1. Trang chủ
  2. » Giáo án - Bài giảng

Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation

10 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Application of Microstructured Membranes for Increasing Retention, Selectivity and Resolution in Asymmetrical Flow Field-Flow Fractionation
Tác giả Maria Marioli, Ī. Bade Kavurt, Dimitrios Stamatialis, Wim Th. Kok
Trường học University of Amsterdam and University of Twente
Chuyên ngành Analytical Chemistry, Biomaterials Science and Technology
Thể loại research article
Năm xuất bản 2019
Thành phố Amsterdam
Định dạng
Số trang 10
Dung lượng 1,61 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In the present proof-of-concept study, we demonstrate that retention time, selectivity and resolution can be increased in asymmetrical flow field-flow fractionation (AF4) by introducing microstructured ultrafiltration membranes.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

fractionation

Maria Mariolia,∗, Ü Bade Kavurtb, Dimitrios Stamatialisb, Wim Th Koka

a Analytical Chemistry Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O Box 94157, 1090 GD Amsterdam, the Netherlands

b (Bio)artificial Organs, Department of Biomaterials Science and Technology, TechMed Institute, University of Twente, P.O Box 217, 7500 AE Enschede, the

Netherlands

a r t i c l e i n f o

Article history:

Received 10 April 2019

Received in revised form 25 June 2019

Accepted 2 July 2019

Available online 3 July 2019

Keywords:

Field-flow fractionation

Flow over grooves

AF4

Computational fluid dynamics

Microstructured membranes

Protein separation

a b s t r a c t

Inthepresentproof-of-conceptstudy,wedemonstratethatretentiontime,selectivityandresolution canbeincreasedinasymmetricalflowfield-flowfractionation(AF4)byintroducingmicrostructured ultrafiltrationmembranes.Evenlyspacedmicron-sizedgrooves,thatareplacedperpendiculartothe channelflowontheaccumulationwallofafield-flowfractionationsystem,causeadecreaseinthe zonevelocitywhichisstrongerforlargersolutes.Thishasbeendemonstratedinthermalfield-flow fractionation,andweprovethatthisisalsothecaseinAF4.Weexaminethehypothesistheoretically andexperimentally,bybothcomputationalandphysicalexperiments.Bymeansofmomentanalysis,we derivetheoreticallyasetofequationswhich,undercertainconditions,describethemasstransportand relateretentiontime,selectivityandplateheighttothedimensionsofthegrooves.Physicalexperiments arecarriedoutusingmicrostructuredpolyethersulfonemembranesfabricatedbyhotembossing,andthe experimentalresultsarecomparedwithcomputationalfluiddynamicsexperiments

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

1 Introduction

Asymmetrical flow field-flow fractionation (AF4), the most

appliedsubtechniqueofthefield-flowfractionation(FFF)family,

isanestablishedanalyticalmethodtoseparatemacromolecules

andnanoparticlesaccordingtotheirhydrodynamicsizeundermild

conditions[1–3].Thecouplingwithvariousphysicalandchemical

detectorshascontributedsignificantlytoitspopularityasitcan

providevaluableinformationsuchasmolecularweight

distribu-tion,sizedistribution,conformationandchemicalcompositionin

asinglerun[4 Considering therapidgrowthinbiotechnology,

nanotechnologyandpolymerengineering,itisevidentthatAF4is

goingtowitnessafurthergrowthinapplicationsinthecoming

years.Inthisregard,itisworthwhiletoproposeandinvestigate

possiblenewtechnicaldevelopmentsthat mayimprove

perfor-mance

Inthisstudyweinvestigatethepossibilityofincreasing

reten-tion time, selectivity and resolution by using microstructured

ultrafiltration(UF)membraneswithparallelgroovesontheir

sur-∗ Corresponding author.

E-mail address: M.Marioli@uva.nl (M Marioli).

face (Fig 1) However, considering that AF4 is a very flexible techniquewhere severalparameterscanbealtered tooptimize separation,firstajustificationshouldbegivenfortheusefulness

ofsuchadevelopment

AccordingtotherigorousFFFtheory,theretentiontimeof well-retained(withretentionratio<0.1)componentsinAF4isequal

to[5

tR= w2 6Dln



1+ V˙c

˙Vout

B



(1)

where wisthechannelthickness, ˙Vcthecross-flowrate, ˙Voutthe channeloutletflow rateandBthefractionoftheaccumulation areaafterthefocusingpoint.Therefore,theselectivityofapairof well-retainedsolutesequalstheratiooftheirdiffusioncoefficients,

˛=tR,2

tR,1 =D1

D2

(2)

andconsequently,itcannotbealteredbychangingthe experimen-talparameters.Resolutioncanbeimprovedbyreducingtheplate https://doi.org/10.1016/j.chroma.2019.07.001

0021-9673/© 2019 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

Fig 1.AF4 with microstructured membranes.

heightwhich,basedonthenonequilibriumtheory(for<0.1),is

equalto[6

H= 24D2v0

whereucr isthecross-flowvelocitythoughtthemembrane and

v0 is thecross-sectional mean carrier velocity Hence, a high

cross-flowvelocitydecreasesplateheight.However,itmaylead

toadsorptiononthemembrane and massoverloading for

sen-sitivemacromolecules.Inaddition,highflowratesarehindered

bythetransmembranepressurewhenultrafiltration(UF)

mem-braneswithverylowmolecularweightcut-off(MWCO)areused

toseparatesmallmacromolecules

Thesolutescanberesolvedatlowercross-flowratesby

increas-ingtheretentiontime,sinceaminimumtimeisrequiredtoachieve

separation [7 which couldbe accomplished by increasingthe

cross-flowtooutlet flowratioor thespacerthickness[8 Very

highcross-flowtooutletflowratiosareimpractical,particularly

forUFmembraneswithlowMWCO,andmaydistorttheparabolic

flowprofile[9 Inaddition,theuseofathickerspacerresultsin

higherrequiredfocusingtimesand moredilutionwitha

subse-quentdecreaseinsensitivity[7 Moreover,alowaspectratiob/w

(<30),wherebis thechannel breadth,mayaggravateedge and

endeffectsincreasingplateheightandreducingrecovery[10,11]

