment (i.e.corrected tothevariance andthefirst moment) andis

instrumentdependentandcorrelatedtothekurtosis(i.e.degreeof

flattening).Thekurtosis(K)isthestandardizedandcentredfourth

moment(i.e.correctedtothevarianceandthefirstmoment).The

skewness andthekurtosis together describethe degreeoftailing

andtheshapeofthedistribution.Theresponsecurvethuscan

de-scribe the deviation from the programmedgradient arising from

anypossiblesource,suchasthedwellvolume,flowand

imperfec-tions therein (e.g. flow turbulence causedby the mixer or sharp

bendsintubing)

3 Experimental

3.1 Instrumental

Experimentswere carriedout onthreeAgilentLCinstruments

(Agilent Technologies, Waldbronn, Germany) Instrument 1 was

an Agilent 1290 Infinity II series equipped with a binary pump

(G7120A) equipped with a 35-μL JetWeaver mixer, an

autosam-pler(G7129B),acolumnoven(G7116B)andadiode-arraydetector

(DAD,G7117B).Instrument2wasanAgilent1100seriesequipped

withaquaternarypump(G1311A),anautosampler(G1313A),a

col-umn oven (G1316A) and a DAD (G1365B) Instrument 3 was an

Agilent 1290 Infinity II series equippedwith a quaternary pump

(G7104A)equippedwitha35-μL JetWeavermixer,an autosampler

(G7167B),acolumnoven(G7116B)andaDAD(G7114B)

For all measurements involving chromatography, the same XBridge BEHShield RP18column (50mm × 4.6mm i.d.,2.5-μm particles;Waters,Milford,MA,USA)wasused

3.2 Chemicals

The eluent was prepared using deionised water (resistivity 18.2 M cm; Arium 611UV, Sartorius, Germany) Acetone and acetonitrile (ACN) of HPLC grade were obtained from Biosolve (Valkenswaard,TheNetherlands) Emodin(EMOD),sudan I(SUD), phenol(PHEN),anthracene(ANT),toluene(TOL)andthioureawere obtainedfromMerck– Sigma-Aldrich(Darmstadt,Germany)

3.3 Analytical procedures 3.3.1 Sample preparation

All test-compound solutions were prepared in ACN and con-tained100mgL−1ofthioureaast0marker.Theapproximate con-centrationsofthe solutionswere:EMOD,250mgL−1;TOL, 1500

mgL−1;SUD,PHENandANT,each500mgL−1

3.3.2 Chromatographic method

Measurementsoftheactualgradientshapewereperformedon allLCinstrumentswithoutacolumnatflowratesof0.25,0.5and 0.75mLmin−1.SolventAwaswaterandsolventBwaswater con-taining0.1vol% acetone.Aninitialisocratic time(100%A) of0.25 minwasused.Thegradientranfrom0to100%Bin0.5,1.0or1.5 min.All gradientmeasurements were performedintriplicate.UV detectionwas performedat 210 nm with a bandwidth of 4nm; the referencewavelength was 360nm witha bandwidth of 100

nm anda slitsize of 4nm The samplingrateforInstruments 1 and3was160 Hz,whileforInstrument 2itwas20 Hz.Column ovensweresetto30°C

Retention-timemeasurementsofthetestcompoundswere per-formed on all instruments withthe LC columninstalled using a flowrateof0.5mLmin−1 withaninitialisocratictime(100% sol-vent A) of 0.25 min The gradient ran from 0 to 100% B in 0.5, 1.0or1.5min,followedbya10-minisocratichold.SolventAwas ACN-water (5:95, v/v) and solvent B wasACN-water (95:5, v/v) Betweenmeasurements,10minofequilibrationtimewasallowed Forallanalytemeasurements,thesametwobottlesofsolvent mix-tures(A (5:95, v/v)andB (95:5, v/v))were used whichwere ul-trasonicated before use.The injectionvolume was 5μL All test-compoundsolutionscontainedat0 markerandweremeasured in-dividually.Measurementswere repeated4timesandthus5 mea-surements per solution Detection was at 254 nm with a band-widthof4nm;thereferencewavelengthwassetto360nmwith

abandwidthof100nmandaslitsizeof4nm.Thesamplingrate was160 Hzforinstruments 1and 3and20Hz forinstrument2 Columnovensweresetto30°C

