A semi-quantitative method was developed to monitor the misuse of 15 SARM compounds belonging to nine different families, in urine matrices from a range of species (equine, canine, human, bovine and murine).
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
a Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5AG, United Kingdom
b Laboratory, Irish Greyhound Board, Limerick Greyhound Stadium, Ireland
c Applied Science Department, Limerick Institute of Technology, Moylish, Limerick, Ireland
d Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Italy
e RIKILT Wageningen University & Research, European Union Reference Laboratory, Wageningen, the Netherlands
f Irish Diagnostic Laboratory Services Ltd., Johnstown, Co Kildare, Ireland
a r t i c l e i n f o
Article history:
Received 25 January 2019
Received in revised form 16 April 2019
Accepted 17 April 2019
Available online 22 April 2019
Keywords:
Selective androgen receptor modulators
UHPLC-MS/MS
Urine
Doping control
Residue and food safety
a b s t r a c t
Investigation of alternative pharmacophores to
anabolic-androgenicsteroids(AAS)whichcanseparateanaboliceffectson
muscleandbonefromandrogenicactivityinothertissuessuch
astheprostateandseminalvesicles[1 hasledtotheemergence
ofselectiveandrogenreceptormodulators(SARMs),aclassof
non-steroidalagentswithaffinityfortheandrogenreceptor(AR)similar
tothatofdihydrotestosterone(DHT)[2 Asaheterogeneousgroup
ofmoleculesincorporatingarangeofpharmacophoresthatlackthe
∗ Corresponding authors.
E-mail addresses: eventura01@qub.ac.uk, emiliano.ventura@outlook.it
(E Ventura), a.gadaj@qub.ac.uk, agadaj@gmail.com (A Gadaj).
steroidnucleusoftestosteroneanddihydrotestosterone[2 SARMs behaveaspartialARagonistsinandrogenictissues(prostateand seminalvesicle)butactmainlyasfullARagonistinanabolic tis-sue(muscleandbone)[1,3 Thestructuralmodificationofknown
AR antagonists, suchas thenonsteroidal antiandrogens bicalu-tamide,flutamide,hydroxyflutamideandnilutamide[2,4 resulted
intheinitialgenerationofnovelnonsteroidalARagonistswithan arylpropionamide-nucleus,namelySARMS-1andandarine(S-4), forpotentialuseastherapeuticsinbenignprostatichyperplasia (BPH)andandrogen-deficiencyrelateddisorders[5–7].Sincethen, severalclasses of chemical scaffoldswith SARM-likeproperties havebeendevelopedexhibitingstronganabolicactivityandhigh tissueselectivity,elevatedabsorptionratesviaoraladministration, andreducedundesirableandrogenicside-effects[8–11].Potential pharmacologicapplicationsofSARMshavebeenfocusedtowards https://doi.org/10.1016/j.chroma.2019.04.050
0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2cancerandotherchronicdiseases,aswellasinhypogonadism,
hor-monereplacementtherapy,malecontraception,benignprostatic
hyperplasia,breastandprostatecancer[8,9
Easeofavailability,simplicityofuse,advantageousbiological
effects[12] andshortdetectionwindows[13,14,23–25,15–22]
arekey featuresincreasing thepotentialfor SARMmisuse, and
consequentlythey are widely recognised as drugs of abuse in
both human and animal (e.g equine and canine) sports, and
asemerging candidatesforillicit useinfood-producing species
[19].AlthoughmanySARMcompoundsarecurrentlyundergoing
evaluationinvariousstudies,asyetnoneareapprovedfor
pharma-ceuticaluse[8 thereiswidespreadSARMavailabilityvia
black-andgrey-marketsources.Recently,variousSARMs(e.g.S-4,S-22
andLGD-4033) havebeenidentified withinblack-market
prod-ucts[26–29],onlinevendors[30–34],andconfiscatedgoods[35]
SARMshave gained particular popularityin professional sports
andarebannedbytheWorldAnti-DopingAgency(WADA)[36],
theInternationalAgreementonBreeding,Racing andWagering
(IABRW)[37]andFédérationEquestreInternationale(International
Equestrian Federation, FEI)[38], withmany reports of positive
findingsfromroutinetesting[39–42].Morerecently,65adverse
analytical findings (AAFs) for a range of SARMs (e.g.andarine,
ostarine,LGD-4033andRAD140)werereportedinhumansportin
2017alone[43].ThepotentialforSARMstobefurtheradoptedfor
useinfood-producinganimals(e.g.incattlelivestock)toincrease
musclegrowthandreducefatmassalsoremainsadistinctthreat
[44]
Advancedand reliablescreening andconfirmatory analytical
assaysare requiredtodetect SARMusefor dopingpractices in
sportandmonitorforpotentialmisuseinstockfarming.Anumber
ofSARMcompoundshavebeensuccessfullyincludedintohuman
anti-dopingcontrol[45–52]withsomeassaysdevelopedforequine