Therefore,itcouldbebeneficialtoinvestigateamethodthatcould

increase retention and resolution without altering the optimal

cross-flow,spacerthicknessandcross-flowtooutletflowratio

Theconceptofanaccumulationwallwithmicron-sizedgrooves

inFFFhasbeenintroducedin1978byGiddingsetal.[12]asan

attempttoincreaseretentionforsmallanalytesinthermal

field-flowfractionation(ThFFF).Inaddition,groovedsurfaceshavebeen

incorporatedinmicrofluidicchannelsforvariousotherapplications

suchastoenablemixing[13]andtoseparatecellsand

micropar-ticles[14].Navierhasdescribed thatmacroscopicallytherough

surfaceisequivalenttoasmoothsurfacewithpartialslip[15–17]

Infact,forthisreason,asmallslipmightexistontheflatmembrane

oftheAF4channel,asa resulttotheporosity,but itis

negligi-bleforUFmembranes[18].NanostructuredUFmembraneshave

beenfabricatedbynano-imprintinglithography[19–21], where

membraneswerehot-embossed,andmicrostructuredpolymeric

materialshave been developed withphase separation [22–24],

whereapolymersolutioniscastoverapatternedmold

Thescopeofthisstudyistoconductaproof-ofconcept

inves-tigationtoassesstheeffectofmicrostructuredmembranesonthe

retentiontime,selectivityandresolutioninAF4.Ahotembossing

methodwaschosenforthefabricationofthesemembranes.We

sharefundamentaltheoryandexperimentalfindingsthat

comple-mentandexpandthepreviousstudywithperpendiculargrooves

inThFFF[12]

Fig 2. Left-hand figure: display of the theoretical model Right-hand figure: velocity profile (a) over a flat membrane and (b) over a grooved membrane where the velocity zero-plane is taken on the edge of the ridge (x = h).

2 Theory

2.1 Transportequationsandmomentanalysis Here,wedescribeasimplifiedmodelthatenablesustoderivean analyticalsolutiontotheproblemofmassmigrationovergrooves

inanAF4channel.Inthismodelthegroovesareformedby zero-widthridgeswithauniformheighthonthemembranesurface, perpendiculartotheflowdirection.Slipflowthroughthegrooves

isneglected;thezero-velocityplanefortheaxialflow(v)istaken

atthetopoftheridges(Fig.2)

Thefollowingsimplificationshavebeenmade:

(1)Moleculardiffusionintheaxial(z-)directionisneglected (2)Thedevelopmentoftheconcentrationprofileinthe perpen-dicular(x-)directioniscompletebeforeelutionisstarted,bya precedingfocusingstepintheprocedure

(3)Onlywell-retainedcompoundsareconsidered(withretention ratio <0.1) Such compounds are present predominantly closetotheaccumulationwall,wherethelinearpartoftheflow profileprevailsandthecross-flowvelocityucrmaybe consid-eredasbeingequaltothefluidvelocitythroughthemembrane For well-retainedcompounds,themathematicscanbe sim-plifiedsinceintegralsover theheightofthechannelcanbe takenfromx=0toinfinityinsteadoftotheupperwallposition (x=w),withgoodaccuracy

(4)Therearenointeractionsbetweentheproteinandthe mem-brane

(5)Flowconditionsarelaminar.Thisassumptionshouldholdtrue sincethepresenceofperpendiculargrooves,whicharesmall compared tothechannelthickness,reduceslocallytheflow velocity and decreasestheReynolds number [16] Although eddiesmayexistinthecornersofthegrooves,theflowvelocity

isverylowthereandthefluidisalmoststagnant

Thetransportofacompoundi,withalocalconcentrationci=

ci(x,z,t),isgivenbythesimplifiedgeneraltransportequation

∂ci

∂t =Di∂2ci

∂x2 +ucr∂ci

∂x −v(x)∂ci

whereDiisthediffusioncoefficientofthecompoundofinterest, andv(x)thelocalaxialflowvelocity.Themoleculardiffusionterm alongthez-directionisneglectedintheRHSofEq.(4).Theplus signfor thesecondtermoftheRHSappearsbecausea positive valueistakenforucr,evenwhenthecrossflowisinthenegative

x-direction.Theassumptionthattheanalytehasbeenintroduced

inthechannelasafiniteplugleadstotheboundaryconditions

Trang 3

forthecompoundto

Di∂ci

∂x +ucrci=0 for x=0,w (4b)

Twosetsofmomentsaredefined.Localmoments,thatdescribe

themassdistributionofacompoundiinafluidlayeratacertain

distancexfromthemembrane,aredefinedas

mn,i(x,t)=

 +∞

−∞

andoverallmoments,thatdescribethemassdistributioninthe

axialdirectionintegratedovertheheightofthechannel,as

Mn,i(t) =

 w

0

mn,i(x,t) dx≈

0

mn,i(x,t) dx (6) MomentsexistwhentheintegralsconvergeinEq.(6),i.e.,whenit

canbeassumedthattheconcentrationofacompoundiapproaches

zerofastenoughwhenzgoestoplusorminusinfinity.Thiswillbe

thecasewhenthecompoundwasintroducedinthechannelasa

plugorpeakoffinitewidth

WhenbothsidesofthegeneraltransportEq.(4)aremultiplied

withznandintegratedoverzfromminustoplusinfinity,

expres-sionsareobtainedforthelocalmomentsofi

∂mn,i

∂t =Di∂2mn,i

∂x2 +ucr∂mn,i

∂x +nv(x)mn−1,i (7) ThethirdtermoftheRHSinthisequationisobtainedbypartial

inte-grationwiththeassumptionthatznci(x,z,t)vanishesforz→±∞

Whenalocalmoment(n−1)isknown,thisequationcanbeusedto

evaluatethenextlocalmoment(n).IntegrationofEq.(7)overthe

heightofthechannel,consideringboundarycondition(4b),gives

anexpressionfortheoverallmomentMn,i

∂Mn,i

∂t =n

0

2.2 Thezerothmoment(massdistribution)

IntegratingbothsidesofEq.(4)overzfromminustoplusinfinity

givesanexpressionforthelocalzerothmomentofi,

∂m0,i

∂t =Di

∂2m0,i

∂x2 +ucr∂m0,i

Undertheassumptionthatfocusingwascomplete,andasteady

statewasreachedbeforetheexperimentwasstarted,bothsidesof

Eq.(9)mustbezero,andthemassdistributionovertheheightof

thechannelcanbefoundas

m0,i=m∗0,i·exp



−ucr

Dix



(10)