3.3.3 Data treatment

AllalgorithmswerewritteninMATLAB2019bupdate3 (Math-works, Natick, MA, USA) Measurements of the actual gradient shape were first normalizedbetween 0 and1, after which three identical measurements were averaged to minimize noise The recordedgradient measurements weretruncatedto aperiod of6 minutes for establishing the response-function parameters to re-duce the computation time Retention times and t0 values were averagedbeforefittingtheretentionmodel

4 Results and Discussion

Our strategy encompasses three steps to correct the mea-sured retention parameters for the actual gradient Firstly, the instrument-specificresponsefunctionthatdeterminestheshapeof

3

Trang 4

Table 1

Obtained sum-of-squared errors (SSE) values for the regression experiments determined on Instrument 1 with flow rates of 0.25, 0.5 and 0.75 mL min −1 and gradients times of 0.5, 1 and 1.5 min Color scale from red through yellow (50%) to green representing high to low SSE values

theactualgradientisdetermined.Secondly,thisresponsefunction

isusedtopredictthecorrectedshape(GCG)ofagradientof

inter-est TheGCG canthen beused tomoreaccurately determinethe

LSS model parameters describing analyte retention Finally, these

latterretentionparameters areusedto predicttheretentionona

differentinstrument,usingitsspecificresponsefunction

4.1 Gradient-profile description

4.1.1 Selecting the optimum response function

Generally,twomethodsexisttodescribethegradient

deforma-tion One relieson a direct fit of the gradient curves The other

method, describes how every timepoint of the initial gradient

passesthroughthedetector.Thefirstapproachshouldallowa

de-scriptionofthestart(quickbend),middle(linear),andendofthe

gradient (slowbend).Thismay,forexample,be achievedwithan

alternative-skew exponential power distribution [26], which was

slightly alteredforthispurpose,resultingin anaccurate

descrip-tion of the profile However, this first approach works only for

linear gradients and no chromatographically meaningful

correla-tions betweentheparameters describingdifferentgradientscould

be found,resultinginlargeerrorswhenpredictingnewgradients

Therefore,inthispaperthesecondapproachisfollowed.Whichis

notlimitedtolineargradients

Multiple mathematical distribution functions were tested for

their suitabilitytodescribetheresponsefunctiontoconstructthe

GCG by applying the function to all time points The

gradient-profilemeasurementsonInstrument1wereusedfortheinitial

ex-ploration ofthe differentresponsefunctions The sumofsquared

errors(SSE)ofthefitteddistributionsarereportedinTable1and

Fig 3 The four-parameter stable function is referred to as

“4p-Stable”.Totesttheinfluenceoftheasymmetryandtailingfactorin

thestablefunction,twostablefunctionswithoneofthese

param-etersfixedtoits“Gaussian” stateweretested.Thesewerereferred

toas“3p-Stable”.BesidesthestableandGaussian functions,other

distributions that can express asymmetrical tailing were tested

Thesespecific distributionsweretestedbecauseoftheirabilityto

describesignificanttailing[22],whichisrequiredtocovertheslow

roundingattheendoftheactualgradient.Equationsofthetested

distributions canbefound inSupplementary MaterialsectionS-2

Twoexamplesper fitteddistributioncan befoundin

Supplemen-tary Material section S-3.The four-parameterstablefunction was

foundtoyieldthesmallestSSEandisreferredtoasthestable

dis-tributionintherestofthepaper

The selected stable distribution contains four parameters

(δ,γ,β,α ) which respectively resemble the four statistical

mo-ments(μ,σ, S , K),althoughtheyaredefineddifferently[22],as

in-dicatedinFig.2

Fig 3 Boxplot of the SSE values per type of distribution used for the response

function describing the observed gradient determined on Instrument 1 with flow rates of 0.25, 0.5 and 0.75 mL min −1 and gradients times of 0.5, 1 and 1.5 min

The response functions tested all are distribution functions, basedonthesameunderlyingmathematics,buttheirunique prop-erties can be described through their characteristic function ex-pressedasϑX(u).Thiswayofdescribingthestablefunctionisthe mostconcisewaytocoverallpossibleinterpretationsofthestable function[22].TheϑX(u)isdefined,whileuisintherealdomain, as

ϑX(u )= E e iuX

−∞e iux dF(x )= ∞∫

−∞e iux f (x )dx (6)

whereuisthexdomainuptotheupperlimitofx,iisthe imag-inary unit and e is Euler’s number E(x) is the expected value,

F(x)isthecumulative distributionfunctionand f(x)isthe prob-abilitydensityfunction X states thevariables intheequation In caseofthestabledistributiontheseequal( δ,γ,β,α ).The tailing parameter( α )isrestrictedbetween0<( α )≤ 2andthe asymme-tryparameter( β )isrestrictedbetween-1≤β≤ 1.Whenαequals

