1. Trang chủ
  2. » Giáo án - Bài giảng

Development and validation of a semi-quantitative ultra-high performance liquid chromatography-tandem mass spectrometry method for screening of selective androgen receptor

14 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Development and validation of a semi-quantitative ultra-high performance liquid chromatography-tandem mass spectrometry method for screening of selective androgen receptor modulators
Tác giả Emiliano Ventura, Anna Gadaj, Gail Monteith, Alexis Ripoche, Jim Healy, Francesco Botrè, Saskia S. Sterk, Tom Buckley, Mark H. Mooney
Trường học Queen’s University Belfast
Chuyên ngành Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2019
Thành phố Belfast
Định dạng
Số trang 14
Dung lượng 1,57 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

A semi-quantitative method was developed to monitor the misuse of 15 SARM compounds belonging to nine different families, in urine matrices from a range of species (equine, canine, human, bovine and murine).

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

a Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5AG, United Kingdom

b Laboratory, Irish Greyhound Board, Limerick Greyhound Stadium, Ireland

c Applied Science Department, Limerick Institute of Technology, Moylish, Limerick, Ireland

d Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Italy

e RIKILT Wageningen University & Research, European Union Reference Laboratory, Wageningen, the Netherlands

f Irish Diagnostic Laboratory Services Ltd., Johnstown, Co Kildare, Ireland

a r t i c l e i n f o

Article history:

Received 25 January 2019

Received in revised form 16 April 2019

Accepted 17 April 2019

Available online 22 April 2019

Keywords:

Selective androgen receptor modulators

UHPLC-MS/MS

Urine

Doping control

Residue and food safety

a b s t r a c t

Investigation of alternative pharmacophores to

anabolic-androgenicsteroids(AAS)whichcanseparateanaboliceffectson

muscleandbonefromandrogenicactivityinothertissuessuch

astheprostateandseminalvesicles[1 hasledtotheemergence

ofselectiveandrogenreceptormodulators(SARMs),aclassof

non-steroidalagentswithaffinityfortheandrogenreceptor(AR)similar

tothatofdihydrotestosterone(DHT)[2 Asaheterogeneousgroup

ofmoleculesincorporatingarangeofpharmacophoresthatlackthe

∗ Corresponding authors.

E-mail addresses: eventura01@qub.ac.uk, emiliano.ventura@outlook.it

(E Ventura), a.gadaj@qub.ac.uk, agadaj@gmail.com (A Gadaj).

steroidnucleusoftestosteroneanddihydrotestosterone[2 SARMs behaveaspartialARagonistsinandrogenictissues(prostateand seminalvesicle)butactmainlyasfullARagonistinanabolic tis-sue(muscleandbone)[1,3 Thestructuralmodificationofknown

AR antagonists, suchas thenonsteroidal antiandrogens bicalu-tamide,flutamide,hydroxyflutamideandnilutamide[2,4 resulted

intheinitialgenerationofnovelnonsteroidalARagonistswithan arylpropionamide-nucleus,namelySARMS-1andandarine(S-4), forpotentialuseastherapeuticsinbenignprostatichyperplasia (BPH)andandrogen-deficiencyrelateddisorders[5–7].Sincethen, severalclasses of chemical scaffoldswith SARM-likeproperties havebeendevelopedexhibitingstronganabolicactivityandhigh tissueselectivity,elevatedabsorptionratesviaoraladministration, andreducedundesirableandrogenicside-effects[8–11].Potential pharmacologicapplicationsofSARMshavebeenfocusedtowards https://doi.org/10.1016/j.chroma.2019.04.050

0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

Trang 2

cancerandotherchronicdiseases,aswellasinhypogonadism,

hor-monereplacementtherapy,malecontraception,benignprostatic

hyperplasia,breastandprostatecancer[8,9

Easeofavailability,simplicityofuse,advantageousbiological

effects[12] andshortdetectionwindows[13,14,23–25,15–22]

arekey featuresincreasing thepotentialfor SARMmisuse, and

consequentlythey are widely recognised as drugs of abuse in

both human and animal (e.g equine and canine) sports, and

asemerging candidatesforillicit useinfood-producing species

[19].AlthoughmanySARMcompoundsarecurrentlyundergoing

evaluationinvariousstudies,asyetnoneareapprovedfor

pharma-ceuticaluse[8 thereiswidespreadSARMavailabilityvia

black-andgrey-marketsources.Recently,variousSARMs(e.g.S-4,S-22

andLGD-4033) havebeenidentified withinblack-market

prod-ucts[26–29],onlinevendors[30–34],andconfiscatedgoods[35]

SARMshave gained particular popularityin professional sports

andarebannedbytheWorldAnti-DopingAgency(WADA)[36],

theInternationalAgreementonBreeding,Racing andWagering

(IABRW)[37]andFédérationEquestreInternationale(International

Equestrian Federation, FEI)[38], withmany reports of positive

findingsfromroutinetesting[39–42].Morerecently,65adverse

analytical findings (AAFs) for a range of SARMs (e.g.andarine,

ostarine,LGD-4033andRAD140)werereportedinhumansportin

2017alone[43].ThepotentialforSARMstobefurtheradoptedfor

useinfood-producinganimals(e.g.incattlelivestock)toincrease

musclegrowthandreducefatmassalsoremainsadistinctthreat

[44]

Advancedand reliablescreening andconfirmatory analytical

assaysare requiredtodetect SARMusefor dopingpractices in

sportandmonitorforpotentialmisuseinstockfarming.Anumber

ofSARMcompoundshavebeensuccessfullyincludedintohuman

anti-dopingcontrol[45–52]withsomeassaysdevelopedforequine

racinganimals[14,17,18,53].However,todateonlyalimited

num-ber of analytical procedures covering solely arylpropionamides

havebeenestablishedforfoodsafetyanalysis[15,16,54,55]