wherem∗0,iisthezerothmomentonthemembranesurface(with

x=0).Theexp.concentrationprofileextendsoutfromtheupper

wall(x=w)here Eq (10)describesthewell-known

exponen-tialconcentrationprofileontheaccumulationwallinFFF,witha

characteristiclayerthickness

 equaltoDi/ucr.Whenthe con-centrationoftheanalyteisscaledsoas

m*

0,i= ucr

Di

(11)

theoverallzerothmomentM0,ibecomes1,andthehigheroverall

momentsareautomaticallynormalized

2.3 Thefirstmoment(meanretentiontime) Themodelforthegroovedsurfaceusedhere(Fig.2 witha stagnantlayerof fluid determinedby thegrooveheight h,and approximatelylinearlyincreasingchannelflowratefromtheslip planeatthetopoftheridges,givesforthelocalaxialflowvelocity

v(x)=6(x−h)

WhenEqs.(10)–(12)aresubstitutedintoEq.(8),

∂M1,i

∂t =

h

6(x−h)

w vucr

Di

exp



−ucr

Dix



theaxialvelocityviofthecompoundisobtained(withforsimplicity integrationtoinfinityinsteadoftox=w),

vi=∂M1,i

∂t = 6Di

ucrwvexp

−ucrh

Di



(14)

Eq.(14)withh=0givesthewell-knownexpressionforthezone velocity over a flatmembrane With a groovedmembrane, the velocitydecreasesexponentiallywiththeratiooftheridgeheight overthecharacteristiclayerthickness.Fortheretentiontimethe oppositecanbewritten

tR,i=tR,iFLexp

 +ucrh

Di



(15) wheretFL

R,iistheretentiontimewithaflatmembrane,under oth-erwise thesameconditions Theretention time increasesmore stronglybythepresenceofthegroovesforcompoundswithasmall layerthickness,i.e.,formorestronglyretainedcompounds

In the separation of two components, the selectivity ˛ is increasedwithincreasingridgeheightanditcanbewrittenas

˛=tR,2

tR,1 =D1

D2

exp



ucrh

1

D2 − 1

D1



=˛FLexp

 h

1



˛FL−1 (16) where˛FListheselectivitywithaflatmembrane,and1the char-acteristiclayerthicknessofthefirst,leastretainedcompound.In Fig.3a,thecalculatedeffectofthe(relative)heightofthegrooveson theretentiontimesandtheselectivityisshownfortwocompounds withdiffusioncoefficientsthatdifferbyafactorof√2.

2.4 Thesecondmoment(peakvariance)

Toevaluatetheinfluenceofthegroovedsurfaceonpeak broad-ening,first anexpressionfor thedevelopmentofthelocalfirst momentshastobederived.Inthis,wefollowtheapproachtaken

byTaylorandArisintheirtreatmentofpeakbroadeningin cylin-dricalchannels,andinearlyworkofGiddingsondispersioninFFF [25].TheyfoundsolutionsforthegeneraltransportEq.(4)inthe formofasumoftransientfunctionsandastationaryfunction.The transientfunctionsdescribetheconcentrationchangesintimeand spacedirectlyafterthestartofthe’elution’andtheydependonthe initialconditions.Itwasshownthatthesetransientfunctionsdie outrapidly,andthatastationarysituationdevelopsinwhichthe localcentersofgravityatdifferentdistancesfromthewallare situ-atedinasteadyprofilearoundtheoverall(mean)centerofgravity

ofthetransportedplugofthecompoundofinterest.Here,a solu-tionissoughtforEq.(4)describingonlythestationarysituation, i.e.,asolutionthatobliges

1

m (x)

∂m1,i(x)

∂t = ∂M1,i

∂t =vi for all x (17)

Trang 4

Fig 3.Theoretical estimation of variables as a function of the relative ridge height: a)

increase in selectivity and retention time for two solutes with diffusion coefficients

that differ by a factor of √

2 (e.g., monomer and dimer); retention times here are normalized with the retention time of the smaller solute for a flat membrane t FL

R,1 b) increase in plate height c) increase in resolution.

Asetofparticulatesolutionsform1,i(x)canbefoundthatsatisfyall

boundaryconditions

For0≤x<h,

mA1,i(x,t) = 6v

w



t− Di

u2 cr

− x

ucr

 exp



−ucrh

Di

 exp



−ucrx

Di

 (18a) andforx≥h,

mB1,i(x,t) = 6v

w {(x−h)

2

2Di +x−h

u +



t− Di

u2 cr

− x

ucr



exp



−ucrh

Di



}exp

−ucrx

Di



(18b)

Theincreaseintimeoftheoverallsecondmomentcannowbe

foundbysubstitutingEqs.(12b)and(18b)intoEq.(8)

∂M2,i

∂t =2

6v0

Sincethefluidvelocityiszerofor0<x<h,Eq.(18a)doesnothave

tobeincludedintheintegration.Centralizingoftheoverallsecond momentgivestheincreaseofthespatialvarianceintime

∂2 z

∂t =∂M2,i

∂t −2M1,i(t)∂M1,i

andfinally,theplateheightHcanbeobtainedas

H= ∂z2/∂t

ThefinalresultforHis

H=24D

2

iv0

u3

crw

5

2exp

 +ucr

Dih



−32− ucr 2Dih exp



−ucr

Dih

 (22)

Foraflatmembrane,withh=0,thesecondandthirdfactorsinthe RHSofEq.(22)areequalto1,andthewell-knownexpressionfor