racinganimals[14,17,18,53].However,todateonlyalimited
num-ber of analytical procedures covering solely arylpropionamides
havebeenestablishedforfoodsafetyanalysis[15,16,54,55]
LC-MSandoccasionallyGC-MS-basedapproacheshavebeenapplied
toelucidatethemetabolicpathwaysofsomeemergingSARMsin
variousspeciestosupportthedevelopmentofdetectionassaysfor
thesecompounds[14,19,22,56].Moreover,thedetectionofSARMs
andassociatedmetabolitesincanine[57,58],rodents[57–62],as
wellas humanspecimens [63–67] were conducted to support
SARMclinicalstudies.Whilsturineandbloodarecommon
matri-cesofchoice,faeceshavebeenproposedasanalternativematrix
fortheanalysisofarylpropionamide-derivedcompoundsinbovine
[15,16],canine[57]andrats[57,62].However,thereported
screen-ingand/orconfirmatoryassaysaretypicallycapableofanalysisof
eitherasingleSARMcompoundoralimitednumberofSARMsand
relatedmetabolitesinasinglespecimen(Table1)
In the present study, an innovative fast, simple and
cost-effectivesemi-quantitativemulti-residueUPLC-MS/MSscreening
assay wasdeveloped for a group of 15 key SARM compounds
with different physicochemical properties, chosen based upon
theirreporteduseinhumanandanimalsportsandavailabilityas
certifiedanalyticalstandards.TargetSARMcompoundsincluded
AC-262536,andarine(S-4),bicalutamide,BMS-564929,GLPG0492,
LGD-2226,LGD-4033,Ly2452473, ostarine(S-22),PF-06260414,
RAD140,S-1,S-6,S-9andS-23(Fig.1).Thedevelopedmethodhas
beenvalidatedinurinematricesfromarangeofspecies(equine,
canine,human,bovineandmurine)inaccordancewiththeEU
Com-missionDecision2002/657/ECcriteria[68]and EuropeanUnion
ReferenceLaboratoriesforResidues(EU-RLs)guidelines[69].The
assaywasemployedtoscreenforSARMresiduepresenceinurine
sourcedfromracinganimals(equineandcanine),amateurandelite
athletes,aswellasfarm(bovine)andexperimentallytreated
ani-mals
Sample volume
bicalutamide, ostarine
Linearity 0.0–5.0
1 RSDr
Linearity 2.5–250
bicalutamide, hydroxyflutamide, ostarine
Sensitivity 0.25
Linearity 0.25–30
Precision 0.6–17.6
Trang 3volume (mL)
Sample preparation Detection limits Method performance Reference
buffer (pH 5, 0.2 M) eLOQ0.1ngmL−1 N/A
[ 15 ] 3.0 Enzymatic hydrolysis
followed by SPE (as above)
Andarine (S-4), bicalutamide, hydroxyflutamide, ostarine (S-22)
followed by SPE (Oasis HLB)
LOD 0.015–0.142 ng mL−1
Linearity 0.25–25 ng mL−1
[ 55 ]
USFC-Q-IM-ToF (mode: MS E )
LOD 0.0018–0.0406 ng mL −1
Andarine (S-4), ostarine (S-22)
UHPLC-HRMS (modes: MS, DDA)
followed by on-line SPE (Oasis HLB)
eLOD 1.25 ng mL −1
(S-22), 5 ng mL−1 (S-4)
Inter-day precision 9.4–11.7 % Recovery 11–15 %
[ 53 ]
Andarine (S-4), ostarine (S-22), ostarine glucuronide, S-23, S-24
HPLC-HRMS Human 0.09 “Dilute-and-shoot” LLOD <0.1 ng mL −1 Intra-day precision
3.2–7.7 % Inter-day precision 4.4–14.5 %
[ 45 ]
Andarine (S-4), bicalutamide, ostarine (S-22)
followed by LLE (TBME,
K 2 CO 3 /NaHCO 3 buffer)
CC␣ 0.025 ng mL−1 CC
0.025-0.05 ng mL -1
Linearity 0.0–2.0 ng mL−1 Accuracy 89-105 % RSD r 2.6–10.4 RSD RL 2.9–12.2 %
[ 19 ]
Andarine (S-4), ostarine (S-22)
followed by SPE (Bond-Elut Plexa PCX), 2% aq HCOOH
Andarine (S-4), M5 metabolite of S-4, ostarine (S-22)
followed by alkaline LLE (pentane and diethyl ether)
LOD 0.1 ng mL −1
(S-4, S-22)
Andarine (S-4), metabolite of S-4
HPLC-MS/MS Human 0.09 Dilute-and-shoot¨¨ LOD1.0ngmL−1 Intra-day precision
5.5–10.3 % Inter-day precision 0.38-4.7 %
[ 47 ]
Andarine (S-4), S-1, S-9, S-24
7.6–11.6 % Inter-day precision 9.9–14.4 % Recovery 85-105 %
[ 48 ]
M1 metabolite of S-1
10–10,000 ng mL−1 Relative recovery 89%
[ 62 ]
Arylpropionamide,
pyrrolidinyl-benzonitrile
Andarine (S-4), ostarine (S-22), S-1, LGD-4033, metabolites:
O-dephenyl andarine, O-dephenyl ostarine
GC-EI-Q-ToF (modes: MS and MS/MS by continuous switching)
followed by LLE (TBME NaHCO 3 /K 2 CO 3 buffer (pH 9.5)) and derivatisation (MSTFA/ethanethiol/NH 4 I)
LLOD 0.2–10 ng mL −1
Bicyclic hydantoin,
quinolinone
BMS-564929, LGD-2226
followed by LLE and derivatisation
LLOD 0.2 ng mL −1
(LGD-2226) LLOD
10 ng mL −1
(BMS-564929)
Intra-day precision 6.8–16.6 % Inter-day precision 12.7–17.7 % Recovery 83–85 %
[ 80 ]
Trang 4Table 1 (Continued)
volume (mL)
Sample preparation Detection limits Method performance Reference
Bicyclic hydantoin,
benzimidazole
BMS-564929, 5,6-dichloro-benzimidazole derivatives (n = 4)
20 ng mL−1 (BMS-564929)