LC-MSandoccasionallyGC-MS-basedapproacheshavebeenapplied

toelucidatethemetabolicpathwaysofsomeemergingSARMsin

variousspeciestosupportthedevelopmentofdetectionassaysfor

thesecompounds[14,19,22,56].Moreover,thedetectionofSARMs

andassociatedmetabolitesincanine[57,58],rodents[57–62],as

wellas humanspecimens [63–67] were conducted to support

SARMclinicalstudies.Whilsturineandbloodarecommon

matri-cesofchoice,faeceshavebeenproposedasanalternativematrix

fortheanalysisofarylpropionamide-derivedcompoundsinbovine

[15,16],canine[57]andrats[57,62].However,thereported

screen-ingand/orconfirmatoryassaysaretypicallycapableofanalysisof

eitherasingleSARMcompoundoralimitednumberofSARMsand

relatedmetabolitesinasinglespecimen(Table1)

In the present study, an innovative fast, simple and

cost-effectivesemi-quantitativemulti-residueUPLC-MS/MSscreening

assay wasdeveloped for a group of 15 key SARM compounds

with different physicochemical properties, chosen based upon

theirreporteduseinhumanandanimalsportsandavailabilityas

certifiedanalyticalstandards.TargetSARMcompoundsincluded

AC-262536,andarine(S-4),bicalutamide,BMS-564929,GLPG0492,

LGD-2226,LGD-4033,Ly2452473, ostarine(S-22),PF-06260414,

RAD140,S-1,S-6,S-9andS-23(Fig.1).Thedevelopedmethodhas

beenvalidatedinurinematricesfromarangeofspecies(equine,

canine,human,bovineandmurine)inaccordancewiththeEU

Com-missionDecision2002/657/ECcriteria[68]and EuropeanUnion

ReferenceLaboratoriesforResidues(EU-RLs)guidelines[69].The

assaywasemployedtoscreenforSARMresiduepresenceinurine

sourcedfromracinganimals(equineandcanine),amateurandelite

athletes,aswellasfarm(bovine)andexperimentallytreated

ani-mals

Sample volume

bicalutamide, ostarine

Linearity 0.0–5.0

1 RSDr

Linearity 2.5–250

bicalutamide, hydroxyflutamide, ostarine

Sensitivity 0.25

Linearity 0.25–30

Precision 0.6–17.6

Trang 3

volume (mL)

Sample preparation Detection limits Method performance Reference

buffer (pH 5, 0.2 M) eLOQ0.1ngmL−1 N/A

[ 15 ] 3.0 Enzymatic hydrolysis

followed by SPE (as above)

Andarine (S-4), bicalutamide, hydroxyflutamide, ostarine (S-22)

followed by SPE (Oasis HLB)

LOD 0.015–0.142 ng mL−1

Linearity 0.25–25 ng mL−1

[ 55 ]

USFC-Q-IM-ToF (mode: MS E )

LOD 0.0018–0.0406 ng mL −1

Andarine (S-4), ostarine (S-22)

UHPLC-HRMS (modes: MS, DDA)

followed by on-line SPE (Oasis HLB)

eLOD 1.25 ng mL −1

(S-22), 5 ng mL−1 (S-4)

Inter-day precision 9.4–11.7 % Recovery 11–15 %

[ 53 ]

Andarine (S-4), ostarine (S-22), ostarine glucuronide, S-23, S-24

HPLC-HRMS Human 0.09 “Dilute-and-shoot” LLOD <0.1 ng mL −1 Intra-day precision

3.2–7.7 % Inter-day precision 4.4–14.5 %

[ 45 ]

Andarine (S-4), bicalutamide, ostarine (S-22)

followed by LLE (TBME,

K 2 CO 3 /NaHCO 3 buffer)

CC␣ 0.025 ng mL−1 CC␤

0.025-0.05 ng mL -1

Linearity 0.0–2.0 ng mL−1 Accuracy 89-105 % RSD r 2.6–10.4 RSD RL 2.9–12.2 %

[ 19 ]

Andarine (S-4), ostarine (S-22)

followed by SPE (Bond-Elut Plexa PCX), 2% aq HCOOH

Andarine (S-4), M5 metabolite of S-4, ostarine (S-22)

followed by alkaline LLE (pentane and diethyl ether)

LOD 0.1 ng mL −1

(S-4, S-22)

Andarine (S-4), metabolite of S-4

HPLC-MS/MS Human 0.09 Dilute-and-shoot¨¨ LOD1.0ngmL−1 Intra-day precision

5.5–10.3 % Inter-day precision 0.38-4.7 %

[ 47 ]

Andarine (S-4), S-1, S-9, S-24

7.6–11.6 % Inter-day precision 9.9–14.4 % Recovery 85-105 %

[ 48 ]

M1 metabolite of S-1

10–10,000 ng mL−1 Relative recovery 89%

[ 62 ]

Arylpropionamide,

pyrrolidinyl-benzonitrile

Andarine (S-4), ostarine (S-22), S-1, LGD-4033, metabolites:

O-dephenyl andarine, O-dephenyl ostarine

GC-EI-Q-ToF (modes: MS and MS/MS by continuous switching)

followed by LLE (TBME NaHCO 3 /K 2 CO 3 buffer (pH 9.5)) and derivatisation (MSTFA/ethanethiol/NH 4 I)

LLOD 0.2–10 ng mL −1

Bicyclic hydantoin,

quinolinone

BMS-564929, LGD-2226

followed by LLE and derivatisation

LLOD 0.2 ng mL −1

(LGD-2226) LLOD

10 ng mL −1

(BMS-564929)

Intra-day precision 6.8–16.6 % Inter-day precision 12.7–17.7 % Recovery 83–85 %

[ 80 ]

Trang 4

Table 1 (Continued)

volume (mL)

Sample preparation Detection limits Method performance Reference

Bicyclic hydantoin,

benzimidazole

BMS-564929, 5,6-dichloro-benzimidazole derivatives (n = 4)

20 ng mL−1 (BMS-564929)

Intra-day precision 2.4–13.2 % Inter-day precision 6.5–24.2 % Recovery 89–106 %

[ 79 ]

HLOQ 50 ng mL −1

Ly2452473 UHPLC-HRMS

(modes: MS, MS/MS)

HLOQ 10 ng mL −1 Precision ≤ 6.5 %

Accuracy ≤ 9.8 %

[ 65 ] Quinolinone US 6,462,038,

LG-121071

followed by LLE (TBME,

pH 9.6, carbonate buffer (0.1 M)) and

derivatisation (MSTFA/NH 4 I/dithiothreitol)

LOD 1.0 ng mL −1 Linearity

5.0–500 ng mL −1

Intra-day precision 8.1–14.8 % Inter-day precision 9.5-16.2 % Recovery 97-101%

[ 76 ]

LGD-2226, 6-alkylamino-2-quinolinones (n = 2)

followed by SPE (Oasis HLB) and derivatisation (MSTFA)

LOD 0.01–1.0 ng mL −1

LOQ 0.03–3.0 ng mL −1

Linearity LOQ-100 ng mL −1

Intra-day repeatability 5–9 % Recovery 92–111

%

[ 77 ]

LGD-2226, 6-alkylamino-2-quinolinones (n = 3)

followed by LLE (TBME,

pH 9.6, K 2 CO 3 /NaHCO 3

buffer)

LLOD 0.01-0.2 ng mL −1 Intra-day precision

3.2-8.5 % Inter-day precision 6.3-16.6 % Recovery 81-98 %

[ 51 ]

Pyrrolidinyl-benzonitrile

LGD-4033 UHPLC-Q-ToF

(mode: MS E )

followed by SPE (Oasis HLB)

LOD 2.6 ng mL −1

[M-H] − , 0.5 ng mL−1 [M+HCOOH-H]−

Tetrahydroquinolinone LG121071 HPLC-MS/MS Human 1.0 Enzymatic hydrolysis

followed by LLE (TBME,

pH 9.6, carbonate buffer (20%))

LLOD 0.5 ng mL −1 Linearity

0.5–5.0 ng mL −1 , 1–200 ng mL −1

Intra-day precision 2.3–8.5 % Inter-day precision 7.2–11.7 % Recovery 40 %

[ 49 ]

Tricyclic

tetrahy-droquinoline

Tricyclic tetrahy-droquinoline derivatives (n = 3)

followed by LLE (TBME,

pH 9.6, K 2 CO 3 /NaHCO 3

buffer, Na 2 SO 4 )

LLOD 0.2–0.6 ng mL −1

Intra-day precision 6.4–15.1 % Inter-day precision 11.3–21.8 % Recovery 92–97 %

[ 50 ]

9 pharmacophores 15 analytes UHPLC-MS/MS Equine, bovine,

canine, human, murine

0.2 LLE (TBME, NH 4 OH aq.

(50 mM, pH 10.5))

CC␤ 1 ng mL−1,

2 ng mL−1(S-4),

5 ng mL −1

(BMS-564929) eLOD 0.01–0.75 ng mL −1

Precision 9.8–33.6 % (equine) Sensitivity 95–100 % Recovery 74–94 %

Actual method

Trang 5

Fig 1.Chemical structures of SARMs included in the actual UHPLC-MS/MS method.

2.1 Reagentsandapparatus

Ultra-purewater(18.2MOhm)wasgeneratedinhouseusing

a Milliporewater purification system(Millipore, Cork, Ireland)

Methanol (MeOH)and acetonitrile (MeCN), both ChromasolvTM

LC–MSgrade,aswellasammoniumhydroxidesolution,≥25%in

H2Oandaceticacid,botheluentadditivesforLC–MS,weresourced

fromHoneywell(VWRInternational,Dublin,Ireland).LiChrosolv®

LC grade tert-butyl methyl ether (TBME), ethanol (puriss p.a.,

ACSreagent,absolutealcohol,withoutadditive,≥99.8%),dimethyl

sulfoxide(ACSreagent,≥99.9%)andacetonitrile-D,99.5%

(MeCN-D)weresourced from Sigma-Aldrich(Dublin, Ireland).SafeSeal

polypropylene micro tubes (2mL) were obtainedfromSarstedt

(Nümbrecht,Germany) ADVX-2500 multi-tube vortexer(VWR

International,Dublin, Ireland), a Hettich Micro 200R centrifuge

fromDavidson&Hardy(Belfast,UK)andaTurbovapLV

evapo-ratorfromCaliperLifeSciences(MountainView,USA)wereused

duringsamplepreparation.Inthisstudy,thedensityofurinewas

measuredthroughspecificgravity(SG)oftheurinesamplesusing

apocketrefractometerPAL-USG(CAT)fromAtago(Tokyo,Japan)

AC-262536 (P/N 96443-25MG), andarine (S-4, P/N

78986-25MG),bicalutamide(P/NPHR-1678-1G),LGD-2226(P/N

07682-25MG), Ly2452473 (P/N CDS025139-50MG), PF-06260414 (P/N

PZ0343-5MG), S-1 (P/N 68114-25MG), S-6 (P/N 79260-25MG)

andS-23(P/N55939-25MG)werepurchasedfromSigma-Aldrich

(Dublin, Ireland) LGD-4033 (P/N CAY9002046-50mg), ostarine

(S-22, P/N MK-2866) and RAD140 (P/N CAY18773-1mg) were

purchasedfromCambridgeBioscienceLtd.(Cambridge,UK)

BMS-564929(10mMsolutioninDMSO,P/NHV-12111)andGLPG0492

(10mMsolutioninDMSO,P/NHY-18102)werepurchasedfrom

MedChem Express (Sollentuna, Sweden) S-9 (P/N D289535),

Bicalutamide-D4(P/NB382002)andS-1-D4 (P/ND289532)were

purchased from Toronto Research Chemicals (TRC; Toronto,

Canada).Allstandardsandinternalstandardsstocksolutionswere

preparedataconcentrationof1mgmL−1 inMeCN,DMSO,EtOH

andMeCN-D,respectively.Intermediatemixedstandardsolutions werepreparedatthefollowingconcentrations:20/40/100,1/2/5 and0.1/0.2/0.5␮gmL−1inMeCNbyserialdilutions.Working qual-itycontrolstandardsolutionataconcentrationof10/20/50ngmL−1 waspreparedinMeCN.Intermediateinternalstandardmix solu-tions were prepared at 20 and 1␮g mL−1, respectively, using MeCN-Dasthediluent.Aworkinginternalstandardmixsolution waspreparedat50ngmL−1 inMeCN-D.Allstandardsand inter-nalstandardsstocksolutionswerefoundtobestableforatleast oneyearwhenstoredat−20◦Cduring‘in-house’stabilitystudies.

Workingqualitycontrolstandardandworkinginternalstandard mixsolutionswerefoundtobestableforatleast3monthswhen storedat−20◦C.

2.2 Preparationofextractedmatrixscreenpositiveandrecovery controlchecks

Negativequalitycontrol(QC)sampleswereobtainedby pool-ingaliquots(n=5–10)ofnegativeurinesamples.Extractedmatrix screenpositivecontrolswerepreparedbyfortifyingthreenegative

QCsamples(200␮L)priortoextractionwith20␮Lofquality con-trolstandardsolutiontogiveascreeningtargetconcentrationof

1ngmL−1 inurineforallanalytesexcludingandarineand

BMS-564929giving a concentrationof 2and 5ngmL−1,respectively Additionally,twoblankQCsampleswerespikedafterextraction withqualitycontrolstandardsolution(20␮L)tomonitorforloss

ofanalytesduringextraction

2.3 Samplepreparation All sampling and analysis were performed under the guid-anceandapprovaloflocalethicalregulations.Urinesampleswere storedat−80◦Cpriortoanalysis.Urinesampleswerecentrifuged

at4500×gfor10minat4◦C,andfollowingcheckingofpHand specificgravity(SG),aliquoted(200␮L)into2mLmicrotubes Sam-pleswerefortifiedwith20␮Lofa 50ngmL−1 internalstandard mixsolutionandlefttostandfor15min,anda200␮Lvolumeof

Trang 6

con-tentswerevortexedfor60sand1.2mLofTBMEwassubsequently

added.Followingvortexingfor15min,sampleswerecentrifugedat

15,000rpm(21,380×g)for10minat4◦C,andsupernatants

trans-ferredintocleanempty2mLmicrotubesandevaporatedtodryness

underflowofnitrogen(≤5bar) at40◦C onaTurbovap LV

sys-tem.SampleswerereconstitutedinH2O:MeCN(4:1,v/v;100␮L)

byvortexing(5min)and9␮Lofextractswereinjectedontothe

UHPLC-MS/MSsystem

2.4 UHPLC-MS/MSconditions

SeparationswereperformedusingaWaters(Milford,MA,USA)

AcquityI-ClassUPLC®systemcomprisingofastainlesssteelLuna®

OmegaPolarC18analyticalcolumn(100×2.1mm,100Å,1.6␮m)

(Phenomenex,P/N00D-4748-AN)equippedwithKrudKatcherTM

UltraHPLCin-linefilter(Phenomenex,P/NAF0-8497)maintained

ata temperatureof45◦Candthepumpwasoperatedata flow

rateof0.40mLmin−1.Abinarygradientsystemwasusedto

sep-arateanalytescomprisingofmobilephaseA,0.1%(v/v)aceticacid

inwaterandmobilephaseB,0.1%(v/v)aceticacidinMeOH.The

gradientprofilewasasfollows:(1)0.0min20%B,(2)0.5min20%

B,(3)9.0min99%B,(4) 10.0min99%B,(5)10.1min20%B, (6)

12.0min20%B.Theinjectionvolumewas9␮L.Aftereach

injec-tiontheneedlewaswashedandpurgedwithH2O:MeOH(1:1,v/v)

andH2O:MeOH(4:1,v/v)solutions,respectively.Adivertvalvewas

usedtoreducesourcecontamination(8.50–11.50minaflowwas

divertedtowaste)

SARMresidues weredetectedusing a Waters Xevo® TQ-MS

triplequadrupolemassanalyser(Manchester,UK)operatingboth

inpositiveandnegativeelectrosprayionisationmodes(ESI±).The

UHPLC-MS/MSsystem wascontrolled by MassLynxTM software

anddatawasprocessedusingTargetLynxTMsoftware(bothfrom

Waters).Theelectrosprayvoltagewassetat2.5kV(ESI+)and1.0kV

(ESI−),respectively.Thedesolvationandsourcetemperatureswere

setat550and120◦C,respectively.Nitrogenwasemployedasthe

desolvationandconegases,whichweresetat900Lh−1and50L

h−1,respectively.Argonwasemployedasthecollisiongas,ataflow

rateof0.15mLmin−1,whichtypicallygavepressuresof2.5×10-3

mbar.TheMSconditionswereoptimisedusingIntelliStartby

infu-sionof1␮g mL−1 standard solutionsand 50%mobilephases A

andBatflowratesof5␮Lmin−1and0.2mLmin−1,respectively

Theconevoltagewasoptimisedforeach precursorion andtwo

tofourmostabundantproductfragmentionswereselected.The

selectedreactionmonitoring(SRM)windowsweretime-sectored,

anddwell timeand inter-channeldelays weresettoget

maxi-mumresponsefortheinstrument.Theseconditionsareoutlined

inTable2.Interscan delaywassetto5msbetweensuccessive

SRMwindows,inter-channeldelaywassetto5msandpolarity

switching20ms.Dwelltimesrangedfrom0.005to0.300s(Table2)

Availablestableisotope-labelledanaloguesofbicalutamideand

S-1(bicalutamide-D4 andS-1-D4)wereusedasinternalstandards

forarylpropionamideresidues(Table2).Theresponsefactorwas

obtainedforarylpropionamidesasaratiobetweenanalytepeak

areaandinternalstandardpeakarea,whileinthecaseoftheother

SARMresidues,peakareawasusedastheresponse

2.5 Methodvalidation

Themethod wasvalidatedaccording tothe EUCommission

Decision2002/657/ECcriteriaandEuropeanUnionReference

Lab-oratoriesforResidues(EU-RLs)20/1/2010guidelinesforscreening

assays The following performance studies were carried out to

prove the suitability of the method in achieving the goal for

which it wasdeveloped:selectivity, specificity, detection

capa-bility(CC␤), sensitivity, precision,limit of detection(LOD) and

absoluterecoveryaswellasapplicability,ruggednessandmatrix effects.Validationwascarriedoutatthescreeningtarget concen-tration (Cval)of 1ngmL−1 excludingandarineand BMS-564929 validatedat2and5ngmL−1,respectively.Thedetection capabil-ity(CC␤), definedin2002/657/EC,wascalculatedinaccordance withtheEU-RLs20/1/2010guidelines,byassessingthresholdvalue (T)and cut-off factor (Fm).TodeterminetheT-value, 61blank equineurinesamplesofdifferentoriginswereanalysedusingthe methoddescribedaboveonanumberofoccasionsbytwodifferent analyststoobtaintotalof61 datapoints.TheT-valuewas esti-matedforat leasttwo transitionsfor each analyteasa sumof

ameanresponseand1.64timesthestandarddeviationofnoise levelsacquiredfor61blanksamples.Todeterminethecut-off fac-tor(Fm),61blankequineurinesamplesofdifferentoriginswere fortifiedatthescreeningtargetconcentration(Cval)onnumerous occasionsandthesampleswereanalysedbytwodifferentanalysts This gave a total of 61 independent data points for each ana-lyteatthetargetedconcentrationof1ngmL−1excludingandarine (2ngmL−1)andBMS-564929 (5ngmL−1), respectively The cut-offfactor(Fm)wasestimatedforatleasttwotransitionsforeach analyteasameanresponsedecreasedby1.64timesthestandard deviationofresponseacquiredfor61fortifiedsamples.According

totheEuropeanUnionReferenceLaboratoriesforResidues (EU-RLs)20/1/2010guidelines,thedetectioncapability(CC␤)ofthe screeningmethodisvalidatedwhenthecut-offfactorisgreater thanthethresholdvalue(Fm>T).ItcanthenbededucedthatCC␤

istrulybelowthevalidationlevel.Sincetheveryfirstrequirement expectedfromascreeningmethodistoavoidfalsenegative(also called“falsecompliant”) results, thedetectioncapability ofthe methodwasestimatedastheconcentrationlevelwhere≤5%of false-negativeresultsremain

Thesensitivityofthemethodwasexpressedasthepercentage basedontheratioofsamplesdetectedaspositiveintruepositive samplesi.e.followingthefortification[70].Asensitivity≥95%at thescreeningtargetconcentration(Cval)meansthatthenumberof false-negativesamplesistruly≤5%.Despitebeingarequired per-formancecharacteristictobedeterminedsolelyforquantitative methods[68],precisionwascalculatedasthecoefficientof vari-ation(CV)oftheresponsefollowingfortificationatthescreening targetconcentration(Cval).Limitofdetection(LOD)wasestimated

atasignal-to-noiseratio(S/N)atleastthreemeasuredpeaktopeak Followinginitialdeterminationofthedetectioncapability(CC␤) forequineurine,thedevelopedmethodwasappliedtothesame matrixtypefromfourdifferentspecies-bovine,canine,human andmurineurine, respectively.Murineurinewasincludedasa matrix within the validation process in recognitionthat many SARMmetabolisminvivostudiesutiliseexperimentalrodent mod-elsandassuchthedevelopedmethodmayfindapplicationinsuch studies.Theapplicabilityofthescreeningmethodwasevaluatedby analysing20blankurinesamples(n=5perspecies)andthesame

20blankurinesamples(n=5perspecies)fortifiedatthescreening targetconcentration(Cval)usedpreviouslyforequineurine Ani-malspecieswereincludedintheruggednessstudyasfactorsthat couldinfluencetheresults.Moreover,toinvestigatethe rugged-nessofthedevelopedassay,15differentblankurinesamples(n=5 perspecies)andthesame15blankurinesamples(n=5perspecies) fortifiedatthescreeningtargetconcentrationwereanalysedata differentdayandbyadifferentoperatorthatexecutedthe appli-cabilitystudy[69].Toevaluatematrixeffects inequine,bovine, canine,humanandmurineurine,25blanksamplesfrom differ-entsourcesofeachmatrix(n=5)werepost-extractionspikedat theconcentrationequaltotwotimesthescreeningtarget concen-tration(2×Cval),namely2ngmL−1excludingandarine(4ngmL−1) andBMS-564929(10ngmL−1),respectively.Matrixeffectsforeach analytewerecalculatedaspercentagedifferencesbetweenthe sig-nals obtainedwhen matrix extracts were injected and when a

Trang 7

UHPLC-MS/MS conditions for urine samples.

Bicalutamide-D 4 Arylpropionamide C 18 H 10 D 4 F 4 N 2 O 4 S 5.88 433.2 > 255.1 0.007 26 14 13 – N/A

Andarine Arylpropionamide S-4, GTX-007 C 19 H 18 F 3 N 3 O 6 5.83 440.2 > 150.0 d 0.005 30 30 15 – Bicalutamide-D 4

Bicalutamide Arylpropionamide C 18 H 14 F 4 N 2 O 4 S 5.90 429.2 > 255.0 d 0.007 24 16 13 – Bicalutamide-D 4

LGD-4033 Pyrrolidinyl-benzonitrile VK5211 C 14 H 12 F 6 N 2 O 6.70 337.1 > 267.2 d 0.005 28 10 8 – N/A

Ly2452473 Indole

CDS025139, TT-701 C22H22N4O2 6.51 375.2>272.1

Ostarine Arylpropionamide

S-22, EnoboSarm, GTx-024, MK-2866

C 19 H 14 F 3 N 3 O 3 6.20 388.1 > 118.0 d 0.009 30 20 9 – Bicalutamide-D 4

S-9 Arylpropionamide

4-Desacetamido-4-chloro andarine

C 17 H 14 ClF 3 N 2 O 5 7.26 417.2 > 127.0 d 0.009 30 28 12 – Bicalutamide-D 4

a TR, retention time.

b CE, collision energy.

c SRM 1 (6.45–7.05 min); SRM 2 (4.50–5.10 min); SRM 3 (3.60–4.50 min); SRM 4 (6.20–6.80 min); SRM 5 (5.90–6.50 min); SRM 6 (6.55–7.15 min); SRM 7 (5.75–6.35 min); SRM 8 (6.40–7.00 min); SRM 9 (5.90–6.50 min); SRM

10 (6.60–7.20 min); SRM 11 (6.90–7.50 min); SRM 12 (7.00–7.60 min); SRM 13 (5.60–6.20 min); SRM 14 (7.10–7.70 min); SRM 15 (5.55–6.15 min).

d

Trang 8

Fig 2.Overlay of UHPLC-MS/MS traces of equine urine fortified with 15 SARMs at 1/2/5 ng mL −1

standardsolutionofequivalentconcentrationwasinjected,divided

bythesignalofthelatter[71]

2.6 Applicationofthemethod

Themethoddevelopedinthisstudyhasbeenappliedtoroutine

screeningforthepresenceofSARMresiduesinbovineurine

sam-ples(n=51)fromabattoirsacrossIreland,equineurinesamples

(n=61)donatedbytheIrishEquineCentre(IEC),canineurine

sam-ples(n=109)providedbytheIrishGreyhoundBoardandhuman

urinesamplesdonatedbynon-professionalvolunteerathletes(n=

22)aswellasurinesamplesfromathletes(n=20)suppliedbythe

WADAaccreditedAnti-DopingLaboratoryofRome(Italy),selected

amongthosealreadyreportedasnegative,andafter

anonymiza-tion

3.1 Methoddevelopment

3.1.1 UHPLC-MS/MSconditions

In this study,SARM residues wereanalysed by electrospray

ionisationmassspectrometry(ESI-MS)usingbothpositiveand

neg-ativeionisationmodes.DataacquiredinSRMmodebymonitoring

protonated[M+H]+anddeprotonated[M−H]−molecules,

respec-tively Diagnostic ions obtainedwere in agreement with those

reportedintheliterature.Atleasttwomostabundantproduct

frag-mentionsweremonitoredforeachSARMcompoundyieldingat

leastfouridentificationpoints[68].Theelectrosprayvoltage,

des-olvationandsourcetemperatures,desolvation,coneandcollision

gasflowrateswereoptimisedtogetmaximumresponseforthe

instrument.SRMwindowsweretimesectoredandadequate

con-ditionswereestablishedthrougheffectiveset-upofdwelltimes,

inter-scanandinter-channeldelayaswellaspolarityswitching.A

totalof12–15datapointsweretypicallyobtainedacrossapeakto

attainreproducibleintegrationandthusachievehighlyrepeatable

analysis

A number of different mobile phases and additives

includ-ingvolatilebuffer(ammoniumformate)andacid(formic,acetic)

wereassessedwitharangeofUHPLCcolumnchemistries,namely

AcquityUPLC®:HSST3andCSHC18,Cortecs®:C18andT3(allfrom

Waters),Kinetex:F5,EVOC ,andLunaOmegaPolarC (allfrom

Phenomenex).Comparisonofcolumntypeandmobilephase per-formanceweremadebasedonpeakshape(Supplementarydata

-Fig.1)andrelativeabundanceofanalytes(Supplementarydata -Fig.2and3).OptimalLCconditionswereidentifiedasthatbasedon mobilephasescomprisedofwaterandmethanolbothcontaining 0.1%(v/v)aceticacidemployingaLunaOmegaPolarC18column Gradientconditionsandflowratewereadjustedinordertoachieve mostfavourablechromatographicseparation,andaspresentedin Fig.2,allanalyteswereseparatedwithinthefirst7.70minofthe chromatographicrun

3.1.2 Samplepreparation Oneofthemaingoalsofthisstudywastodeveloparapid, sim-pleandcost-effectivesamplepreparationprocedurethatwouldbe suitableforallthe15SARMsofinterestinurinematrixfromfive dif-ferentanimalspecies:equine,bovine,canine,humanandmurine, respectively.Liquid-liquidextraction(LLE)procedureshavebeen successfullyemployedinbothhumanandequinesportdrug test-ing,aswellasinfoodcontrolapplyingarangeoforganicsolvents e.g.tert-butyl-methylether(TBME),ethylacetate(EA)anddiethyl ether[25,42,51].Nevertheless,tothebestoftheauthors’ knowl-edge,nomulti-residueanalyticalmethodbasedonaLLEhasbeen proposedthatcoversallthe15SARMcompoundsincludedinthe current study.Thisresearchinvestigated theimpactof a range

ofextractionparameters,suchasvolumeofequineurinesample (0.2–2.0mL)andorganicsolvent(ratio1:3,1:6,v/v),pH(3.0,5.0, 9.0and 11.0),saltaddition(sodium andammoniumsulphates), andconcentrationfactor(2,4,13.3)inordertoachieve satisfac-toryrecoveryofallthe15analytes.ThepHhadasignificantimpact bothontheextractionofalltheanalytesandmatrixcoextractive interferences.Overall,apHof5.0workedadequatelyforallthe analytesprovidingwithhigherabsoluterecoveryvalues(78–108

%)inequineurine,butontheotherhanditledtothe unaccept-ablesignalsuppressionforsomeoftheSARMs(e.g.BMS-564929, GLPG0492and RAD140)in comparisontoaLLEatpH9.0 Con-sequently,theoptimumresultswereachievedbytheadditionof

200␮Lofabuffersolution(50mMaqueousNH4OH,pH10.5)to

200␮Lofequineurine,settingthepHvaluearound9.0priortoa liquid-liquidextractionwith1.2mLofTBME

Moreover,supported liquid extraction(SLE) in equine urine was tested employing the Isolute SLE+cartridges (1 and 2mL) and96-wellplate(400␮L).Arangeofparameterswereevaluated,

Trang 9

Fig 3.Average absolute recoveries (and standard deviations, shown by error bars) obtained applying SLE and LLE in equine urine fortified at 1 ng mL −1 (n = 2).

includingurinesample volume(0.2–1mL),pHvalue,aswellas

organiceluent(TBME,EAandDCMasrecommendedbythe

man-ufacturer).AmongtheSLEprotocols,recoveryandprecisionwere

thebestworkingwith200␮Lurineand400␮L96-wellplateunder

alkalineconditions(200␮L50mMNH4OHpH10.5)withTBME

Nevertheless,SLEwasnotdeterminedtobeaprocedureofchoice

duetoabsoluterecoverieslower(42–95%)thanthoseobtainedfor

theabove-mentionedLLEwithTBME(69–91%)asoutlinedinFig.3

Followingextraction(LLEandSLE),theorganicsolvent(TBME)

wasevaporatedat40◦Ctodrynessunderastreamofnitrogen.It

wasfoundthatevaporationofsolventtodrynessdidnotleadtoany

significantlosesofanalytesandconsequentlytheuseofdimethyl

sulfoxide(DMSO)asa“keeper”wasavoided.Moreover,arangeof

differentreconstitutionsolventswasinvestigated,andH2O:MeCN

(4:1,v/v),wasfoundtoprovidesatisfactorysensitivitywith

accept-ablepeakshapesofalltheanalytes.Finally,theoptimumconditions

describedinSection2.3providedwithaverageabsolute

recover-ies,calculatedatthescreeningtargetconcentration,intherange

of74–94%forallSARMsof interestinalltestedurine matrices

(Table4)

3.2 Methodvalidation

3.2.1 Selectivity,specificity,andmatrixeffectstudies

Thespecificityofthemethodwasinvestigatedthrough

monitor-ingforinterferencesintheUHPLC-MS/MStracesfortheanalytes

andinternalstandards.Theabsenceofcrosstalkwasverifiedby

injecting analytesand internal standards singly The selectivity

of themethodwasestablishedthrough testing 263urine

sam-ples from different sources coming from five different species

(bovine,canine,equineand murineanimalsaswellashumans)

withoutobservedinterferences.Carry-overwasassessedduring

thevalidation study byinjecting blanksolvent (MeOH)

follow-ingthesamplefortifiedattheconcentrationequaltofivetimes

thescreeningtargetconcentration(5×Cval)anditwasalso

moni-toredduringaroutineanalysisbyinjectingblanksolvent(MeOH)

followingthesamplefortifiedatthescreeningtarget

concentra-tion(screenpositivecontrol).Noanalytesignalappearedinblank

solvent(MeOH) Matrix effects evaluation(Table4)highlighted

bothsuppressionandenhancementeffectsinfivematrices,namely

equine,bovine,canine,humanandmurinespecies,respectively

ThegreatestamountofsuppressionwasobservedforBMS-564929

inequine (72%)and human(47%)urine, both BMS-564929and

RAD140inbovine(50%)andcanine(57%)urine,andRAD140in murine(81%)urinematrix,respectively.On theotherhand,the greatestamountofenhancementwasobservedforbicalutamidein equine(29%)andmurine(29%)urinematrix,respectively Alterna-tively,intheeventthatotherisotope-labelledanaloguesrelatedto SARMcompoundsofinterestaredevelopedand/orbecomemore affordable,theycanbeimplementedasinternalstandardsintothe methodtocompensateforsignallossresultingfrommatrixeffects