H(HFL)isobtained(Eq.(3))

InFig.3 theincreaseoftheplateheightwiththerelativeridge heightisshown,andinFig.3ctheincreaseinresolutionoftwo soluteswithratioofdiffusioncoefficients√2isshown.Weobserve thatforgrooveheighth=1.51,thereisatwo-foldincreasein res-olutionandafour-foldincreaseintheretentiontimeoftheless retainedcomponent.Forcomparison,thesameincreasein reso-lutioncouldbeachieved (withoutaltering thecross flow)by a two-foldincreaseofthespacerthicknessorapproximatelyten-fold increaseofthecross-flowtooutletflowratio

3 Materials and methods

3.1 Samplesandcarriereluent Bovineserumalbumin(BSA),␥-globulin,apoferritin, thyroglob-ulinandhemoglobinwerepurchasedbySigma–Aldrich(MO,USA) PBS0.15M(20mMduetosodiumphosphatesalts)withapHof 7.2wasusedasacarriereluentfortheAF4experimentsandas

adiluentfortheproteins.Allproteinsampleswerepreparedata concentrationof1mg/mL

3.2 Fabricationandcharacterizationofthemicrostructured(MS) membranes

Twosiliconmolddesignswithparallelgrooveswereusedfor preparationofthemicrostructuredmembranes.MoldI(LioniXBV, TheNetherlands)hadapatternedareaofdiameter15.1cmwith groovesof cavity widthc=50␮m,ridge width r=50␮m, ridge heighth=12␮mwhereasMoldII(MESA+cleanroom,Universityof Twente,TheNetherlands)hadapatternedareaofdiameter6.8cm withgroovesofc=30␮m,r=20␮mandh=25␮m Polyethersul-fone(PES)membraneswith10kDaand30kDamolecularweight cut-off(MWCO)(Sartorius,Germany)wereusedforthemembrane patterningwithoutanypretreatment

Microstructured (MS) membranes were prepared via hot embossing which was performed with an imprinter (Obducat, Sweden)inMESA+cleanroom(UniversityofTwente).The emboss-ingtemperature,pressureandtimewere120◦C,40barand180s, respectively and demoldingoccurredat 40◦C [20] Surface and cross-section images of the microstructured membranes were takenby scanningelectron microscopy(SEM) equipment,XL30 ESEM-FEG(Philips,TheNetherlands)orJEOLJSM-6010LA(JEOL, Japan).MSmembraneI(Fig.4a)wasfabricatedbyhot-embossing

a PES 10kDa membrane with the Mold I, and MS membrane

II(Fig.4b)byhot embossinga PES30kDa membrane withthe MoldII.Membrane sampleswerewashed,dried,broken in liq-uidnitrogenforcrosssectionimagesandgold-sputteredforSEM imaging

Trang 5

Fig 4.Microstructured membranes and AF4 channels: a) MS membrane I (hot embossed with Mold I) and Channel I b) MS membrane II (hot embossed with Mold II) and Channel II.

Cleanwaterflux(Jw)valuesofthemembranesweremeasured

withdead-endAmiconStirredCell(Model8050,MerckMillipore,

MA,USA)andultrapurewater(MilliQsystem,MerckMillipore)

Measurementswereperformedatfourdifferenttransmembrane

pressures(P)in therange of0.5–2bar,afterremoving ofthe

membrane preservativesby immersingin water and after

pre-compactionat2bar.Theweightofpermeatedwaterversustime

wasmeasuredandthecleanwaterflux(JwinL/m2/h)was

calcu-latedforeachpressureconsideringtheeffectivemembranesurface

area,whichwas13.4cm2 (Theareaisassumedasconstantafter

preparationofamicrostructuredsurface).Thecleanwater

perme-ance(CWP,inL/m2/h/bar)ofthemembranewasdeterminedfrom

theslopeofJwversusPrelationship

3.3 AF4experiments

TheAF4systemwasanEclipseDualTecsystem(Wyatt

Technol-ogyEurope,Germany)connectedtoanAgilentHPLC1200system

(AgilentTechnologies,Germany)thatconsistedofadegasser,an

isocraticpump,aUVdetectorandanautosamplerequippedwith

athermostat.Thetemperatureoftheautosamplerwassetat5◦C

TwoAF4trapezoidalchannelswereused,designatedasChannel

IandII,oneforeachmembrane/moldsize(Fig.4).TheMS

mem-braneswerecutwiththegroovesperpendicularandintheshape

oftheporousfritwithsurgicalscissors

ChannelIwasacommercialAF4channel(WyattTechnology

Europe) which was used with the largerpatterned membrane

(d=15.1cm).Ithadtip-to-tiplength13.3cmandaccumulationarea

15.6cm2(Fig.4a).Thenominalspacerthicknesswas250or350␮m

Thefocus-flowwas1.5mL/minfor3minandthefocusingpointwas

setat18%ofthechannellength.Theinjectedvolumewas10␮L

(10␮ginjectedmass)andtheUVdetectionwasat280nm

ChannelIIwasaminiaturizedchannelcreatedtotestthesmaller

patternedmembrane(d=6.8cm).It hadtip-to-tiplength6.3cm

andaccumulationarea7.24cm2 (Fig.4b).Itwascreatedusinga

commercialchannelmodifyingitsupperinlayandspacer.Inthe

upperinlaytwointernalthreadsweremilledtoconnectthetubing

fittingsfortheinletandoutlet.Thespacerwasfabricatedcutting

MylarA4sheetsofnominalthickness250and350␮m.The focus-flowwas0.8mL/minappliedfor3minandthefocusingpointwas setat18%.Theinjectedvolumewas5␮L(5␮ginjectedmass)and

UVdetectionwasat220nm

3.4 Computationalfluiddynamics(CFD)

Afiniteelementsolver,COMSOLMultiphysics5.2(COMSOLInc.,

MA,USA),wasusedtomodeltheAF4channelandsimulatethe proteinmigrationovertheflatandthepatternedmembrane.To reducethemodelintotwo dimensionsforlowercomputational cost,asymmetricalchannelwasmodelledinsteadofan asymmet-rical.Forthispurpose,asimplerectangulardomainwascreated, withaflatorgroovedbottomboundary.Ameshoffreetriangular elementswascreatedwithveryfineelements(<1␮m)inthe prox-imitytothebottomboundarytosimulateproteinmigrationwith highaccuracy