Intra-day precision 2.4–13.2 % Inter-day precision 6.5–24.2 % Recovery 89–106 %
[ 79 ]
HLOQ 50 ng mL −1
Ly2452473 UHPLC-HRMS
(modes: MS, MS/MS)
HLOQ 10 ng mL −1 Precision ≤ 6.5 %
Accuracy ≤ 9.8 %
[ 65 ] Quinolinone US 6,462,038,
LG-121071
followed by LLE (TBME,
pH 9.6, carbonate buffer (0.1 M)) and
derivatisation (MSTFA/NH 4 I/dithiothreitol)
LOD 1.0 ng mL −1 Linearity
5.0–500 ng mL −1
Intra-day precision 8.1–14.8 % Inter-day precision 9.5-16.2 % Recovery 97-101%
[ 76 ]
LGD-2226, 6-alkylamino-2-quinolinones (n = 2)
followed by SPE (Oasis HLB) and derivatisation (MSTFA)
LOD 0.01–1.0 ng mL −1
LOQ 0.03–3.0 ng mL −1
Linearity LOQ-100 ng mL −1
Intra-day repeatability 5–9 % Recovery 92–111
%
[ 77 ]
LGD-2226, 6-alkylamino-2-quinolinones (n = 3)
followed by LLE (TBME,
pH 9.6, K 2 CO 3 /NaHCO 3
buffer)
LLOD 0.01-0.2 ng mL −1 Intra-day precision
3.2-8.5 % Inter-day precision 6.3-16.6 % Recovery 81-98 %
[ 51 ]
Pyrrolidinyl-benzonitrile
LGD-4033 UHPLC-Q-ToF
(mode: MS E )
followed by SPE (Oasis HLB)
LOD 2.6 ng mL −1
[M-H] − , 0.5 ng mL−1 [M+HCOOH-H]−
Tetrahydroquinolinone LG121071 HPLC-MS/MS Human 1.0 Enzymatic hydrolysis
followed by LLE (TBME,
pH 9.6, carbonate buffer (20%))
LLOD 0.5 ng mL −1 Linearity
0.5–5.0 ng mL −1 , 1–200 ng mL −1
Intra-day precision 2.3–8.5 % Inter-day precision 7.2–11.7 % Recovery 40 %
[ 49 ]
Tricyclic
tetrahy-droquinoline
Tricyclic tetrahy-droquinoline derivatives (n = 3)
followed by LLE (TBME,
pH 9.6, K 2 CO 3 /NaHCO 3
buffer, Na 2 SO 4 )
LLOD 0.2–0.6 ng mL −1
Intra-day precision 6.4–15.1 % Inter-day precision 11.3–21.8 % Recovery 92–97 %
[ 50 ]
9 pharmacophores 15 analytes UHPLC-MS/MS Equine, bovine,
canine, human, murine
0.2 LLE (TBME, NH 4 OH aq.
(50 mM, pH 10.5))
CC 1 ng mL−1,
2 ng mL−1(S-4),
5 ng mL −1
(BMS-564929) eLOD 0.01–0.75 ng mL −1
Precision 9.8–33.6 % (equine) Sensitivity 95–100 % Recovery 74–94 %
Actual method
Trang 5Fig 1.Chemical structures of SARMs included in the actual UHPLC-MS/MS method.
2.1 Reagentsandapparatus
Ultra-purewater(18.2MOhm)wasgeneratedinhouseusing
a Milliporewater purification system(Millipore, Cork, Ireland)
Methanol (MeOH)and acetonitrile (MeCN), both ChromasolvTM
LC–MSgrade,aswellasammoniumhydroxidesolution,≥25%in
H2Oandaceticacid,botheluentadditivesforLC–MS,weresourced
fromHoneywell(VWRInternational,Dublin,Ireland).LiChrosolv®
LC grade tert-butyl methyl ether (TBME), ethanol (puriss p.a.,
ACSreagent,absolutealcohol,withoutadditive,≥99.8%),dimethyl
sulfoxide(ACSreagent,≥99.9%)andacetonitrile-D,99.5%
(MeCN-D)weresourced from Sigma-Aldrich(Dublin, Ireland).SafeSeal
polypropylene micro tubes (2mL) were obtainedfromSarstedt
(Nümbrecht,Germany) ADVX-2500 multi-tube vortexer(VWR
International,Dublin, Ireland), a Hettich Micro 200R centrifuge
fromDavidson&Hardy(Belfast,UK)andaTurbovapLV
evapo-ratorfromCaliperLifeSciences(MountainView,USA)wereused
duringsamplepreparation.Inthisstudy,thedensityofurinewas
measuredthroughspecificgravity(SG)oftheurinesamplesusing
apocketrefractometerPAL-USG(CAT)fromAtago(Tokyo,Japan)
AC-262536 (P/N 96443-25MG), andarine (S-4, P/N
78986-25MG),bicalutamide(P/NPHR-1678-1G),LGD-2226(P/N
07682-25MG), Ly2452473 (P/N CDS025139-50MG), PF-06260414 (P/N
PZ0343-5MG), S-1 (P/N 68114-25MG), S-6 (P/N 79260-25MG)
andS-23(P/N55939-25MG)werepurchasedfromSigma-Aldrich
(Dublin, Ireland) LGD-4033 (P/N CAY9002046-50mg), ostarine
(S-22, P/N MK-2866) and RAD140 (P/N CAY18773-1mg) were
purchasedfromCambridgeBioscienceLtd.(Cambridge,UK)
BMS-564929(10mMsolutioninDMSO,P/NHV-12111)andGLPG0492
(10mMsolutioninDMSO,P/NHY-18102)werepurchasedfrom
MedChem Express (Sollentuna, Sweden) S-9 (P/N D289535),
Bicalutamide-D4(P/NB382002)andS-1-D4 (P/ND289532)were
purchased from Toronto Research Chemicals (TRC; Toronto,
Canada).Allstandardsandinternalstandardsstocksolutionswere
preparedataconcentrationof1mgmL−1 inMeCN,DMSO,EtOH
andMeCN-D,respectively.Intermediatemixedstandardsolutions werepreparedatthefollowingconcentrations:20/40/100,1/2/5 and0.1/0.2/0.5gmL−1inMeCNbyserialdilutions.Working qual-itycontrolstandardsolutionataconcentrationof10/20/50ngmL−1 waspreparedinMeCN.Intermediateinternalstandardmix solu-tions were prepared at 20 and 1g mL−1, respectively, using MeCN-Dasthediluent.Aworkinginternalstandardmixsolution waspreparedat50ngmL−1 inMeCN-D.Allstandardsand inter-nalstandardsstocksolutionswerefoundtobestableforatleast oneyearwhenstoredat−20◦Cduring‘in-house’stabilitystudies.