2,thedistributionisGaussian.Whenβ ispositivethedistribution

istailingandwhenβ isnegativethedistributionis fronting.δ is themeanparameterandγ thescaleparameter Bothare positive realnumbersfortheapplicationasresponsefunction

TheϑX(u)ofthestabledistributionisdefinedasEqn.8,where

αdoesnotequal1andX equals( δ,γ,β,α ).Inthisequation,the signlogicisdefinedasfollows:

sign (u )=

−1 u < 0

1 u > 0

(7)

Trang 5

Table 2

Response function parameters obtained by fitting gradient-profile measurements with the four-parameter stable function for various settings on Instrument 1

Flow rate

(mL min −1 ) t G (min)

Mean parameter

( δ ) Mean parameter ( δ )∗ Flow rate

Scale parameter

( γ ) Scale parameter ( γ )∗ Flow rate

Asymmetry parameter ( β ) Tailing parameter ( α )

Table 3

Response function parameters obtained by fitting the gradient profiles obtained on three different instruments with the four-parameter stable

function Parameters were obtained by fitting a series of gradient profiles (see Table 2 ) simultaneously The variance and mean parameters

were normalized by multiplying by the flow rate

Instrument Mean parameter ( δ )∗ Flow rate Scale parameter ( γ )∗ Flow rate Asymmetry parameter ( β ) Tailing parameter ( α )

Fig 4 Representation of the response functions of Instruments 1 (A), 2 (B), and 3 (C) for a flow rate of 0.5 ml/min AU indicates arbitrary units

ϑ (u |X )=E e iuX

= e γ α|u|α(1+i β ∗sign ( u )·tanπα

2 ·(( γ | u|)1 −α−1)+i δ u) (8)

Application of the Fourier-inversion theorem to the ϑX(u)

yields thefollowing equation forthe probability densityfunction

ofthestabledistribution,wheret isthetime

f X(t| ϕ )= ϕ

2π

The above results(Table1,Fig 3)show that the stable

distri-butionfunctiondescribesthedatabest.Anadditionaladvantageis

thatitsparametersresemblethestatisticalmoments,allowingthe

usertoexplain differencesbetweeninstrumentsinaless-abstract

waythanwithsomeoftheotherdistributions

4.1.2 Determining instrumental parameters

Fittingtheselectedresponsefunctiontoeachexperimental

gra-dient profile obtained with Instrument 1 yielded scale ( γ ) and

mean ( δ ) parameters that appeared inversely correlated to the

flow rate Table2 provides the best-fit response-function

param-eters for each setting Moreover, the asymmetry factor (β) was

found tobe alwayspositive anda tailingfactor(α) lowerthan 2,

indicating tailing of the distribution function This was expected

since any additional instrument component of the flow-delivery

systemmayinduceflowimperfectionswhichisexpectedtoresult

ina gradientdelay,andnot anacceleration.Thiswouldprimarily

be observable inthemean parameter(δ ),butifthisdelayisnot

uniformitleadstotailing.Flowimperfectionscanoccurdueto ir-regularflowinthemixerandotherpartsoftheLCinstrument In-teractionbetweenthesolventandtheLCinstrumentisexpectedto

beminimalinawell-designedandwell-maintainedsystem.Inthe presentexperiments(mixingwaterwithwatercontainingacetone) onlyinteractionofacetonewithsystemcomponentswouldbe re-flectedinthegradientprofile,whichwasassumedtobeminimal Parametersforeachinstrumentwereobtainedbyfittingallthe gradient-profile measurements simultaneously with the response curve (i.e the stablefunction), so asto incorporate theeffect of theflow ratewhichintroduces anadditionalerrorbetween mea-surements.Incaseof anrandom errortheresponse function can

bedefinedinlessdetailandthusresultsinamoreGaussianshape

oftheresponsefunction.Theobtainedparametersforthe individ-ual responsecurves are shownin Table3 InFig 4the resulting response functions are plotted for a flow rate of 0.5 mLmin−1 ForInstrument2theresponse functionis aGaussian distribution sincethetailingparameter( α )is2.Thiswascausedbythe down-ward drift in the detector response, which the regression model attemptedto compensateasseeninSupplementary Material sec-tion S-4 While this effect wascaused by the detector and thus hasno influenceof theactual gradient, themeasured data is in-fluenced However, this resulted in a Gaussian response function whichmeans thatthe deformationinthe formofbendingatthe endislesswelldescribedandthusmakingthecorrectionless ac-curate