Todescribetheflow,laminarflowofanincompressiblefluid wasusedand theboundaryconditions(inlets,outlets)wereset

todefinechannel flowandcross-flowvelocities(itwasverified laterfromtheresultsthattheassumptionofthelaminarflowwas validbythecellReynoldsnumber).Thecross-flowvelocitywas dis-tributedhomogeneouslyalongthebottomboundary(membrane) Theoption“transportofdilutedspecies”(includingconvectionand diffusion)wasusedtosimulateproteinmonomeranddimer.The studyoftheflowprofilewassolvedasasteadystateproblemand theoutput(velocityfield)wasusedtosolvethetimedependent problemoftheproteinmigrationwithaBDF(Backwards Differen-tialFormula)solver.Therelativeandtheabsolutetoleranceswere setat10−4.Theinitialandthemaximumtimestepswereset0.001s and0.5s,respectively

4 Results and discussion

4.1 Characterizationofthemicrostructuredmembranes Themicrostructuredmembranes,designatedasMSmembrane

Iand IIhadsimilarridgeheight,h∼12␮m,anddifferent

Trang 6

peri-Table 1

Protein recovery in AF4 before and after hot embossing of the UF membranes AF4 conditions: ˙V c = ˙V out = 1 mL/min.

Recovery (%) ± s.d.

odicity(i.e.,thesumofcavityandridgewidth),100and 50␮m

respectively (Fig 4) The shape of the patterns was

rectangu-lar with round corners (MS membrane I) or ellipsoidal (MS

membrane II)as therectangularcavities of themoldwere not

completely filled during embossing Although the polymer is

heatedaboveits glasstransitiontemperaturein hot embossing

processes,embossing wasperformed belowtheglasstransition

temperature, since collapse of the pores and loss of

perme-ance are reported in the literature for a PES membrane [20]

TheCWPs ofthe non-patterned membraneswereestimated as

150±20L/m2/h/bar (for membranes with 10kDa MWCO) and

271±113L/m2/h/bar (formembraneswith30kDaMWCO) The

CWPsofbothmembranesdecreasedafterhotembossing;MS

mem-braneIhadCWPof74±1L/m2/h/barandMSmembraneIIhadCWP

of130±18L/m2/h/bar

ProteinrejectionoftheMSmembraneswasevaluatedwiththe

AF4system;therecoveryoffourproteinsofdifferentmolecular

weight(66.5–669kDa)wasestimatedfromtheratioofthepeak

areaof thefractionatedsampletothepeak areaofthe

unfrac-tionatedsample.Thepeakareaoftheunfractionatedsamplewas

estimatedfromthefractogramobtainedbyinjectingandeluting

thesameamountoftheproteinwiththesamechanneloutletflow

rate,withouttheapplicationof focusflow orcross-flowexcept

forapoferritin.Thesolutionofapoferritincontainedlow

molec-ularweightcomponentswhichwereUV-activeatthedetection

wavelength,andthereforefocusflowwasappliedfortheirremoval

Forthisreason,therecoveryvaluesofapoferritinmaybeslightly

overestimatedforallmeasurements(bothwithflatandwithMS

membranes).TheexperimentalresultsaregiveninTable1;the

recoveryofthesmallerproteins(BSAand␥-globulin)was

signifi-cantlylowerfortheMSmembranes

Thedecreaseinrecoveryafterhotembossingshouldindicate

anincreaseintheactualMWCOratherthanproteinadsorption

sincethePESmembranesusedinthisstudyarehydrophilicwith

lowfoulingpropertiesforproteinsolutions.Thiswasconfirmedby

injectingandfocusingforseveralminutesahighvolume(100␮L)

ofaconcentratedsolution(30mg/mL)ofhemoglobin(∼65kDa)

whichhasaredcolor.Itwasobservedthatthesamplewasfocused

asanarrowbandwithaflatmembranewhileitwaspassingthrough

thecross-flowwithanMSmembrane.Whenthemembranewas

removedandvisuallyinspected,itwasnotstainedwhichwould

indicateadsorption

Theaforementionedresults(increaseinMWCOanddecrease

inCWP)seemcontradictingsincelowerCWPisoftencorrelated

withadecreaseinthesizeornumberoftheporesoftheselective

(patterned)side.ApossibleexplanationisthattheCWPdecreases

becauseof the membrane compaction (particularly in thearea

ofthegrooves’valleyswhichexperiencethehigheststress

dur-inghotembossing).Inaddition,theincreaseintheactualMWCO

mightberelatedtoanincreaseoftheporesizeof thegrooves’

ridgesbecause of themembrane deformation or toother local

defectsthatoccurduringimprinting/demoldingwhichare,

how-ever, small enough to affect only the recovery of the smaller

proteins

Incontrastwithourobservations,Marufetal.[20]showedthat

hotembossingcouldleadtosimilarCWPand lowerMWCOfor

anotherPESmembraneandamoldpatternedwithsmallergrooves (inthesub-micronrange).Perhapstheporedeformationtherewas minimalbecauseofthesmallersizeofthegrooves.However,the effectofthemembranecompactionontheCWPandthedifference

inthestressdistributiononthevalleysandontheridgesduring hotembossinghavebeendiscussedinthesestudies[21].Overall ourresultsindicatethathot-embossingneedstobeoptimizedto avoidchangesoftheMWCOsincetheconceptwouldbe benefi-cialparticularlyforlowmolecularweightanalytes,andingeneral

UF membraneswithhighsolventpermeability are preferredin AF4

Using BSA as thecalibrant withknown diffusioncoefficient (6.21·10−11m2/s[26]),theactualchannelthicknessforthe Chan-nel I and the Channel II witha flat membrane was estimated