Workingqualitycontrolstandardandworkinginternalstandard mixsolutionswerefoundtobestableforatleast3monthswhen storedat−20◦C.
2.2 Preparationofextractedmatrixscreenpositiveandrecovery controlchecks
Negativequalitycontrol(QC)sampleswereobtainedby pool-ingaliquots(n=5–10)ofnegativeurinesamples.Extractedmatrix screenpositivecontrolswerepreparedbyfortifyingthreenegative
QCsamples(200L)priortoextractionwith20Lofquality con-trolstandardsolutiontogiveascreeningtargetconcentrationof
1ngmL−1 inurineforallanalytesexcludingandarineand
BMS-564929giving a concentrationof 2and 5ngmL−1,respectively Additionally,twoblankQCsampleswerespikedafterextraction withqualitycontrolstandardsolution(20L)tomonitorforloss
ofanalytesduringextraction
2.3 Samplepreparation All sampling and analysis were performed under the guid-anceandapprovaloflocalethicalregulations.Urinesampleswere storedat−80◦Cpriortoanalysis.Urinesampleswerecentrifuged
at4500×gfor10minat4◦C,andfollowingcheckingofpHand specificgravity(SG),aliquoted(200L)into2mLmicrotubes Sam-pleswerefortifiedwith20Lofa 50ngmL−1 internalstandard mixsolutionandlefttostandfor15min,anda200Lvolumeof
Trang 6con-tentswerevortexedfor60sand1.2mLofTBMEwassubsequently
added.Followingvortexingfor15min,sampleswerecentrifugedat
15,000rpm(21,380×g)for10minat4◦C,andsupernatants
trans-ferredintocleanempty2mLmicrotubesandevaporatedtodryness
underflowofnitrogen(≤5bar) at40◦C onaTurbovap LV
sys-tem.SampleswerereconstitutedinH2O:MeCN(4:1,v/v;100L)
byvortexing(5min)and9Lofextractswereinjectedontothe
UHPLC-MS/MSsystem
2.4 UHPLC-MS/MSconditions
SeparationswereperformedusingaWaters(Milford,MA,USA)
AcquityI-ClassUPLC®systemcomprisingofastainlesssteelLuna®
OmegaPolarC18analyticalcolumn(100×2.1mm,100Å,1.6m)
(Phenomenex,P/N00D-4748-AN)equippedwithKrudKatcherTM
UltraHPLCin-linefilter(Phenomenex,P/NAF0-8497)maintained
ata temperatureof45◦Candthepumpwasoperatedata flow
rateof0.40mLmin−1.Abinarygradientsystemwasusedto
sep-arateanalytescomprisingofmobilephaseA,0.1%(v/v)aceticacid
inwaterandmobilephaseB,0.1%(v/v)aceticacidinMeOH.The
gradientprofilewasasfollows:(1)0.0min20%B,(2)0.5min20%
B,(3)9.0min99%B,(4) 10.0min99%B,(5)10.1min20%B, (6)
12.0min20%B.Theinjectionvolumewas9L.Aftereach
injec-tiontheneedlewaswashedandpurgedwithH2O:MeOH(1:1,v/v)
andH2O:MeOH(4:1,v/v)solutions,respectively.Adivertvalvewas
usedtoreducesourcecontamination(8.50–11.50minaflowwas
divertedtowaste)
SARMresidues weredetectedusing a Waters Xevo® TQ-MS
triplequadrupolemassanalyser(Manchester,UK)operatingboth
inpositiveandnegativeelectrosprayionisationmodes(ESI±).The
UHPLC-MS/MSsystem wascontrolled by MassLynxTM software
anddatawasprocessedusingTargetLynxTMsoftware(bothfrom
Waters).Theelectrosprayvoltagewassetat2.5kV(ESI+)and1.0kV
(ESI−),respectively.Thedesolvationandsourcetemperatureswere
setat550and120◦C,respectively.Nitrogenwasemployedasthe
desolvationandconegases,whichweresetat900Lh−1and50L
h−1,respectively.Argonwasemployedasthecollisiongas,ataflow
rateof0.15mLmin−1,whichtypicallygavepressuresof2.5×10-3
mbar.TheMSconditionswereoptimisedusingIntelliStartby
infu-sionof1g mL−1 standard solutionsand 50%mobilephases A
andBatflowratesof5Lmin−1and0.2mLmin−1,respectively
Theconevoltagewasoptimisedforeach precursorion andtwo
tofourmostabundantproductfragmentionswereselected.The
selectedreactionmonitoring(SRM)windowsweretime-sectored,
anddwell timeand inter-channeldelays weresettoget
maxi-mumresponsefortheinstrument.Theseconditionsareoutlined
inTable2.Interscan delaywassetto5msbetweensuccessive
SRMwindows,inter-channeldelaywassetto5msandpolarity
switching20ms.Dwelltimesrangedfrom0.005to0.300s(Table2)
Availablestableisotope-labelledanaloguesofbicalutamideand
S-1(bicalutamide-D4 andS-1-D4)wereusedasinternalstandards
forarylpropionamideresidues(Table2).Theresponsefactorwas
obtainedforarylpropionamidesasaratiobetweenanalytepeak
areaandinternalstandardpeakarea,whileinthecaseoftheother
SARMresidues,peakareawasusedastheresponse
2.5 Methodvalidation
Themethod wasvalidatedaccording tothe EUCommission
Decision2002/657/ECcriteriaandEuropeanUnionReference