soastoimproveaccuracyandprecision

3.2.2 Detectioncapability(CCˇ) SincearecommendedconcentrationforSARMsinurinehasnot beenestablished[38,72],thescreeningtargetconcentrationwas basedontheiranabolicpropertiesandsetatlevelsofexogenous anabolicandrogenicsteroidsandotheranabolicagents[72,73] Val-idationwasperformedatthescreeningtargetconcentration(Cval) setat1ngmL−1excludingandarine(2ngmL−1)andBMS-564929 (5ngmL−1),respectively,andasingleMS/MStransitionwas suffi-cienttoensurethescreeningoftheanalyteaccordingtothecurrent legislation[69].However,thecut-offfactors(Fm)wereabove T-valuesfor atleasttwo transitionsforallSARMsofinterest.The determinedCC␤valueswerebeloworequalthevalidationlevels foratleasttwotransitionsforallanalytes(Table3,Table4and Sup-plementarydataTable1).ThesensitivityashighlightedinTable3 (andSupplementarydata-Table1)was≥95%foratleasttwo tran-sitionsforallSARMs.Moreover,thedeterminedionratioswere within±30%tolerancerangeforalltransitionsofinterest[74].To conclude,allSARMsofinterestcanbedetectedinequineurineby applyingthisscreeningassaywithariskofafalse-negativerate≤5%

asrequiredbythecurrentlegislation[68,69].Inaccordancewith theEUCommissionDecision2002/657/EC,precisionexpressedas

CV,inthecaseofaquantitativemethod,shouldbeaslowas pos-sible(analyteconcentrationbelow100ngmL−1).Theprecisionof thecurrentscreening assaywasobserved tobein therangeof 9.8–30.9%inequineurine(Table3 whereasinthecaseofallother specieswasfoundtorangefrom6.4to48.2%(Supplementarydata –Table2)

Relativecut-off factor(RFm)wascalculatedfor eachanalyte (Table3)(andSupplementarydata–Table1)asthepercentage basedontheratioofthecut-offfactorandthemeanresponseof fortifiedsamples,andwasappliedtoscreenpositivecontrols(QC samples)duringroutineapplicationofthisscreeningtest

Trang 10

Table 3

Validation results for fortified equine urine samples (n = 61).

a Values calculated response-based.

b Estimated LOD (S/N≥3).

c Screening target concentration.

d Calculated as the percentage based on the ratio of the cut-off factor and the mean response of fortified samples.

e Calculated as coefficient of variation (CV) of the response following fortification.

f Expressed as percentage based on the ratio of samples detected as positive in true positive samples, following fortification.

Table 4

Recovery and matrix effect data.

Bicalutamide 94 11.5 −28.9 ± 27.8 −9.5 ± 12.5 −1.4 ± 8.1 −2.0 ± 11.0 −28.9 ± 18.7

PF-06260414 87 10.1 52 ± 13.6 27.4 ± 9.4 30.4 ± 10.1 30.0 ± 4.8 51 ± 12.0

a Recovery was determined by comparing results from fortified samples to those of negative samples spiked post-extraction at the screening target concentration (C val ,

n = 2) Recovery is based on data collected from routine application of the method in five species of interest over 15 month period (n = 25 analytical runs).

b Ion suppression results for urine matrices are based on the analysis of 25 samples (n = 5 per species) from different sources Values calculated as described in Section 2.5 Negative values indicate matrix enhancement.

Resultsfromon-goingQCsamples(negativecontrols(pooled

blankurine)andscreenpositivecontrolsfortifiedatthescreening

target concentration) are being recorded continuously and the

datautilisedtoverifythatthescreeningassayperformsreliably

androbust

3.2.3 Extensionofvalidation:applicationtobovine,canine,

humanandraturine

Followinginitialvalidation ofthedevelopedassayin equine

urine,anextensionofvalidationwasperformedonthesamematrix

typefromfourdifferentspecies-bovine,canine,humanandmurine

urine,respectively.Thevalidationstudywascarriedoutontwo

consecutivedaysonaseriesof20blankurinesamples(n=5per

species)andthesame20blankurinesamples(n=5perspecies)

fortifiedatthescreeningtargetconcentration(Cval),thesameasfor

equineurine,1ngmL−1excludingandarine(2ngmL−1)and

BMS-564929(5ngmL−1),respectively.Thesensitivityashighlightedin

Supplementarydata(Tables2–3),was≥95%foratleasttwo

tran-sitionsfor allSARMs in all matrices of interest and there was

maximumoneresultbelowthecut-offfactorestablishedinitially

forequineurine.Insuchacaseitcanbeconcludedthatthe

devel-oped screening assay is applicable tothe new species, namely bovine,canine,humanandmurineurine,withthesamedetection capability(CC␤)valuesforalltargetanalytesastheoriginalmatrix Theruggednessstudyofthedevelopedassayresultedin cor-rect classificationof all tested samples.In detail, respective 15 blanksamples(n=5perspecies)wereall“screennegative”whereas thecorresponding fortified oneswere all “screenpositive”(i.e exceededthecut-offfactor)

3.2.4 ApplicationofmethodtoanalysisofurinefromSARM exposedanimals

Due to the unavailability of a suitable proficiency test, an inter-laboratory studywasperformed in conjunctionwith RIK-ILT(Wageningen,theNetherlands).Threebovineurinesamples providedbyRIKILT,collectedwithintheframeofanostarine (S-22)administrationstudyinasteercalf[19],weretestedblindly Allsampleswereidentifiedcorrectlyasfollows:onesamplewas screenednegative (collectedbeforethetreatment) andanother twowerescreenedpositive(collected2hand3days,respectively, followinganoraladministrationofostarine)-Fig.4

Ngày đăng: 25/12/2022, 00:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w