305±6␮mand294±8␮mrespectively,andthediffusion coef-ficientofapoferritinwasestimated3.38·10−11m2/sfromEq.(1) Thesevalueswereusedinthesimulations.However,MS mem-branesarealreadycompressedduetohotembossing,andhence anyadditionalcompressioncausedbythespacerisexpectedto

besmall.Thiswouldresultinlargeractualchannelthicknessand consequentlyin longerretention times Thedifference in com-pressionbetweentheflatandtheMSmembraneswasevidentby visualinspectionwhenthemembraneswereremovedfromthe channelandinspected.Unfortunately,themethodwithaprotein

ofknowndiffusivitycannotbeappliedfortheMSmembranesas theretentiontime increasesbythepresenceofthegroovesfor well-retainedcompounds.However,inorder toassesscorrectly theeffectofgrooves,theactualchannelthicknessoftheMS mem-branes needs tobe measuredand we attempted this by other means

First,themembranecompressibilitywasestimatedfromthe dif-ferenceinthethicknessofthecompressedandnon-compressed partofthemembranes,measuredbySEMandamicrometerscrew gaugewhentheywereremovedfromthechannel.The compres-sionthatoccurredwithaflatandaMSmembranewas∼50␮m and∼20␮mrespectively.Thiscorrespondsto11%largerchannel thicknesswiththeMSmembranes.However,thesemethodshave lowprecisionsincetheymeasureonlyaverysmallpartofthetotal membraneareawhenthemembranesaredry.Second,weapplied therapidbreakthroughmethod[27]inthefractogramsobtained fortherecoveryexperimentswithinjectionand elutionof thy-roglobulin(withouttheapplicationoffocusorcross-flow).Thevoid volumewasmeasured13%largerwiththeMSmembranewhich correspondstoa13%thickerchannel.Thisresultisinclose agree-mentwiththefirstmethod.However,bothmethodsdonotuse cross-flowwhichmightslightlyaffectthemembranecompression and/orswelling

4.2 AF4experiments Apoferritinandthyroglobulinwerechosenasthemodel pro-teinstoassesstheeffectofthegroovesonretentiontime,selectivity andplateheight,sincetheyexhibitedhighrecoverieswiththe pat-ternedmembranes(Table1).InFig.5thefractogramsofapoferritin, obtainedusingflatandMSmembranes,areoverlaidafter subtrac-tionofthetimethatwasrequiredforthefocusingstep.Forboth

Trang 7

Fig 5. Comparison of flat and MS membranes analyzed with flow rates ˙V c = ˙V out = 1.0 mL/min for a) Channel I and MS membrane I and b) Channel II and MS membrane II.

Fig 6.CFD model for the Channel II/MS membrane II system: a) Mesh of the model in the beginning of the channel, b) velocity profile over the grooves, c) concentration profile of apoferritin over the grooves and d) derived concentration at the outlet (right boundary) for every time point for the monomer and dimer.

Trang 8

Table 2

Comparison of flat and MS membranes for both channels with respect to the plate height of the monomer H, the retention time of the monomer t R,1 and the selectivity a between the monomer and the dimer The error bars are given at 1␴ level and reflect the membrane-to-membrane reproducibility.

Channel I

Flat membrane,

w = 350 ␮m

MS membrane I,

w = 350 ␮m

MS membrane I,

w = 250 ␮m

Channel II

Flat membrane,

w = 350 ␮m

MS membrane II,

w = 350 ␮m

MS membrane II,

w = 250 ␮m

channels/MSmembranesystemsandthesamespacerthicknessof

350␮m(Fig.5left-handfigures),thereisaconsiderableincrease

inretentiontime,selectivityandresolutionbetweenmonomerand

dimer.Althoughthereismorepeakbroadeningwiththepresence

ofthegrooves,resolutionishigherbecauseofthehigherselectivity

(asexpectedbythetheory,Fig.3).Consequently,thesame

resolu-tioncouldbeachievedwiththeMSmembranesand applyinga

lowercross-flowrate,oralternativelyusingathinnerspacer(Fig.5

right-handfigures)

Therefore,theMSmembranescouldbebeneficialasthesame

retentionandresolutioncouldbeachievedwithlowercross-flow

rates without the need to increase spacer thickness or to use

impracticalcross-flowtooutletflowratios.Inpracticethatwould

beparticularlyusefulforrelativelysmallsolutes(suchasBSAor

evensmaller)sincelargersolutescanbeanalyzedwithoptimal

spacerthicknessandflowrates,andthereforethereisaneedto

fabricateMSmembraneswithlowerMWCO.Thechallengesand

theprocedurestooptimizeAF4methodsforsmallsoluteswitha

300DaMWCOmembranehavebeenreported[28].Smaller

macro-moleculesaretypicallyanalyzedbysizeexclusionchromatography

(SEC)wheretheyexhibitverygoodresolution,butinsomecases,

SECisnotsuitable,forinstance,whenthereisstrongnon-specific

adsorptioninthechromatographicsupportandwhenlarge

macro-moleculesco-existinthesamplethatneedtobeanalyzed.Inthe

lastcase,across-flowprogramwithexponentialdecayshouldbe

usedasthegrooveswouldcauseverystrongretentionforthelarge

components

Aseriesofexperimentswerecarriedoutusingdifferent

cross-flowrateswhileretainingtheratio( ˙Vc/ ˙Vout=1);theresultsare

displayedinTable2.Theplateheightofthemonomerwas

esti-matedfromthewidthathalfpeakheight.Anumberofconclusions

maybedrawnfromtheseexperimentalresults.Althoughthereis

alargedepartureoftheengineeredgroovesfromthetheoretical

model(i.e.,noslip,infinitesimalridgeandrectangularshape),the

underlyingconclusionswerefoundsimilar

First,fromTable2,itcanbeseenthatforhigher ˙Vcandsame

˙Vc/ ˙Vout the retention time of the monomer and theselectivity

betweenmonomeranddimerweresimilarfortheflatmembranes

asexpectedbythetheory(Eqs.(1)and(2))butincreasedfortheMS membranes.Thisisinlinewiththetheoreticalequationsderived

bymomentanalysis(Eqs.(15)and(16)).Secondly,forthesame experimentalconditions,theincreaseinselectivitywashigherfor thyroglobulin(lower)anditwasindependentofthespacer thick-ness,aspredictedbythetheory.Lastly,theincreaseinretention timeandselectivityforthesamecross-flowvelocitywashigherfor theMSmembraneII,probablyduetothesmallerslipbecauseof thesmallerperiodicityofthegrooves