5

Trang 6

Fig 5 Measured (blue line) and modelled gradient profile (GCG; red dashed line)

for Instrument 1 using a gradient time of 1 min and a flow rate of 0.5 mL min −1

AU indicates arbitrary units SSE between the measured and the modelled was

5.6 10 −4

These responsecurveswere usedto describe theGCG.An

ex-ample is shown in Fig 5, where the measured gradient of

In-strument 1 (F = 0.5 mLmin−1, t G = 1 min) is plotted (blue

curve) with the reproduced gradient (GCG) overlayed (dashed

redcurve)

4.2 Retention modelling using n gradients

In order toimprove retentionmodelling, themethod to

com-pute retention times hadto be adapted to accommodate forthe

established GCG shapes The equations for the retention time

Eqns.4and(5)werederivedbyincorporatingtheretentionmodel

(Eqn.1) inthe generalgradient equation (Eqn.3) forthe caseof

alineargradient.TheGCGsasshowninFig.5wereapproximated

numericallyasaseriesofshortlinearsegments.Tofacilitatethis,

an adjustedgradient equationwasderived tohandleanynumber

(n)ofgradientstepswithdurationt n,slopeB n andinitial

compo-sition ϕn (withϕn+ 1 =ϕn + t n B n).The retentionfactoratϕn is

denoted by k n The derived formulas are shown in Eqn.s 10 and

11(See SupplementaryMaterial section S-5fora detailed

deriva-tion)

ϕ n+B n T

ϕ n

dϕ

k ϕ =B n



t 0−t 1+t D

k 1 − t 2

k 2 t n

k n − 1

B 1

ϕ2

ϕ1

dϕ

k ϕ − 1

B 2

ϕ3

ϕ2

dϕ

k ϕ − − 1

B n−1

ϕ n

ϕ n−1

dϕ

k ϕ

(10)

t R, a f ter n gradients= k n+1



t 0−t1 +t D

k1 −t2

k2t n

k n− 1

B1

ϕ2

ϕ1

d ϕ

k ϕ − 1

B2

ϕ3

ϕ2

d ϕ

k ϕ − − 1

B n

ϕ n+1

ϕ n

d ϕ

k ϕ



+

t 0+t D+t 1+t 2+ +t n−1+t n+t G,1+t G,2+ +t G,n−1+t G,n

(11)

At this stage, retention models can be included, as shown

for the LSS model in Eqns 12 and 13 The derivation of the

Eqns 12 and13 canbe found inSupplementary Material section

S-5

t R, d uring n th grad ient= 1

B n S



1+B n S k n



t 0−t 1+t D

k 1 −t 2

k 2 t n

k n+ 1

B 1S

1

k 1− 1

k 2



B 2S

1

k 2− 1

k 3



+ + 1

B n−1S

 1

k n−1− 1

k n



+t 0+t D+t 1+t 2+ +t n−1+t n+t G ,1+t G ,2+ +t G ,n−1

(12)

t R, a f ter n gradients=k n+1



t 0−t 1+t D

k 1 −t 2

k 2t n

k n+ 1

B 1S

1

k 1 − 1

k 2



B 2S

1

k 2 − 1

k 3



+ + 1

B n S

1

k n − 1

k n+1



+

t 0+t D+t 1+t 2+ +t n−1+t n+t G ,1+t G ,2+ +t G ,n−1+t G ,n

(13)

Eqn.s 12 and 13 can be used to numerically approximate the retentiontime forelution underGCG conditions However, since,

t DisalreadyincludedintheGCGitshouldbesettozero

4.3 Computation of retention parameters 4.3.1 Without correction for gradient deformation

Forcomparison,retention parameters forthe LSS modelwere first established assuming a perfect linear gradient, only consid-ering the dwell time of the instruments (i.e. not correcting for instrument-induceddeformation,usingEqns.4and5).Inessence, Eqn.s 12 and13 were applied to the theoretical gradient profile

to eliminate theerror dueto themodel, buttheseequations re-duce to Eqn.s 4 and 5 when there is no change inslope during thegradient.The dwelltimewastakenasthetime difference be-tween themidpoint ofthe programmedgradient andthat ofthe measured gradient The results are shown in Table 4 The mea-suredretentiontimesforeachtestcompoundandthe accompany-ingt0 valuescanbe foundinSupplementary MaterialsectionS-6 Whiletheretentionparametersobtainedforaspecificinstrument allowcomputationofretentiontimesofthetestcompoundsonthe sameinstrumentwithgoodaccuracy, asexpected, itisclear that theLSSparametersestablishedusingdifferentinstrumentsdeviate dramatically This is particularly evident for Instrument 2 These resultsconfirmthatonlyadjustingforthedwelltimedoesnot suf-fice to obtain correct retention parameters, and clearly illustrate theadverseeffectsofthegradientdeformation

4.3.2 Incorporating correction for geometry-induced gradient deformation

The LSS parameters of the test compounds were also estab-lishedusingEqns 13and14,i.e.correcting forgradient deforma-tionemployingtheestablished GCGs foreachLC instrument The GCGs werecalculatedusing theparametersfromTable 3and ap-proximatedby 100 linear-gradient steps The resultsare listed in Table 5 Gradient correction yields higher lnk0 and S values as comparedtothoseobtainedby correctingonlyforthedwelltime (see Section4.3.1,Table4).In allcasesbutANT onInstrument1, themodelshowedamuchbetterfittotheretentiontimes,as in-dicatedbytheSSEvalues.Theobtainedretentionparameters(lnk0

andS)still varysignificantly.Althoughgeometry-inducedgradient deformation have been eliminated still, solvent-related deforma-tions remain,which maybe significant, duetothe differencesin pumptechnologybetweentheLCinstruments

Inordertotestwhethertheretentionparametersobtained us-ingthe GCGcorrectionyield moreconsistentretentionprediction

Trang 7

Table 4

LSS parameters ( Eqn 1 ) determined for the test compounds on each LC instrument using uncorrected gradient parameters and Eqns 4 and 5 Colour scale from red through yellow (50% of Table 4 and 5 ) to green representing high to low SSE values of the predicted versus the experimental retention times respectively

Table 5

LSS parameters Eqn 1 ) as determined for the test compounds on each LC instrument using corrected gradient parameters and

Eqns 12 and (13) Colour scale from red through yellow (50% of Table 4 and 5 ) to green representing high to low SSE values of the

predicted versus the experimental retention times respectively

amongtheLCsystems,theerrorinpredictedretentiontimeswas

calculated Theretentionparameters determined onInstrument1

were usedtopredictretentiontimesonInstruments 2and3,

us-inguncorrectedgradientdata(dwellvolumeonly)orincorporating

gradientcorrection(usingGCGs).Theobtainedresultsare

summa-rized inFig 6(see Supplementary Material section S-7 fora

de-tailedoverviewofeachcompoundandinstrumentcombination)

Fig 6 indicates that after GCG correction for the influence of

theinstrumentationtherelativeerrordecreasesinallsituationsin

comparison withcorrectingforthe dwellvolume only Especially

the retentiontime predictionforinstrument2 isapproaching

ac-ceptableerrors.Itwasnotexpectedthatthispredictionwould

per-formbestsincetheresponsefunctionwasinfluencedbythe

down-ward driftresultedina Gaussianresponse functionwhichshould

resultinalessaccuratedefinedGCG

The error formanycompounds isstill in the highsingle

dig-its Thismaybe due– atleastinpart– to solvent-related

defor-mations The fact that we aim to correlatea binarysystem with

two quaternarysystemsmaycontributetodifferentdeformations

Quaternary pumpstend togive rise tocomposition errorsdueto

volumecontractionduringproportioningatthemulti-channel

gra-dient valve, while the same effect causes flow errors for binary

pumps

Additionally,themeasurementsofthegradientprofilesmaybe

improved In thisresearch, acetonewas used,which is a volatile

compound.Non-constantlossesintheonlinedegasserofthe

flow-deliverymodulemaycauseerrors.Thismaybeverifiedbyrunning

abackwardgradient(from100%to0%B).Inthatcasethe

acetone-containingsolventwillspendlesstimeinthedegasserwhen

chan-nelBhasnoflow.Anon-volatileUV-absorbinganalyte,whichdoes

not adsorbto thedegassermembraneorother surfaces,may

im-prove theaccuracyofthe measuredgradientprofiles andthe

de-rivedinstrumentparameters.Anotherlimitationofourapproachis theassumption thatthe responseoftheUV detectorislinearfor acetoneandthatsolvatochromiceffectsdonotoccur.However,the effectofthelatterisnotexpectedinthewater-waterandacetone systemusedinthisstudy.Finally,theresultsobtainedfor Instru-ment2showedthat detectordriftcanaffecttheobtained instru-mental parameters (See example in Supplementary Material sec-tionS-4).Additionalstudiesonalloftheabovepointsmayfurther refinethecorrections

Althoughnotallinstrumentinfluencescouldbecorrectedfor,a significantreductioninpredictionerrorswasachieved,whichmay improve retention modelling andmethod transfer andmay con-tributetodetermininginstrument-independentretention parame-ters

5 Concluding remarks and outlook

Wehavedevelopedanalgorithmtocorrectretentionmodelling forgradientdeformationinducedbyinstrumentgeometry.Several mathematicaldistributions were evaluated fortheir abilityto de-scribe the response function associated with the gradient defor-mation The four-parameter stable distribution was found to be mostsuitable for thispurpose Using this response function, the geometry-correctedgradient(GCG)shapeforwater-basedsystems couldbe accuratelydescribed Boththevariance andthemeanof the response function proved inversely proportional to the flow rate

For retention prediction the deformed (i.e. non-linear) gradi-entprofilewasapproximatedbyahundredsmalllinearsegments Equations were derived to compute retention times for a com-pound eluting during and after such complex multi-step gradi-ents This allowed correcting for the GCG shape and resulted in

7

Trang 8

Fig 6 Relative errors (%) in the predicted retention times of the test compounds on Instruments 2 (top) and 3 (bottom) obtained when using retention parameters deter-

mined for the test compounds on Instrument 1 at different flow rates Relative errors obtained using uncorrected gradients and Eqns 4 and 5 (left) and using GCG correction and Eqns 12 and 13 (right)

morecomparableretentionparametersbetweeninstruments.Most

importantly, we found that correcting the retention parameters

geometry-induceddeformationssignificantlyimprovedthe

predic-tion of retentiontimeson other instruments The average

reduc-tion of the prediction error depended on the instrument Using

dataobtainedononeinstrument(Instrument1)andthenewly

de-velopedalgorithmimprovedtheaveragerelativeerrorinretention

time from 9.8%and 12.2% down to2.1% and6.5 % fortwo other

instruments(Instrument2and3,respectively)incomparisonwith

aconventionalapproach(onlycorrectingforthedwellvolume)

However, whilepredictionaccuracycouldbeimproved,alarge

spread remained between retention parameters for various

an-alytes obtained using different instruments Thus, such

parame-ters should not be interpreted as the true retention parameters

In our proof-of-principle study we corrected for gradient

defor-mation measured withwaterandwatercontaininga tracer

(ace-tone)asthegradient-formingsolvents.Thisallowedcorrectionfor

geometry-induceddeformationofthegradient.Whiletheresponse

function describedthiswater-watersystemadequately,additional

effects due to viscosityand densitydifferences andpossible

vol-umecontractionorexpansionareexpectedwhenmixingdifferent

solvents Taking thesesolvent effects on the gradient shape into

accountmaypotentiallyimprovetheaccuracyoftheretention

pa-rametersandthusfurtherreducetheeffectoftheinstrumentation

on the obtained retention parameters However, this correction

may be more complex, asmore variables relatedto the solvents

used, additives,temperature, pressure, etc. may need to be

con-sidered Whenusingdifferentsolventssolvatochromiceffectsmay

alsooccur,whichmayaffectthemeasuredgradientprofile

There-fore,methodstoaccountforchangesintheabsorptioncoefficient

may also need to be explored Furthermore, it should be noted thatourmeasurements wereexclusivelyconductedusingfast gra-dients The resultsshow that the extentof deformation depends

onthe employed flowrate Lowerflow ratesmaybe expectedto yieldimprovedpredictionaccuracies.Moreover, thepresentstudy waslimited to the log-linear (“linear-solvent-strength”) retention model Further improvements may be obtained by investigating othermodels

Nevertheless, correction using the current algorithm yielded significantlyimprovedpredictionaccuraciesacrossdifferent instru-ments

Credit author statement Tijmen S Bos:Conceptualization,Methodology,Writing Orig-inalDraft,Visualization,SoftwareFormalanalysisLeon E Niezen:

Investigation, Writing Review & Editing Mimi J den Uijl: In-vestigation, Writing Review& Editing Stef R.A Molenaar: For-mal analysis, Methodology, Software, Writing Review & Edit-ingSascha Lege:Conceptualization,Resources,Writing Review& Editing Peter J Schoenmakers: Supervision, Writing Review& EditingGovert W Somsen:Supervision,Writing Review& Edit-ing.Bob W.J Pirok:Conceptualization,Supervision,Funding acqui-sition,Projectadministration,Writing Review&Editing

Declaration of competing interest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper

Trang 9

TB, LN, SM, PS, GS and BP acknowledge the UNMATCHED

project, which is supported by BASF, DSM andNouryon, and

re-ceives funding from the Dutch Research Council (NWO) in the

framework of the Innovation Fund for Chemistry and from the

Ministry of Economic Affairs in the framework of the

“PPS-toeslagregeling” BP acknowledges the Agilent UR grant #4354

MU acknowledgethe TooCOLDproject,whichis partof theTTW

OpenTechnologyProgrammawithprojectnumber15506whichis

(partly)financedbytheDutchResearchCouncil(NWO)

This workwasperformedin thecontext oftheChemometrics

andAdvancedSeparationsTeam (CAST)withintheCentre for

An-alyticalSciences Amsterdam(CASA).Thevaluablecontributionsof

theCASTmembersaregratefullyacknowledged

Supplementary materials

Supplementary material associated with this article can be

found,intheonlineversion,atdoi:10.1016/j.chroma.2020.461714

References

[1] E.F Hewitt, P Lukulay, S Galushko, Implementation of a rapid and auto-

mated high performance liquid chromatography method development strat-

egy for pharmaceutical drug candidates, J Chromatogr A 1107 (2006) 79–87

https://doi.org/10.1016/j.chroma.2005.12.042

[2] E Tyteca, A Périat, S Rudaz, G Desmet, D Guillarme, Retention modeling

and method development in hydrophilic interaction chromatography, J Chro-

matogr A 1337 (2014) 116–127 https://doi.org/10.1016/j.chroma.2014.02.032

[3] J.W Dolan, D.C Lommen, L.R Snyder, Drylab® computer simulation for high-

performance liquid chromatographic method development II, Gradient Elution,

J Chromatogr A 485 (1989) 91–112 https://doi.org/10.1016/S0021-9673(01)

89134-2

[4] B.W.J Pirok, S Pous-Torres, C Ortiz-Bolsico, G Vivó-Truyols, P.J Schoenmak-

ers, Program for the interpretive optimization of two-dimensional resolution,

J Chromatogr A 1450 (2016) 29–37 https://doi.org/10.1016/j.chroma.2016.04

061

[5] P.J Schoenmakers, H.A.H Billiet, R Tijssen, L De Galan, Gradient selection in

reversed-phase liquid chromatography, J Chromatogr A 149 (1978) 519–537

https://doi.org/10.1016/S0 021-9673(0 0)810 08-0

[6] B.W.J Pirok, A.F.G Gargano, P.J Schoenmakers, Optimizing separations in on-

line comprehensive two-dimensional liquid chromatography, J Sep Sci 41

(2018) 68–98 https://doi.org/10.10 02/jssc.20170 0863

[7] D Abate-Pella, D.M Freund, Y Ma, Y Simón-Manso, J Hollender, C.D Broeck-

ling, D.V Huhman, O.V Krokhin, D.R Stoll, A.D Hegeman, T Kind, O Fiehn,

E.L Schymanski, J.E Prenni, L.W Sumner, P.G Boswell, Retention projection

enables accurate calculation of liquid chromatographic retention times across

labs and methods, J Chromatogr A 1412 (2015) 43–51 https://doi.org/10.1016/

j.chroma.2015.07.108

[8] P.G Boswell, J.R Schellenberg, P.W Carr, J.D Cohen, A.D Hegeman, A study on

retention “projection” as a supplementary means for compound identification

by liquid chromatography–mass spectrometry capable of predicting retention

with different gradients, flow rates, and instruments, J Chromatogr A 1218

(2011) 6732–6741 https://doi.org/10.1016/j.chroma.2011.07.105

[9] A Beyaz, W Fan, P.W Carr, A.P Schellinger, Instrument parameters controlling retention precision in gradient elution reversed-phase liquid chromatography,

J Chromatogr A 1371 (2014) 90–105 https://doi.org/10.1016/j.chroma.2014.09

085 [10] I.A.H Ahmad, F Hrovat, A Soliven, A Clarke, P Boswell, T Tarara, A Blasko, A

14 Parameter Study of UHPLC’s for Method Development Transfer and Trou- bleshooting, Chromatographia 80 (2017) 1143–1159 https://doi.org/10.1007/ s10337- 017- 3337- 8

[11] F Gritti, G Guiochon, Calculated and experimental chromatograms for dis- torted gradients and non-linear solvation strength retention models, J Chro- matogr A 1356 (2014) 96–104 https://doi.org/10.1016/j.chroma.2014.06.030 [12] F Gritti, G Guiochon, Separations by gradient elution: Why are steep gradi- ent profiles distorted and what is their impact on resolution in reversed-phase liquid chromatography, J Chromatogr A 1344 (2014) 66–75 https://doi.org/10 1016/j.chroma.2014.04.010

[13] F Gritti, G Guiochon, The distortion of gradient profiles in reversed-phase liq- uid chromatography, J Chromatogr A 1340 (2014) 50–58 https://doi.org/10 1016/j.chroma.2014.03.004

[14] A.P Schellinger, P.W Carr, A practical approach to transferring linear gradient elution methods, J Chromatogr A 1077 (2005) 110–119 https://doi.org/10.1016/ j.chroma.2005.04.088

[15] M.A Quarry, R.L Grob, L.R Snyder, Measurement and use of retention data from high-performance gradient elution, J Chromatogr A 285 (1984) 1–18 https://doi.org/10.1016/S0021-9673(01)87732-3

[16] G Vivó-Truyols, J.R Torres-Lapasió, M.C Garcı´a-Alvarez-Coque, Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution, J Chromatogr A 1018 (2003) 169–181 https: //doi.org/10.1016/j.chroma.2003.08.044

[17] N Wang, P.G Boswell, Accurate prediction of retention in hydrophilic interac- tion chromatography by back calculation of high pressure liquid chromatogra- phy gradient profiles, J Chromatogr A 1520 (2017) 75–82 https://doi.org/10 1016/j.chroma.2017.08.050

[18] M.H Magee, J.C Manulik, B.B Barnes, D Abate-Pella, J.T Hewitt, P.G Boswell,

“Measure Your Gradient”: A new way to measure gradients in high perfor- mance liquid chromatography by mass spectrometric or absorbance detection,

J Chromatogr A 1369 (2014) 73–82 https://doi.org/10.1016/j.chroma.2014.09

084 [19] P.G Boswell, J.R Schellenberg, P.W Carr, J.D Cohen, A.D Hegeman, Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradi- ent and flow rate profiles, J Chromatogr A 1218 (2011) 6742–6749 https: //doi.org/10.1016/j.chroma.2011.07.070

[20] A Velayudhan, M.R Ladisch, Effect of modulator sorption in gradient elution chromatography: gradient deformation, Chem Eng Sci 47 (1992) 233–239 https://doi.org/10.1016/0 0 09- 2509(92)80217- Z

[21] W Pi ˛atkowski, R Kramarz, I Poplewska, D Antos, Deformation of gradient shape as a result of preferential adsorption of solvents in mixed mobile phases,

J Chromatogr A 1127 (2006) 187–199 https://doi.org/10.1016/j.chroma.2006 06.018

[22] J Nolan , Stable Distribution: Models for Heavy-Tailed data, Birkhauser, 2019 [23] L.R Snyder, J.W Dolan, J.R Gant, Gradient elution in high-performance liq- uid chromatography, J Chromatogr A 165 (1979) 3–30 https://doi.org/10.1016/ S0 021-9673(0 0)85726-X

[24] D.W Morton, C.L Young, Analysis of Peak Profiles Using Statistical Moments, J Chromatogr Sci 33 (1995) 514–524 https://doi.org/10.1093/chromsci/33.9.514 [25] T.S Bos, W.C Knol, S.R.A Molenaar, L.E Niezen, P.J Schoenmakers, G.W Som- sen, B.W.J Pirok, Recent applications of chemometrics in one- and two- dimensional chromatography, J Sep Sci (2020) jssc.2020 0 0 011 https://doi.org/ 10.10 02/jssc.2020 0 0 011

[26] A.D Hutson, An alternative skew exponential power distribution formulation, Commun Stat - Theory Methods 48 (2019) 3005–3024 https://doi.org/10 1080/03610926.2018.1473600

9

... when there is no change inslope during thegradient .The dwelltimewastakenasthetime difference be-tween themidpoint ofthe programmedgradient andthat ofthe measured gradient The results are shown in. ..

Eqns.4and(5)werederivedbyincorporatingtheretentionmodel

(Eqn.1) inthe generalgradient equation (Eqn.3) forthe caseof

alineargradient.TheGCGsasshowninFig.5wereapproximated

numericallyasaseriesofshortlinearsegments.Tofacilitatethis,... In- teractionbetweenthesolventandtheLCinstrumentisexpectedto

beminimalinawell-designedandwell-maintainedsystem.Inthe presentexperiments(mixingwaterwithwatercontainingacetone) onlyinteractionofacetonewithsystemcomponentswouldbe

Ngày đăng: 25/12/2022, 01:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w