Lab-oratoriesforResidues(EU-RLs)20/1/2010guidelinesforscreening
assays The following performance studies were carried out to
prove the suitability of the method in achieving the goal for
which it wasdeveloped:selectivity, specificity, detection
capa-bility(CC), sensitivity, precision,limit of detection(LOD) and
absoluterecoveryaswellasapplicability,ruggednessandmatrix effects.Validationwascarriedoutatthescreeningtarget concen-tration (Cval)of 1ngmL−1 excludingandarineand BMS-564929 validatedat2and5ngmL−1,respectively.Thedetection capabil-ity(CC), definedin2002/657/EC,wascalculatedinaccordance withtheEU-RLs20/1/2010guidelines,byassessingthresholdvalue (T)and cut-off factor (Fm).TodeterminetheT-value, 61blank equineurinesamplesofdifferentoriginswereanalysedusingthe methoddescribedaboveonanumberofoccasionsbytwodifferent analyststoobtaintotalof61 datapoints.TheT-valuewas esti-matedforat leasttwo transitionsfor each analyteasa sumof
ameanresponseand1.64timesthestandarddeviationofnoise levelsacquiredfor61blanksamples.Todeterminethecut-off fac-tor(Fm),61blankequineurinesamplesofdifferentoriginswere fortifiedatthescreeningtargetconcentration(Cval)onnumerous occasionsandthesampleswereanalysedbytwodifferentanalysts This gave a total of 61 independent data points for each ana-lyteatthetargetedconcentrationof1ngmL−1excludingandarine (2ngmL−1)andBMS-564929 (5ngmL−1), respectively The cut-offfactor(Fm)wasestimatedforatleasttwotransitionsforeach analyteasameanresponsedecreasedby1.64timesthestandard deviationofresponseacquiredfor61fortifiedsamples.According
totheEuropeanUnionReferenceLaboratoriesforResidues (EU-RLs)20/1/2010guidelines,thedetectioncapability(CC)ofthe screeningmethodisvalidatedwhenthecut-offfactorisgreater thanthethresholdvalue(Fm>T).ItcanthenbededucedthatCC
istrulybelowthevalidationlevel.Sincetheveryfirstrequirement expectedfromascreeningmethodistoavoidfalsenegative(also called“falsecompliant”) results, thedetectioncapability ofthe methodwasestimatedastheconcentrationlevelwhere≤5%of false-negativeresultsremain
Thesensitivityofthemethodwasexpressedasthepercentage basedontheratioofsamplesdetectedaspositiveintruepositive samplesi.e.followingthefortification[70].Asensitivity≥95%at thescreeningtargetconcentration(Cval)meansthatthenumberof false-negativesamplesistruly≤5%.Despitebeingarequired per-formancecharacteristictobedeterminedsolelyforquantitative methods[68],precisionwascalculatedasthecoefficientof vari-ation(CV)oftheresponsefollowingfortificationatthescreening targetconcentration(Cval).Limitofdetection(LOD)wasestimated
atasignal-to-noiseratio(S/N)atleastthreemeasuredpeaktopeak Followinginitialdeterminationofthedetectioncapability(CC) forequineurine,thedevelopedmethodwasappliedtothesame matrixtypefromfourdifferentspecies-bovine,canine,human andmurineurine, respectively.Murineurinewasincludedasa matrix within the validation process in recognitionthat many SARMmetabolisminvivostudiesutiliseexperimentalrodent mod-elsandassuchthedevelopedmethodmayfindapplicationinsuch studies.Theapplicabilityofthescreeningmethodwasevaluatedby analysing20blankurinesamples(n=5perspecies)andthesame
20blankurinesamples(n=5perspecies)fortifiedatthescreening targetconcentration(Cval)usedpreviouslyforequineurine Ani-malspecieswereincludedintheruggednessstudyasfactorsthat couldinfluencetheresults.Moreover,toinvestigatethe rugged-nessofthedevelopedassay,15differentblankurinesamples(n=5 perspecies)andthesame15blankurinesamples(n=5perspecies) fortifiedatthescreeningtargetconcentrationwereanalysedata differentdayandbyadifferentoperatorthatexecutedthe appli-cabilitystudy[69].Toevaluatematrixeffects inequine,bovine, canine,humanandmurineurine,25blanksamplesfrom differ-entsourcesofeachmatrix(n=5)werepost-extractionspikedat theconcentrationequaltotwotimesthescreeningtarget concen-tration(2×Cval),namely2ngmL−1excludingandarine(4ngmL−1) andBMS-564929(10ngmL−1),respectively.Matrixeffectsforeach analytewerecalculatedaspercentagedifferencesbetweenthe sig-nals obtainedwhen matrix extracts were injected and when a
Trang 7UHPLC-MS/MS conditions for urine samples.
Bicalutamide-D 4 Arylpropionamide C 18 H 10 D 4 F 4 N 2 O 4 S 5.88 433.2 > 255.1 0.007 26 14 13 – N/A
Andarine Arylpropionamide S-4, GTX-007 C 19 H 18 F 3 N 3 O 6 5.83 440.2 > 150.0 d 0.005 30 30 15 – Bicalutamide-D 4
Bicalutamide Arylpropionamide C 18 H 14 F 4 N 2 O 4 S 5.90 429.2 > 255.0 d 0.007 24 16 13 – Bicalutamide-D 4
LGD-4033 Pyrrolidinyl-benzonitrile VK5211 C 14 H 12 F 6 N 2 O 6.70 337.1 > 267.2 d 0.005 28 10 8 – N/A
Ly2452473 Indole
CDS025139, TT-701 C22H22N4O2 6.51 375.2>272.1
Ostarine Arylpropionamide
S-22, EnoboSarm, GTx-024, MK-2866
C 19 H 14 F 3 N 3 O 3 6.20 388.1 > 118.0 d 0.009 30 20 9 – Bicalutamide-D 4
S-9 Arylpropionamide
4-Desacetamido-4-chloro andarine
C 17 H 14 ClF 3 N 2 O 5 7.26 417.2 > 127.0 d 0.009 30 28 12 – Bicalutamide-D 4
a TR, retention time.
b CE, collision energy.
c SRM 1 (6.45–7.05 min); SRM 2 (4.50–5.10 min); SRM 3 (3.60–4.50 min); SRM 4 (6.20–6.80 min); SRM 5 (5.90–6.50 min); SRM 6 (6.55–7.15 min); SRM 7 (5.75–6.35 min); SRM 8 (6.40–7.00 min); SRM 9 (5.90–6.50 min); SRM
10 (6.60–7.20 min); SRM 11 (6.90–7.50 min); SRM 12 (7.00–7.60 min); SRM 13 (5.60–6.20 min); SRM 14 (7.10–7.70 min); SRM 15 (5.55–6.15 min).
d
Trang 8Fig 2.Overlay of UHPLC-MS/MS traces of equine urine fortified with 15 SARMs at 1/2/5 ng mL −1
standardsolutionofequivalentconcentrationwasinjected,divided
bythesignalofthelatter[71]
2.6 Applicationofthemethod
Themethoddevelopedinthisstudyhasbeenappliedtoroutine
screeningforthepresenceofSARMresiduesinbovineurine
sam-ples(n=51)fromabattoirsacrossIreland,equineurinesamples
(n=61)donatedbytheIrishEquineCentre(IEC),canineurine
sam-ples(n=109)providedbytheIrishGreyhoundBoardandhuman
urinesamplesdonatedbynon-professionalvolunteerathletes(n=
22)aswellasurinesamplesfromathletes(n=20)suppliedbythe
WADAaccreditedAnti-DopingLaboratoryofRome(Italy),selected
amongthosealreadyreportedasnegative,andafter
anonymiza-tion
3.1 Methoddevelopment
3.1.1 UHPLC-MS/MSconditions
In this study,SARM residues wereanalysed by electrospray
ionisationmassspectrometry(ESI-MS)usingbothpositiveand
neg-ativeionisationmodes.DataacquiredinSRMmodebymonitoring
protonated[M+H]+anddeprotonated[M−H]−molecules,
respec-tively Diagnostic ions obtainedwere in agreement with those
reportedintheliterature.Atleasttwomostabundantproduct
frag-mentionsweremonitoredforeachSARMcompoundyieldingat
leastfouridentificationpoints[68].Theelectrosprayvoltage,
des-olvationandsourcetemperatures,desolvation,coneandcollision
gasflowrateswereoptimisedtogetmaximumresponseforthe
instrument.SRMwindowsweretimesectoredandadequate
con-ditionswereestablishedthrougheffectiveset-upofdwelltimes,
inter-scanandinter-channeldelayaswellaspolarityswitching.A
totalof12–15datapointsweretypicallyobtainedacrossapeakto
attainreproducibleintegrationandthusachievehighlyrepeatable
analysis
A number of different mobile phases and additives
includ-ingvolatilebuffer(ammoniumformate)andacid(formic,acetic)
wereassessedwitharangeofUHPLCcolumnchemistries,namely
AcquityUPLC®:HSST3andCSHC18,Cortecs®:C18andT3(allfrom
Waters),Kinetex:F5,EVOC ,andLunaOmegaPolarC (allfrom
Phenomenex).Comparisonofcolumntypeandmobilephase per-formanceweremadebasedonpeakshape(Supplementarydata
-Fig.1)andrelativeabundanceofanalytes(Supplementarydata -Fig.2and3).OptimalLCconditionswereidentifiedasthatbasedon mobilephasescomprisedofwaterandmethanolbothcontaining 0.1%(v/v)aceticacidemployingaLunaOmegaPolarC18column Gradientconditionsandflowratewereadjustedinordertoachieve mostfavourablechromatographicseparation,andaspresentedin Fig.2,allanalyteswereseparatedwithinthefirst7.70minofthe chromatographicrun
3.1.2 Samplepreparation Oneofthemaingoalsofthisstudywastodeveloparapid, sim-pleandcost-effectivesamplepreparationprocedurethatwouldbe suitableforallthe15SARMsofinterestinurinematrixfromfive dif-ferentanimalspecies:equine,bovine,canine,humanandmurine, respectively.Liquid-liquidextraction(LLE)procedureshavebeen successfullyemployedinbothhumanandequinesportdrug test-ing,aswellasinfoodcontrolapplyingarangeoforganicsolvents e.g.tert-butyl-methylether(TBME),ethylacetate(EA)anddiethyl ether[25,42,51].Nevertheless,tothebestoftheauthors’ knowl-edge,nomulti-residueanalyticalmethodbasedonaLLEhasbeen proposedthatcoversallthe15SARMcompoundsincludedinthe current study.Thisresearchinvestigated theimpactof a range
ofextractionparameters,suchasvolumeofequineurinesample (0.2–2.0mL)andorganicsolvent(ratio1:3,1:6,v/v),pH(3.0,5.0, 9.0and 11.0),saltaddition(sodium andammoniumsulphates), andconcentrationfactor(2,4,13.3)inordertoachieve satisfac-toryrecoveryofallthe15analytes.ThepHhadasignificantimpact bothontheextractionofalltheanalytesandmatrixcoextractive interferences.Overall,apHof5.0workedadequatelyforallthe analytesprovidingwithhigherabsoluterecoveryvalues(78–108
%)inequineurine,butontheotherhanditledtothe unaccept-ablesignalsuppressionforsomeoftheSARMs(e.g.BMS-564929, GLPG0492and RAD140)in comparisontoaLLEatpH9.0 Con-sequently,theoptimumresultswereachievedbytheadditionof
200Lofabuffersolution(50mMaqueousNH4OH,pH10.5)to
200Lofequineurine,settingthepHvaluearound9.0priortoa liquid-liquidextractionwith1.2mLofTBME
Moreover,supported liquid extraction(SLE) in equine urine was tested employing the Isolute SLE+cartridges (1 and 2mL) and96-wellplate(400L).Arangeofparameterswereevaluated,
Trang 9Fig 3.Average absolute recoveries (and standard deviations, shown by error bars) obtained applying SLE and LLE in equine urine fortified at 1 ng mL −1 (n = 2).
includingurinesample volume(0.2–1mL),pHvalue,aswellas
organiceluent(TBME,EAandDCMasrecommendedbythe
man-ufacturer).AmongtheSLEprotocols,recoveryandprecisionwere
thebestworkingwith200Lurineand400L96-wellplateunder
alkalineconditions(200L50mMNH4OHpH10.5)withTBME
Nevertheless,SLEwasnotdeterminedtobeaprocedureofchoice
duetoabsoluterecoverieslower(42–95%)thanthoseobtainedfor
theabove-mentionedLLEwithTBME(69–91%)asoutlinedinFig.3
Followingextraction(LLEandSLE),theorganicsolvent(TBME)
wasevaporatedat40◦Ctodrynessunderastreamofnitrogen.It
wasfoundthatevaporationofsolventtodrynessdidnotleadtoany
significantlosesofanalytesandconsequentlytheuseofdimethyl
sulfoxide(DMSO)asa“keeper”wasavoided.Moreover,arangeof
differentreconstitutionsolventswasinvestigated,andH2O:MeCN
(4:1,v/v),wasfoundtoprovidesatisfactorysensitivitywith
accept-ablepeakshapesofalltheanalytes.Finally,theoptimumconditions
describedinSection2.3providedwithaverageabsolute
recover-ies,calculatedatthescreeningtargetconcentration,intherange
of74–94%forallSARMsof interestinalltestedurine matrices
(Table4)
3.2 Methodvalidation
3.2.1 Selectivity,specificity,andmatrixeffectstudies
Thespecificityofthemethodwasinvestigatedthrough
monitor-ingforinterferencesintheUHPLC-MS/MStracesfortheanalytes
andinternalstandards.Theabsenceofcrosstalkwasverifiedby
injecting analytesand internal standards singly The selectivity
of themethodwasestablishedthrough testing 263urine
sam-ples from different sources coming from five different species
(bovine,canine,equineand murineanimalsaswellashumans)
withoutobservedinterferences.Carry-overwasassessedduring
thevalidation study byinjecting blanksolvent (MeOH)
follow-ingthesamplefortifiedattheconcentrationequaltofivetimes
thescreeningtargetconcentration(5×Cval)anditwasalso
moni-toredduringaroutineanalysisbyinjectingblanksolvent(MeOH)
followingthesamplefortifiedatthescreeningtarget
concentra-tion(screenpositivecontrol).Noanalytesignalappearedinblank
solvent(MeOH) Matrix effects evaluation(Table4)highlighted
bothsuppressionandenhancementeffectsinfivematrices,namely
equine,bovine,canine,humanandmurinespecies,respectively
ThegreatestamountofsuppressionwasobservedforBMS-564929
inequine (72%)and human(47%)urine, both BMS-564929and
RAD140inbovine(50%)andcanine(57%)urine,andRAD140in murine(81%)urinematrix,respectively.On theotherhand,the greatestamountofenhancementwasobservedforbicalutamidein equine(29%)andmurine(29%)urinematrix,respectively Alterna-tively,intheeventthatotherisotope-labelledanaloguesrelatedto SARMcompoundsofinterestaredevelopedand/orbecomemore affordable,theycanbeimplementedasinternalstandardsintothe methodtocompensateforsignallossresultingfrommatrixeffects
soastoimproveaccuracyandprecision
3.2.2 Detectioncapability(CCˇ) SincearecommendedconcentrationforSARMsinurinehasnot beenestablished[38,72],thescreeningtargetconcentrationwas basedontheiranabolicpropertiesandsetatlevelsofexogenous anabolicandrogenicsteroidsandotheranabolicagents[72,73] Val-idationwasperformedatthescreeningtargetconcentration(Cval) setat1ngmL−1excludingandarine(2ngmL−1)andBMS-564929 (5ngmL−1),respectively,andasingleMS/MStransitionwas suffi-cienttoensurethescreeningoftheanalyteaccordingtothecurrent legislation[69].However,thecut-offfactors(Fm)wereabove T-valuesfor atleasttwo transitionsforallSARMsofinterest.The determinedCCvalueswerebeloworequalthevalidationlevels foratleasttwotransitionsforallanalytes(Table3,Table4and Sup-plementarydataTable1).ThesensitivityashighlightedinTable3 (andSupplementarydata-Table1)was≥95%foratleasttwo tran-sitionsforallSARMs.Moreover,thedeterminedionratioswere within±30%tolerancerangeforalltransitionsofinterest[74].To conclude,allSARMsofinterestcanbedetectedinequineurineby applyingthisscreeningassaywithariskofafalse-negativerate≤5%
asrequiredbythecurrentlegislation[68,69].Inaccordancewith theEUCommissionDecision2002/657/EC,precisionexpressedas
CV,inthecaseofaquantitativemethod,shouldbeaslowas pos-sible(analyteconcentrationbelow100ngmL−1).Theprecisionof thecurrentscreening assaywasobserved tobein therangeof 9.8–30.9%inequineurine(Table3 whereasinthecaseofallother specieswasfoundtorangefrom6.4to48.2%(Supplementarydata –Table2)
Relativecut-off factor(RFm)wascalculatedfor eachanalyte (Table3)(andSupplementarydata–Table1)asthepercentage basedontheratioofthecut-offfactorandthemeanresponseof fortifiedsamples,andwasappliedtoscreenpositivecontrols(QC samples)duringroutineapplicationofthisscreeningtest
Trang 10Table 3
Validation results for fortified equine urine samples (n = 61).
a Values calculated response-based.
b Estimated LOD (S/N≥3).
c Screening target concentration.
d Calculated as the percentage based on the ratio of the cut-off factor and the mean response of fortified samples.
e Calculated as coefficient of variation (CV) of the response following fortification.
f Expressed as percentage based on the ratio of samples detected as positive in true positive samples, following fortification.
Table 4
Recovery and matrix effect data.
Bicalutamide 94 11.5 −28.9 ± 27.8 −9.5 ± 12.5 −1.4 ± 8.1 −2.0 ± 11.0 −28.9 ± 18.7
PF-06260414 87 10.1 52 ± 13.6 27.4 ± 9.4 30.4 ± 10.1 30.0 ± 4.8 51 ± 12.0
a Recovery was determined by comparing results from fortified samples to those of negative samples spiked post-extraction at the screening target concentration (C val ,
n = 2) Recovery is based on data collected from routine application of the method in five species of interest over 15 month period (n = 25 analytical runs).
b Ion suppression results for urine matrices are based on the analysis of 25 samples (n = 5 per species) from different sources Values calculated as described in Section 2.5 Negative values indicate matrix enhancement.
Resultsfromon-goingQCsamples(negativecontrols(pooled
blankurine)andscreenpositivecontrolsfortifiedatthescreening
target concentration) are being recorded continuously and the
datautilisedtoverifythatthescreeningassayperformsreliably
androbust
3.2.3 Extensionofvalidation:applicationtobovine,canine,
humanandraturine
Followinginitialvalidation ofthedevelopedassayin equine
urine,anextensionofvalidationwasperformedonthesamematrix
typefromfourdifferentspecies-bovine,canine,humanandmurine
urine,respectively.Thevalidationstudywascarriedoutontwo
consecutivedaysonaseriesof20blankurinesamples(n=5per
species)andthesame20blankurinesamples(n=5perspecies)
fortifiedatthescreeningtargetconcentration(Cval),thesameasfor
equineurine,1ngmL−1excludingandarine(2ngmL−1)and
BMS-564929(5ngmL−1),respectively.Thesensitivityashighlightedin
Supplementarydata(Tables2–3),was≥95%foratleasttwo
tran-sitionsfor allSARMs in all matrices of interest and there was
maximumoneresultbelowthecut-offfactorestablishedinitially
forequineurine.Insuchacaseitcanbeconcludedthatthe
devel-oped screening assay is applicable tothe new species, namely bovine,canine,humanandmurineurine,withthesamedetection capability(CC)valuesforalltargetanalytesastheoriginalmatrix Theruggednessstudyofthedevelopedassayresultedin cor-rect classificationof all tested samples.In detail, respective 15 blanksamples(n=5perspecies)wereall“screennegative”whereas thecorresponding fortified oneswere all “screenpositive”(i.e exceededthecut-offfactor)
3.2.4 ApplicationofmethodtoanalysisofurinefromSARM exposedanimals
Due to the unavailability of a suitable proficiency test, an inter-laboratory studywasperformed in conjunctionwith RIK-ILT(Wageningen,theNetherlands).Threebovineurinesamples providedbyRIKILT,collectedwithintheframeofanostarine (S-22)administrationstudyinasteercalf[19],weretestedblindly Allsampleswereidentifiedcorrectlyasfollows:onesamplewas screenednegative (collectedbeforethetreatment) andanother twowerescreenedpositive(collected2hand3days,respectively, followinganoraladministrationofostarine)-Fig.4