It is howeverimportant tonotethat partof theincrease in retentiontime isa resultofthelargeractualchannelthickness withtheMSmembranes.Asitwasmentionedabove,thechannel thicknesswasestimated∼12%largerwithMSmembranes,which correspondsto∼25%longerretentiontimescausedbytheeffectof themembranecompression,astheretentiontimeisproportional

tow2(Eq.(1)).Evenso,intheexperimentalresults(Table2)we observeamuchhigherincreaseintheretentiontimes,namelyfrom 67%(forChannelIandacrossflowrateof0.8mL/min)to180%(for ChannelIIandacross-flowrateof1.0mL/min)forthemonomerof apoferritin,whichindicatesthattheeffectofthegrooveshasthe largestcontributiontotheincreaseintheretentiontime.Moreover, overloadingwasinvestigatedbyinjectingdifferentsamplemass, namely2␮g,10␮g,and20␮g,intheChannelI/MSmembraneI system;nooverloadingeffectwasobservedasretentiontime,plate heightandselectivitywerepracticallythesameforeveryexamined injectedmass

4.3 Computationalfluiddynamics FortheCFDexperiments,theminiaturized channel(Channel

IIin Fig 4)wasmodelled and themigration ofthe apoferritin monomeranddimerwassimulated.Thediffusioncoefficientsfor themonomerandfor thedimer ofapoferritinweretakenfrom theAF4experiments(wheretheratioofthediffusioncoefficients, andtherefore theselectivitywas1.34).Themodelwasverified

byreducingsignificantlythesizeofthemeshelements,thetime

Trang 9

Table 3

CFD experiments and comparison with the experimental results for apoferritin,

Channel II and cross-flow rate 0.5 mL/min.

stepandthetolerances;allthesechangesdidnotalterthe

reten-tiontimes(within0.2%).TheCFDmodelwasvalidatedcomparing

theresults(retentiontimeandselectivity)withtheexperimental

resultsobtainedforthenonpatternedmembrane.Goodagreement

wasfound,thestandarderror(SE)was2%fortheretentiontime

ofapoferritin (monomeror dimer)and<1%for theirselectivity

(Table3).Theassumptionofthelaminarflowconditions,which

wasusedforthemodel,wasjustifiedbytheresults;theReynolds

numberwaslessthan0.05acrossthewholechannel(maximum

inthemiddleofthechannelthickness)andlessthan2·10−4inside

thegrooves

For the patterned membrane (MS membrane II) and

˙Vc=0.5mL/min, the flow and concentration profiles, and the

derived concentration at the outlet for each time point are

depictedinFig.6.Itwasrevealedthattheexperimentalretention

time and selectivity are much lower compared to the values

predicted by the simulation (Table 3) This may be due to a

non-uniform cross-flow velocity as a result of differences in

themembranecompactionand/orintheporesizebetweenthe

ridgesandthecavitiesofthemembrane’sselectivelayerasitwas

discussedabove

5 Conclusions

Todateonlyflat(non-patterned)UFmembraneshavebeenused

inAF4asmicron-sizedfeaturesareconsideredharmfulforthe

sep-aration.Wehavedemonstratedthatmicron-sizedgroovescouldin

factimproveperformanceinAF4.Thiswasshownbyseveralmeans

includingmomentanalysis,physicalexperiments,andCFD

simu-lations.Ourresultsshowthatperpendiculargroovescanincrease

retention,selectivityandresolution.Thissystemcouldbeusefulas

macromoleculesandnanoparticlescouldbeanalyzedwithlower

cross-flowrateswithouttheneedtousehigherspacerthickness

orhigher cross-flowtooutletflow ratio.Thisconcept couldbe

appliedonanyFFFsystemasithasbeenoriginallydemonstrated

byGiddingsetal.forThFFF[12]

Thephysical experimentswerecarried outwith

microstruc-turedUFmembranesfabricatedbyhot-embossing.Thisfabrication

processcausedanincreaseintheactualMWCOofthemembrane

(asindicatedbytheAF4experiments)buttheeffectofthegrooves

couldbeshownwiththelargerproteinstandardsusedinthisstudy

(apoferritin 443kDa and thyroglobulin 669kDa) However, this

conceptcouldbeparticularlyusefulforsmallermacromolecules,

andthereforefutureworkshouldbefocusedonthefabricationof

microstructuredmembraneswithlowerMWCOandhighwater

permeability This couldbe achieved,for instance, by methods

otherthanhotembossingsuchasphaseseparationoradditive

tech-nologies(e.g.,3Dprintingofanon-porousorporousmaterialover

anUFmembrane).AdditionalresearchwithCFDexperimentsof

differentgrooveshapesanddimensionsisunderwaytoinvestigate

theoptimalgroovestructure

Acknowledgements

Thisworkwas partof theresearchprogram SmartSep with

projectnumber 11400 which wasfinanced by theNetherlands

OrganizationforScientificResearch(NWO).Authorsalso acknowl-edgeLydiaBolhuis-Versteeg(UniversityofTwente)forherhelpon SEMimagingandWyattTechnologyEuropeforprovidingtechnical assistance

References

[1] C Contado, Field flow fractionation techniques to explore the “nano-world”, Anal Bioanal Chem 409 (2017) 2501–2518, http://dx.doi.org/10.1007/ s00216-017-0180-6

[2] M.I Malik, H Pasch, Field-flow fractionation: new and exciting perspectives

in polymer analysis, Prog Polym Sci 63 (2016) 42–85, http://dx.doi.org/10 1016/j.progpolymsci.2016.03.004

[3] F von der Kammer, S Legros, E.H Larsen, K Loeschner, T Hofmann, Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation, TrAC – Trends Anal Chem.

30 (2011) 425–436, http://dx.doi.org/10.1016/j.trac.2010.11.012 [4] S Podzimek, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

[5] K.G Wahlund, J.C Giddings, Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall, Anal Chem 59 (1987) 1332–1339, http://dx.doi.org/10.1021/ac00136a016

[6] A Litzén, K.G Wahlund, Zone broadening and dilution in rectangular and trapezoidal asymmetrical flow field-flow fractionation channels, Anal Chem.

63 (1991) 1001–1007, http://dx.doi.org/10.1021/ac00010a013 [7] R.N Qureshi, W.T Kok, Optimization of asymmetrical flow field-flow fractionation (AF4), LCGC Eur 23 (2010) 18–25.

[8] J.S Yang, M.H Moon, Flow optimisations with increased channel thickness in asymmetrical flow field-flow fractionation, J Chromatogr A 1581–1582 (2018) 100–104, http://dx.doi.org/10.1016/j.chroma.2018.10.053 [9] J.M Davis, Influence of crossflow hydrodynamics on retention ratio in flow field-flow fractionation, Anal Chim Acta 246 (1991) 161–169.

[10] J Janˇca, Field-flow fractionation in microfluidic channels of low aspect ratio, Int J Polym Anal Charact 22 (2017) 62–71, http://dx.doi.org/10.1080/ 1023666X.2016.1232558

[11] P.S Williams, S.B Giddings, J.C Giddings, Calculation of flow properties and end effects in field-flow fractionation channels by a conformal mapping procedure, Anal Chem 58 (1986) 2403–2408, http://dx.doi.org/10.1021/ ac00125a010

[12] J.C Giddings, L.K Smith, M.N Myers, Surface barriers for retention enhancement in field-flow fractionation, Sep Sci Technol 13 (1978) 367–385, http://dx.doi.org/10.1080/01496397808057108 [13] A.D Stroock, S.K.W Dertinger, A Ajdari, I Mezic, H a Stone, G.M Whitesides, Chaotic mixer for microchannels, Science 295 (2002) 647–651, http://dx.doi org/10.1126/science.1066238

[14] J.A Bernate, C Liu, L Lagae, K Konstantopoulos, G Drazer, Vector separation

of particles and cells using an array of slanted open cavities, Lab Chip 13 (2013) 1086–1092, http://dx.doi.org/10.1039/c2lc40927e

[15] C.L.M.H Navier, Mémoire sur les lois du mouvement des fluides, Mémoires de l’Académie R, Des Sci l’Institut Fr 6 (1823) 386–436.

[16] C.Y Wang, Flow over a surface with parallel grooves, Phys Fluids 15 (2003) 1114–1121, http://dx.doi.org/10.1063/1.1560925

[17] T Lee, E Charrault, C Neto, Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations, Adv Colloid Interface Sci.

210 (2014) 21–38, http://dx.doi.org/10.1016/j.cis.2014.02.015 [18] P.S Williams, Retention ratio and nonequilibrium bandspreading in asymmetrical flow field-flow fractionation, Anal Bioanal Chem 407 (2015) 4327–4338, http://dx.doi.org/10.1007/s00216-015-8734-y

[19] S.H Maruf, M Rickman, L Wang, J Mersch IV, A.R Greenberg, J Pellegrino, Y Ding, Influence of sub-micron surface patterns on the deposition of model proteins during active filtration, J Memb Sci 444 (2013) 420–428, http://dx doi.org/10.1016/j.memsci.2013.05.060

[20] S.H Maruf, L Wang, A.R Greenberg, J Pellegrino, Y Ding, Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes, J Memb Sci 428 (2013) 598–607, http://dx.doi org/10.1016/j.memsci.2012.10.059

[21] S.H Maruf, Z Li, J.A Yoshimura, J Xiao, A.R Greenberg, Y Ding, Influence of nanoimprint lithography on membrane structure and performance, Polymer

69 (2015) 129–137, http://dx.doi.org/10.1016/j.polymer.2015.05.049 [22] M Bikel, I.G.M Pünt, R.G.H Lammertink, M Wessling, Shrinkage effects during polymer phase separation on microfabricated molds, J Memb Sci 347 (2010) 141–149, http://dx.doi.org/10.1016/j.memsci.2009.10.015

[23] L Vogelaar, R.G.H Lammertink, J.N Barsema, W Nijdam, L.A.M.

Bolhuis-Versteeg, C.J.M Van Rijn, M Wessling, Phase separation micromolding: a new generic approach for microstructuring various materials, Small 1 (2005) 645–655, http://dx.doi.org/10.1002/smll.

200400128 [24] Y.-J Won, J Lee, D.C Choi, H.R Chae, I Kim, C.H Lee, I.C Kim, Preparation and application of patterned membranes for wastewater treatment, Environ Sci Technol 46 (2012) 11021–11027, http://dx.doi.org/10.1021/es3020309 [25] R Aris, G.I Taylor, On the dispersion of a solute in a fluid flowing through a tube, Proc R Soc London Ser A: Math Phys Sci 235 (1956) 67–77, http://dx doi.org/10.1098/rspa.1956.0065

Trang 10

[26] N Meechai, A.M Jamieson, J Blackwell, Translational diffusion coefficients of

bovine serum albumin in aqueous solution at high ionic strength, J Colloid

Interface Sci 218 (1999) 167–175, http://dx.doi.org/10.1006/jcis.1999.6401

[27] J.C Giddings, P.S Williams, M.A Benincasa, Rapid breakthrough

measurement of void volume for field-flow fractionation channels, J.

Chromatogr A 627 (1992) 23–35.

[28] C.W Cuss, I Grant-weaver, W Shotyk, AF4-ICPMS with the 300 Da membrane

to resolve metal-bearing “Colloids” <1 kDa: optimization, fractogram deconvolution, and advanced quality control, Anal Chem 89 (2017) 8027–8035, http://dx.doi.org/10.1021/acs.analchem.7b01427

Ngày đăng: 25/12/2022, 00:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm