Mandatory disclosure of the species identity, production method, and geographical origin are embedded in the regulations and traceability systems, governing international seafood trade. A high-resolution mass spectrometry-based metabolomics approach could simultaneously authenticate the species identity and geographical origin of commercially important shrimps.
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
a Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, United Kingdom
b ICAR-Central Institute of Fisheries Technology, Cochin, India
c Mass Spectrometry Core Technology Unit, Queen’s University Belfast, United Kingdom
d School of Pharmacy, Queen’s University Belfast, United Kingdom
e University of Chemistry and Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic
a r t i c l e i n f o
Article history:
Received 2 November 2018
Received in revised form 18 February 2019
Accepted 1 April 2019
Available online 3 April 2019
Keywords:
Untargeted metabolomics
Chemometrics
Biomarker identification
Shrimp fraud
Species authentication
a b s t r a c t
Mandatorydisclosureofthespeciesidentity,productionmethod,andgeographicaloriginare embed-dedintheregulationsandtraceabilitysystems,governinginternationalseafoodtrade.Ahigh-resolution massspectrometry-basedmetabolomicsapproachcouldsimultaneouslyauthenticatethespecies iden-tityandgeographicaloriginofcommerciallyimportantshrimps.Thehighlyinnovativeapproachspared theneedformultipletestingmethodswhichareinroutineusecurrently.Arobustchemometricmodel, developedusingthemetabolitefingerprintdataset,couldaccuratelypredictthespeciesidentityofthe shrimpsamples.Subsequently,species-specificbiomarkerswerediscoveredandatandemmass spec-trometrymethodforauthenticationofthespecieswasdeveloped.Twootherchemometricmodelsfrom themetabolomicsexperimentaccuratelypredictedthegeographicaloriginofkingprawnsandtiger prawns.Thestudyhasshownforthefirsttimethatfood-metabolomicsalongwithchemometricscan simultaneouslycheckformultipleseafoodfraudissuesintheglobalseafoodsupply-chain
©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Fisheriesandaquacultureproductsareamajorsourceof
liveli-hoodandsustenanceforbillionsofpeopleglobally.TheFoodand
AgricultureOrganisationoftheUnitedNations(FAO)hasestimated
theannual exporttradeof seafoodalone toUS$150billion[1
Unfortunately,seafoodisalsooneofthemostprominentfood
cat-egoriesassociatedwithfoodfraud,underminingthecredibilityof
thewholeseafoodsupplychain[2,3 Seafoodfraudnotonly
threat-enshealthandsafetyofconsumers,alsoputsouroceansandother
waterresourcesatrisk[4 Shrimpsandprawnsareconsideredas
avaluableseafoodproductthataccountsforabout15%ofthetotal
valueofinternationallytradedfisheryandaquacultureproducts
amountingtoaboutUS$43billion[5 Scandals,suchasfraudulent
∗ Corresponding author at: ICAR-Central Institute of Fisheries Technology,
Cochin-28, Kerala, India.
E-mail addresses: niladri icar@hotmail.com , Niladri.Chatterjee@icar.gov.in
(N.S Chatterjee).
labelingoflowvaluespeciesaspremiumspeciesofshrimpsand labelingaquaculturewhitelegshrimp(Litopenaeusvannamei)as premiumwildcaughtshrimphavebeenreportedbyinternational environmentalnonprofit groups[6 Disturbingreports ofslave labourin Thailandshrimpindustry havesurfacedinthemedia, promptingthefoodindustrygiantNestletoinitiatestringent mea-surestopreventhumanrightsabusesintheseafoodsupplychain
inThailand[7 Internationallawsentitleconsumerstoknowthecommercial identityofthespecies,productionmethod(wildcaughtorfarmed) andgeographicaloriginforallcategoriesoffisheryandaquaculture products.Together,thesethreepiecesofinformation constitute the“Traceability”ofaseafoodproduct[8,9 DNAprofilingbased techniquesareconsideredgoldstandard forspecies authentica-tionofseafood.However,successoftheapproachheavilyrelies
ontheavailabilityofcomprehensivereferencesequencelibraries Authenticationofgeographicaloriginandproductionmethodusing DNAbasedtechniquesishighlychallengingandreportsofsuch application are very few [10–12] Similarly proteomics strate-giesaremostlysuitableforauthenticationofspeciesidentityand https://doi.org/10.1016/j.chroma.2019.04.001
0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Trang 2detectingadulterationof ingredients [13–15] Among the
tech-niquesusedtodeterminethegeographicaloriginandproduction
methodofseafood,multi-elementandstableisotoperatioanalysis
approachesarethemostsuccessfullyemployed[5,16].However,
thesedifferentanalyticaltechniquesoftenrequirecomplex
sam-plepreparation,differenttypesofanalyticalplatformsandoften
longassayruntimes.Thisisasignificantdisadvantagewhiletrying
tomanagetraceabilityinafast-moving,complexsupplychainof
perishableseafood
The complete set of metabolites synthesized in a biological
systemconstituteits ‘metabolome’ and is directlylinked toan
organism’sgeneticmake-up,foodintakeandchangesinthe
envi-ronment, it lives in [17] The targeted metabolomics approach
emphasizeson detectionand quantification of a few classes of
compounds,mostly using a unit resolution massspectrometer
Unitresolutionmassspectrometerwithtriplequadrupolemass
analyzer has the advantage of using selective reaction
mon-itoring (SRM) or multiple reaction monitoring (MRM) mode,
detectingthetargetcompoundsattracelevelincomplex
matri-ces.Untargetedmetabolomicswhichintendstostudytheglobal
‘metabolite fingerprint’ of a sample have several advantages
over targetedapproach such ascombining targeted and
untar-geted screening, novel biomarker discovery and retrospective
data analysis Over the last five years, high-resolution mass
spectrometer(HRMS)hasestablisheditselfasthepreferred
ana-lytical choice in untargeted metabolomics research, driven by
increasedaffordability, unsurpassedsensitivityand high
resolu-tion[18–20].HRMSbaseduntargetedmetabolomicscoupledwith
thepowerof chemometricsdataanalysiscanpotentially
inves-tigate multiple authenticity issues within a single experiment
[21,22]
HRMSbasedmetabolitefingerprintingandchemometricshave
beenusedfor authenticationofseafood/fishonlyontwo
previ-ousinstances.Metabolitefingerprintingonatwodimensionalgas
chromatographyandtimeofflightmassspectrometrywasusedto
distinguishtwobivalvespecies[23].ARapidevaporativeionisation
massspectrometry(REIMS)basedmetabolomicsprofileapproach
wasreportedrecentlyforaccurateidentificationofspeciesidentity
offivedifferentwhitefishfillet[24].Toourknowledge,HRMSbased
untargetedmetabolomicsapproachhasnotbeensofarappliedto
testmultiplefoodfraudissuesinasinglemetabolomics
experi-ment
Inthisstudy,weaimtoexplorethefeasibilityof
authenticat-ingspeciesidentity,geographicalorigin,andproductionmethodof
commerciallyimportantshrimpsandprawnsinasingleuntargeted
metabolomicsexperiment
2 Materials and methods
2.1 Samplescollection
Authenticsampleswerecollectedeither directlyfrom
aqua-culture farms linked to the ICAR-Central Institute of Fisheries
Technologyin India or througha number ofsupermarket
sup-plychainsintheUnitedKingdom.Fivecommerciallyimportant
speciesofshrimps;tigerprawn(Penaeus monodon),kingprawn
(Litopenaeusvannamei),Indianwhiteshrimp(Fenneropenaeus
indi-cus),Indianpinkshrimp(Metapenaeusmonoceros)andArgentinian
red shrimp (Pleoticus muelleri) were considered for developing
chemometricmodelsforspeciesauthentication.Thetigerprawn
samplesincludedwildcaughtprawnsfromIndiaand
Madagas-car;andfarmedprawnsfromVietnamandSriLanka.Farmedking
prawnswereobtainedfromIndia,Thailand,Vietnam,and
Hon-duras.Thesamplesweretransportedtothelaboratorywithin24h
ininsulatedpolystyreneboxeswithdryiceandstoredfrozenat
−80◦Cfollowingremovaloftheheadandoutershell.Thesamples
werefreeze-driedimmediatelyafterwardsandstoredinlabelled polypropylenecontainersat−80◦C.
2.2 Samplespreparation Tenindividualshrimpsampleswerepooledtogethertoobtain onerepresentativesampleforaclassofshrimp,labeledbasedon speciesidentityand countryof origin.Likewise,for aparticular classof shrimpthreerepresentative sampleswereobtained.As pre-treatment,thefreeze-driedsampleswerehomogenizedina planetaryballmill(RetschGmbHPM200,Haan,Germany).Then, 0.05g(±1%)ofpulverizedsampleswasweighedoutona Discov-eryDV215CDAnalyticalBalance(OhausEuropeGmbH,Nanikon, Switzerland)into1.5mLmicro centrifugetubes Next,the sam-pleswereextractedwith1mLofaqueousmethanolcontainingone partultra-purewater(18.2M/cm,MerckMillipore,Billerica,USA) andfourpartsLC–MSgradeChromasolvmethanol(Sigma-Aldrich,
StLouis,MO,USA)bymixingat2500rpmwithDVX-2500 Mul-titubeVortexer(VWRInternational,Lutterworth,UK)for10min, followed by sonication for 30minat maximum frequency in a camSonixC1274waterbathsonicator(Camlab,Cambridge,UK)at roomtemperature.Aftercentrifugationat10,000×gfor10minat
4◦CinaMIKRO200Rcentrifuge(HettichUK,Salford,UK),0.8mL
ofthesupernatant wastransferred intoafreshmicrocentrifuge tubeanddried overnightin amiVac QUP-23050-A00(Genevac, Ipswich, UK)centrifugal sample concentrator The dry extracts werethenreconstitutedin0.8mLofultra-purewaterandfiltered througha0.22mCostar® celluloseacetateCentrifugeTube Fil-terbycentrifugationat10,000xg,4◦Cfor10min.Filteredextracts weretransferredintoLCvials(Waters,Manchester,UK)forLC–MS analysis
2.3 UntargetedLC-HRMSanalysis Analyseswerecarried outona WatersAcquity UPLCI-Class system(Milford,MA,USA)coupledtoaWatersXevoG2-SQToF massspectrometer(Manchester,UK)withanelectrospray ionisa-tionsourceoperatinginapositiveornegativemodewithlock-spray interfaceforrealtimeaccuratemasscorrection.Instrument set-tingswereasfollow:sourcetemperaturewassetat120◦C,conegas flowat50Lh−1,desolvationtemperatureat450◦C,anddesolvation gasflowat850Lh−1.Thecapillaryvoltagewassetat1.0kVin pos-itivemodeand0.5kVinnegativemode,respectively.Sourceoffset was80(arbitraryunit).Massspectradatawereacquiredin con-tinuummodeusingMSEfunction(lowenergy:4eV;highenergy: rampfrom20to30eV)overtherangem/z100–1200withascan timeof0.1sAlock-masssolutionofLeucineEnkephalin(1ngmL−1)
inmethanol/watercontaining0.1%formicacid(1:1,v/v)was con-tinuouslyinfusedintotheMSviathelock-sprayataflowrateof
10Lmin−1.Thechromatographicseparationwasconductedona WatersCortecsT3column(100mm×2.1mm,1.6m).Thecolumn oventemperaturewassetat45◦C,injectionvolumeat3.5Land flowrateat0.4mLmin−1.Themobilephaseconsistedof(A)water with0.1%formicacidand(B)methanolwith0.1%formicacid.The gradientwassetasfollows:2.0minof99%(A)followedbyalinear increasefrom1%to99%(B)over16min,isocraticcleaningstepat 99%(B)for0.5min,thenreturnedtoinitialconditions99%(A)over 0.1minandcolumnequilibrationstepat99%(A)for1.4min.Each samplewasinjectedthreetimesinordertoassurereproducibility
Atthebeginningoftheexperiment,10pooledconditioningsamples (QCs)wereinjected.Forqualitycontrol,QCswerealsoinjectedat intervalsofevery10samplesthroughouttheentireexperimentto determinethechromatographicreproducibilityofretentiontimes andpeakintensities[25]
Trang 32.4 Chemometricdataanalysis
RawdatageneratedwereimportedtoProgenesisQI2.0software
(Waters,Newcastle,UK).Afterdataconversiontotheappropriate
formatusingafiltersetat1.5,datawerealignedtothebestQC
sampleselectedandpeakpickingfrom0.6to18minwascarried
outwith sensitivitysetat absoluteion intensityof 1000
(arbi-traryunit) and chromatographic peak widthto0.08minA data
matrix of detected metabolitefeatures and corresponding
nor-malisedabundancewasgenerated and thenexportedtoSIMCA
14(Umetrics,Malmo,Sweden)formultivariateanalysis.Toassess
thegeneralqualityoftheacquiredspectraldata(univariate/Pareto
scaled)principalcomponentanalysis(PCA)andmodelassessment
were performed Next, data were mean centred, either Pareto
orunivariatescaledandgroupedintorespectiveclassespriorto
orthogonalpartialleastsquare discriminantanalysis(OPLS-DA)
Thevariableimportanceinprojection(VIP)plotsofthemetabolite
featuresassociatedwithOPLS-DA,andsubsequentcross-checking
of the features in Progenesis QIfor peak quality and intensity
ensuredselectionofreliablemetabolitefeatures.R2(cumulative),
Q2(cumulative)valuesandRMSECVwereusedtodeterminethe
validityofthemodels,withR2(cum)employedasanindicatorof
thevariationdescribedbyallcomponentsinthemodelandQ2&
RMSECVasmeasuresofhowaccuratelythemodelcanpredictclass
membership
2.5 BiomarkerdiscoveryandmethodtransfertoLC–MS/MS
The discovery of characteristic biomarkers for each shrimp
specieswasachievedbygeneratingindividualOPLS-DAmodels
duringbinaryspeciescomparison.AssociatedS-plotsandvariable
importanceinprojection(VIP)plotsenabledidentificationofaset
ofmostpromisingionsinbothionisationmodesresponsiblefor
classseparationamongallspecies.Selectedionswerethoroughly
investigatedinboth therawdataandProgenesis QI2.0forthe
peakqualityandintensityaswellasselectivitybetweenassessed
species.Accuratemassofthebiomarkerionswassearchedagainst
themetabolitedatabasesChemSpider,LipidBlast,Metlin,Human
MetabolomeDatabaseandFooDBtorevealputativeidentities
Biomarkers,whichwereselectivetothespeciesidentitywere
furtherinvestigated bytargeted analysis.Theretention time of
biomarkerswasconfirmedonaXevoTQ-SLC–MS/MSinselected
ionmonitoringmodeapplyingthesamechromatographic
condi-tions(describedinSection2.3.)asintheuntargetedanalysis.Next,
thefragmentationspectrum obtainedin daughterion scanwas
comparedtorespectivespectrumacquiredonQ-ToF toconfirm
markerschemicalidentity.Afteroptimisingcollisionenergiesby
repeatedon-columninjections,themostprominentfragment(s)of
eachbiomarker’sprecursorwereselectedforitsrespectiveMRM
window and chromatographic conditions adjusted to decrease
analysistime.Noneoftheseselectedbiomarkersweresuccessfully
identified;nevertheless, theminimal requirementsofreporting
forunknownmetabolites(retentiontime,prominentionand
frag-ment ion) specified by the Chemical Analysis Working Group
within Metabolomics Standards Initiative (MSI) have been
ful-filled[26].Toassurecorrectidentificationuptothree fragment
ionswereincludedinthefinalMSmethod,however,someofthe
selectedmarkersonlyyieldedonefragmention,thusdecreasing
theirreliabilityduetolackofpossibilityofionratiosmonitoring
[27]
2.6 TargetedLC–MS/MSanalysis
TheanalysiswasperformedonanAcquityUHPLCI-Classsystem
(Waters,Milford,MA,USA)coupledtoXevoTQ-Striplequadrupole
massanalyser(Waters,Manchester,UK)operatinginpositive
elec-trospray ionisation mode The following settings wereapplied: capillaryvoltagewassetat1.0kV,thedesolvationandsource tem-peraturesweresetat450and130◦C,respectively,whilenitrogen cone and desolvation flow rates were setto145 and 1000L/h Argonwasemployedasacollisiongas,withaflowof0.15mL/min, yieldingacollisioncellpressureof2.4×10−3mBar.Inter-scanand -channeldelayswerebothsetto3mswhiledwelltimesranged from20to163ms
Analytes’separationwasperformedonaWatersCortecsT3 col-umn(100mm×2.1mm,1.6m),maintainedat45◦Cwitha5L injectionofa sampleextract.Thepumpwasoperatedataflow rateof0.4mL/minwithmobilephasesconsistingofA,0.1%formic acidinwaterandB,0.1%formicacidinmethanol.Thefinal gradi-entwasisocratic0–1.0min80%A,linear1.0–2.0min75%A,linear 2.0–4.0min20%A,linear4.0–6.5min10%A,linear6.5–7.0min1%
Aforcolumnflush,goingbacktoinitialconditionsduring0.1min andfinishingwithisocraticcolumnequilibration7.1–9.0min.After each injection,theneedlewaswashed with0.1%formic acidin
H2O/MeCN/MeOH(2:1:1)andpurgedmobilephaseA
LC–MS/MSmethodassessmentwasperformedbyanalysingtest samples,representingeachsampleclass,onthreedifferentdays
Aninitialrunconsistedof33samples-threesamplesperclass whilelasttworunsconsistedof55samples–fivesamplesperclass Sampleswererandomizedineachrunwith‘solvent-QC-solvent’ sequenceinjectedevery8samplestomonitorforpossible carry-over,ionratiosalterationorsensitivitylossthroughouttherun.The initialtestsampleswerepartoftheauthenticsamplescollected butwerenot usedin developingthechemometricmodels.Test samples,purchasedfromlocalsupermarketsweretestedusingthe targetedassayandauthenticatedagainstthelabelclaim
Therelativeabundanceofthespeciesspecificmarkersofking prawn and tiger prawn, varying with geographical origin, was evaluated.RawdatawereprocessedbyTargetLynxv.4.(Waters, Milford,MA,USA) while statisticalanalysis(one-way ANNOVA, basedonabsoluteresponse)andassociatedgraphswereprepared
inGraphPadPrism5.01(GraphPadSoftware,Inc.,LaJolla,USA)
Alineardiscriminantanalysis(LDA)modelforpredictionof geo-graphicalorigin,usingtheUnscramblerXsoftware(Camo),was developedforthespecificmarkersofkingprawns.Themodelwas evaluatedtopredictthegeographicaloriginof60testsamplesof kingprawnswhichwerepartoftheauthenticsamplesgatheredfor theproject
3 Results and discussion
3.1 Highresolutionmassspectrometrydataprocessingand qualityvaluation
LiquidchromatographyhyphenatedtoaQToFmass spectrom-eter,withdataacquiredincontinuummode,isapowerfultoolfor unbiasedrecordofaccuratemassdataofeverysingledetectable metabolite in complex biological samples However, themajor bottleneck in such “global metabolomics” experiments is the unmanageableamountofdatageneratedwhichnecessitatesthe employmentofrobusttoolsfordatavisualization,pre-processing andmetaboliteidentificationtoensurequalityand reproducibil-ityofthedata[28,29].Theuntargetedmetabolomicsexperiments,
in positive and negativeionisation mode, generated morethan
1200gigabytesofrawdataeach.Thedatawasimportedintothe ProgenesisQIsoftwareandwascheckedforqualitybyreviewing theretentiontimealignmentofeachsampleagainstarandomly selectedQCsample.Alignmentscoresofthesamplesrangedfrom 82.9to 98.2% and 88.5to 98.0% in positive and negative ioni-sationmoderespectively;indicating excellentreproducibilityof thedatafortheentiredurationofthemassspectrometry
Trang 4exper-Fig 1. Eleven different types of shrimps and pool QC samples clustering on PCA scores plot in ESI + (A) and ESI (B) mode.
iment.Various“minimumintensity”valuesforthe“absoluteion
intensity”filterwere triedto optimisepeak peaking sensitivity
oftheProgenesis QIsoftware.Thisoptimisation wasimportant
toensurethatthedetectedmolecularfeaturesareauthenticand
atthesametimerelevantfeaturesarenotmissed.Foreach
set-ting,thedatamatrixforallelevendifferenttypesofshrimpswas
importedinSIMCA14softwareforPCAanalysisandsubsequent
evaluation.Aminimumintensityvalueof1000,bothinpositive
and negativeionisation mode wasfoundto beoptimum
Nev-ertheless,a total of24,411molecularfeatures weredetectedin
positivieionisationmodewhereasinnegativeionisationmodea
totalof4921molecularfeaturesweredetected.AllQCswerefound
tobetightlyclusteredwithinthecentreofrespectivePCAscores
plots.PCAscoresplotin ESI+ andESI modeshowedclear
indi-cation of separation betweendifferent classes ofshrimp, using
second&fourthandsecond&fifthprincipalcomponents
respec-tively(Fig.1A, B).The firstsix principalcomponents explained
80and81%ofvariationinpositiveandnegativeionisationmode
respectively
Though,farmedkingprawnsamplesfromdifferent
geograph-ical origin grouped close by, there were clear indication of
discriminationbasedongeographicalorigin.Similarly,therewas
clearindicationofseparationbetweenfarmedandwildcaughttiger
prawns.TherecordedhighvaluesofR2X(cum)andQ2(cum)for
thePCAmodels(Table1;No.1and2)intheESI+andESI mode,
indicatewellexplainedcumulativevariationofthedatabythe
prin-cipalcomponentsandexcellentpredictioncapabilityofthemodels
[30].Representativetotalionchromatograms(TICs)ofQCsamples
inESI+ andESI mode, presentedintheFig.2.,showtheextent
ofcomplex and rich information obtainedfrom theuntargeted
metabolomicsexperiment
3.2 Chemometricmodelsforshrimpspeciesauthentication Forbuildingthemodelsforshrimpspeciesauthentication, sam-plesofthespeciesoriginatingfromdifferentgeographicalorigin and harvestingmethod wasgrouped as onespecies class.This resultedintotalfivespeciesclassesofshrimps.Thedatamatrixwas exportedtoSIMCA14andexploratoryPCAandOPLS-DAmodels werebuiltusingeitherunivariateorParetoscaling.TheVIPvalues
ofthemolecularfeaturesinanOPLS-DAplotwasusedtoselect themostrelevantfeatures.MetaboliteionswithaVIP>1generally representthosefeaturescarryingthemostrelevantinformation forclassdiscrimination[31].Hence,themolecularfeatureswith VIPscoreofmorethan1.5wastaggedandre-importedto Progen-esisQIsoftwaretocrosscheckthepeakqualityandintensityofthe features.Anumberofroundsofsuchfilteringofthedetected molec-ularfeaturesensuredselectionofmostrelevantmetabolitefeatures thatcontributeinclassificationofdifferentclassesofshrimp Finally,PCA (No.3& 4)modelsweregenerated considering
4914and900molecularfeaturesinpositiveandnegativeionisation moderespectively(Table1).ThePCAscoresplots(Fig.3A,B),both
inpositiveandnegativeionisationmode,showedclearseparation basedonthespeciesidentityoftheshrimpsamples.Thespecies classof“Blacktigerprawn”and“Kingprawn”representsamples
ofdifferentoriginorproductionmethod.Despitethisvariability
oforigin/productionmethod,thesamplesofkingprawnandblack tigerprawnformeddistinctiveclustersinthePCAplots.Whilstfirst fourcomponentsaccountedforaround80%cumulativevariationin thedata,separationwasmostlyachievedalongPC1andPC2.The bettervaluesofR2XandQ2forthePCAmodels(No.3&4)as com-paredtothePCAmodelsNo1and2(Table1 indicatedreliable selectionofmostrelevantfeatures
Trang 5Fig 2.Representative total ion chromatograms (TICs) of pool QC samples in ESI+ (A)and ESI¯(B) mode showing extent of metabolite signature obtained from the shrimp samples.
Fig 3.Five different shrimp species and pool QC samples clustering on PCA scores plot in ESI+ (A) and ESI¯(B) mode; OPLS-DA scores plot of species discrimination of shrimp
Trang 6Table 1
Values of different statistical parameters for developed chemometric models from detected metabolite features in positive and negative ionisation mode, where “A” is number
of multivariate component, “N” is number of samples, “R2X” is the fraction of the variation of the X variables explained by the model, “R2Y” is the fraction of the variation of the Y variables explained by the model, Q2 is the fraction of the variation of the X and Y variables that denotes the prediction ability of the model.
5 OPLS-DA 4 + 1+0 99 0.911 0.996 0.995 Positive mode; Univariate scaling; Discrimination of Species
6 OPLS-DA 5 + 2+0 99 0.927 0.989 0.988 Negative mode; Univariate scaling; Discrimination of Species
7 OPLS-DA 3 + 1+0 36 0.925 0.998 0.998 Positive mode; Univariate scaling; Discrimination of Tiger Prawn origin
8 OPLS-DA 3 + 1+0 36 0.975 0.994 0.993 Negative mode; Pareto scaling; Discrimination of Tiger Prawn origin
9 OPLS-DA 3 + 1+0 36 0.966 0.999 0.999 Positive mode; Univariate scaling; Discrimination of King Prawn origin
10 OPLS-DA 3 + 1+0 36 0.989 0.997 0.996 Negative mode; Pareto scaling; Discrimination of King Prawn origin
OPLS-DAmodel(No6)withfivepredictiveX-Ycomponentsand two
orthogonalcomponentswasgeneratedwithresultingR2X=92.7%,
R2Y=98.9%, Q2=98.8% and RMSECV of 5.2% for the ESI data
(Table1).AhighvalueforR2YandQ2(closerto1)indicatehigh
explainedvariation andpredictiveability ofan OPLS-DAmodel
respectively.Whereas,alowervalueof RMSECVindicatebetter
predictiveabilityofanOPLS-DAmodel[25].Thedifferentclassesof
shrimpspeciesappearedasbetterseparatedandtightlygrouped
clustersintheOPLS-DAscoresplotsinESI+ ascomparedtoESI
mode(Fig.3C,D),inaccordancetothebetterstatisticalparameters
obtainedinESI+mode
3.3 Chemometricmodelsforshrimporiginauthentication
OPLS-DAmodelsforthedatasetinESI+thanESI modewere
developed for prediction of geographical origin of the “Tiger
prawns”and the“Kingprawns”.Asimilarstrategy, followedfor
speciesauthenticationofshrimpsamples,wasadoptedfor
selec-tionof themostrelevant molecularfeatures that contributeto
discriminationof geographical origin of tiger prawns and king
prawns The OPLS-DA models for tiger prawns in ESI+ than
ESImode were finally built on datasets containing 1602 and
2081molecularfeaturesrespectively.TheOPLS-DAmodelsinESI+
modewasautofittedwiththreepredictiveX-Ycomponentsand
oneorthogonal component resulting in R2X (cum)=92.5%,R2Y
(cum)=99.8%,Q2(cum)=99.8%andRMSECV=2.5%.TheOPLSDA
model in ESI mode, fitted with similar numbers of
predic-tiveandorthogonalcomponentsresultedinequallygoodvalues
of R2X (cum)=97.5%, R2Y (cum)=99.4%, Q2 (cum)=99.3% and
RMSECV=4%(Table1,No7&8).Interestingly,thesamplesofwild
caughttigerprawnsfromIndiaandMadagascarclusteredcloser
together(shownwithin ellipse)in theOPLS-DA scoresplots in
ESI+andESI mode(Fig.4A,B);stronglyindicatingdiscrimination
basedonharvestingmethod.Samplesofwildcaughtandfarmed
tigerprawnsfromthesamecountryoforiginwerenotavailable
tofurtherexploresuchdiscriminationindetail.Similarly,OPLS-DA
scoresplotsforkingprawnsdisplayedwellseparatedandtightly
groupedclustersofkingprawnsoriginatedfromIndia,Thailand,
VietnamandHonduras(Fig.4C,D).Again,thevaluesofR2Y(cum)
andQ2(cum)wascloseto1establishingstrongpredictive
capabil-itiesofthemodelsinESI+andESImode(Table1.No9&10)
3.4 Validationofthechemometricmodels
Therecognitionabilityforalltheclassificationmodelsbothin
positiveandnegativeionisationmodewas100%aspresentedinthe
corresponding misclassification tables (Supplementary material
FigureS1) A misclassificationtablewhich providesa quantita-tivemeasureoftheperformanceofaclassordiscriminantanalysis modelisasummaryofthenumberofcorrectlyclassified observa-tions,withknownclassbelonging.AlltheOPLS-DAclassification models were then validated using the response permuatation option inSIMCA.TheY-datainthetraining setispermutedby randomlyshufflingtheirpositionwhilethenumericvalueremain same.Thepermutationprocedurecanberepeateda numberof timesbetween20and100.TheR2YandQ2Yvaluesofthederived modelsfromthepermutedY-dataarethencomparedwiththeR2Y andQ2Yvaluesoftherealmodeltocheckthevalidityofthe clas-sificationmodel.ThepermutationplotsfortheOPLS-DAmodels presentedinsupplementarymaterialFigureS2-S4summerizesthe resultofresponsepermutationtesting.Itcanbeobservedthateven after100permutations,theR2YandQ2Yvaluesofthedeveloped OPLS-DAmodelsaresubstantiallyhigherthanthecorresponding permutedvaluesindicatingvalidityofthemodels.TheR2Y inter-ceptbelow0.3 andQ2Yinterceptbelow0.05forthedeveloped OPLS-DAmodelsareanotherstrongindicationofthevalidityof themodels.Tofurtherconfirmthepredictionabilityofthe devel-opedmodels,20percentofthesamplesfromtheoriginaltraining setwastakenoutandusedastestsamplesetinthecorresponding refittedmodel.It canbeobservedintheclassificationlist (Sup-plementaryTableS1-S6)thatallthetestsamplesofknownclass identitywasrecognisedaccurately.Theuntargetedmetabolomics experimentwasrepeatedthreetimeswithfreshsamplesetsand eachtimeruggedchemometricmodelswerederivedestablishing reproducibilityoftheapproach
3.5 Biomarkerdiscoveryandputativeidentification
Atotalof36biomarkerswereputativelyidentifiedinESI+mode while a total of 33 ions were putatively identified in ESI ¯mode basedonvariousaccuratemassdatabasesearch(Supplementary TableS7-S8).Putative identificationof metaboloitecorresponds
toIdentificationLevel3ofmetabolomicsstandardinitiative[26]
Ametabolitemayproduces multipleaccuratemass signals cor-respondingtoisotopes(12C, 13C),adducts ([M+H]+,[M+Na]+), multimers([2M+H]+),charges([M+2H]2+),andneutralloss frag-ments([M+H-H2O]+)inaHRMS.Signalannotationwasperformed
inProgenesisQIsoftwareclusteringisotopes,basedontheisotopic patternofagivenmolecule.Theadductsofamoleculesharingthe sameretentiontimewasclusteredandtranslatedintoonevalue (molecularion).However,whereonlyoneadductisavailablefor
afeaturethem/zvalueofthepseudomolecularionwasreported Theseaccuratemassescanbesearchedagainstdatabase(s)withina definedwindowtoretrievepotentialcandidates.Anin-builtsearch engineinProgenesisQIwasusedtosearchtheaccuratemasses againstvarious databases.A masserrorof lessthan 2ppm and isotope similarityof more than 80% was consideredas criteria forreportingidentity Ameta-librarydeveloped within
Trang 7Progen-Fig 4. OPLS-DA scores plot for discrimination of tiger prawn originated from India, Madagascar, Srilanka, and Vietnam in ESI+ (A) and ESI¯(B) mode; OPLS-DA scores plot for discrimination of king prawn originated from Honduras, India, Thailand, and Vietnam in ESI+ (C) and ESI¯(D) mode.
esisQIusingtheidentifiedbiomarkerswassuccessfully usedto
identify the metabolitesin shrimp samples during subsequent
metabolomicsexperiments.Asetof34biomarkersexclusivetothe
speciesidentityofashrimpsampleswerediscoveredfollowingthe
workflowpresentedinsupplementarymaterialFigureS5.Presence
oftheseexclusivebiomarkerswerefurtherconfirmedbyanalysing
theindividualrawdatafilesinMasslynx4.1softwareandwas
fur-therinvestigatedinLC–MS/MSfordevelopingatargetedmethod
ofshrimpauthentication.Unfortunatelyidentityoftheseexclusive
biomarkerscouldnotbeestablishedwithreasonableconfidenceby
accuratemassdatabasesearch
3.6 LC–MS/MStargetedmethodforshrimpauthentication
DuringthedevelopmentandassessmentofLC–MS/MStargeted
method34markerswereinitiallyevaluatedforselectivityinthe
first run Overall, 17 biomarkers were deemed species specific
(Table2).Duetolackoffullchemicalidentification,all
biomark-erswereassignedarbitraryIDsstemmingfromthespeciesnames
andaconsecutivenumberinwhichtheywereanalysed.Foreach
oftheanalysedshrimpsspeciesatleastonespecificmoleculewas
selectedi.e.kingprawn(KP1),tigerprawn(TP1,TP4–7),Indian
pinkshrimp(IPS1and4),Indianwhiteshrimp(IWS4,5,7,11)and
Argentinianredshrimp(ARS5and6).Nevertheless,other,less
spe-cificmarkerswerealsoincludedinthemethodduetorelativelylow
cross-talkortoaidgeographicaloriginelucidationi.e.KP2and3for
kingprawnandTP3fortigerprawn(Table2)
The selective markers provided a species specific response
throughoutthreeassessmentruns,wherebysample’sspecieswas
assigned only in the presence of all assigned markers
transi-tionswithcompliantion ratios TheLC–MS/MSmethodproved
toberobustwithnocarry-overorsensitivityloss(QCsresponse
RSD<10%forallmarkers,for100injectionruns).Additionally,ion
ratioswereintherangeof±20%ofthemeanQCsvalueforthe
threeanalyticalruns.RepresentativeXICofselectedspeciesspecific
markershavebeenpresentedinsupplementarymaterialFigureS6
Totrialtheassaywithmarketplacesamples,threeadditionalblind
runsconsistingoftotal76samplesofkingprawns,10samplesof
tigerprawnsand3samplesofeachArgentinianredshrimp,Indian
whiteshrimp,andIndianpinkshrimpwereperformed.Speciesof
thesampleswerecorrectlypredictedforallthespeciesassessed yielding0%falsepositivesandnegativesrate
Threemarkersforking(KP1,KP2,andKP3)andtigerprawns (TP3,TP4 andTP6)showedsignificant(p<0.001) differencesin responsebetweengeographicaloriginwithintheassessedspecies groups(Fig.5a–f).Thedifferenceinrelativeresponseofthesaid markersbasedongeographicaloriginisa strongindicationthat
itmightbealsopossibletoemploythosemarkersfor geograph-ical origin authentication of shrimp ona unit resolution triple quadrupolemassspectrometerplatform
Overtheyearsthesensitivityofhighresolutionmass spectrom-etershasimprovedtremendously,enablingdetectionofevenlow concentrationcompounds.However,asizable numberof recur-rentmolecularfeaturesinanymetabolomicsexperimentremain unknown.Chromatographicisolation oftheseunknown compo-nentsforidentificationisoftennotpracticalduetolowabundance Guessing theidentity and then synthesizing thecompound for confirmationmightalsofailandisanexpensiveaffair[32] Defin-ingtheserecurrentunidentifiedmetaboliteswithaccuratemass andfragmentions/spectraisapracticalsolutiontotheseproblem
In thisstudy wehave demonstratedthat aclass specific recur-rentunidentifiedbiomarkercanbeusedsuccessfully todevelop foodauthenticationassays.Thesuccessofthisapproachwasalso demonstratedfordetectionofadulterationinoregano[33]
4 Conclusions
Theleveloffraudinfisheriesgloballyisahugeissue.Thereare manymeasuresinplaceandinitiativesbeingdevelopedtotryand lessentheimpactthishasontheintegrityofseafoodthatisa sta-pleinthedietofbillionsofcitizensaroundtheworld.Intermsof thelaboratorytestingmethodsthatsupporttraceabilitysystems, therearequiteanumberoftheseandwhiletheyarefitforpurpose
in termsof uncoveringparticular aspectsoffraudulent practise theycanonlyprovideevidencethatoneparticularformof mal-practicemayhaveoccurred.Herewereportahighlyinnovative approach usinghighresolution mass spectrometryand chemo-metricsthatcandistinguishthespeciesidentityandgeographical originofshrimpinasinglemetabolomicsexperiment.Recurrent speciesspecificexclusivemarkerswereidentifiedfromthe
Trang 8Table 2
Details of the LC–MS/MS method for the 18 markers employed in species and geographical origin elucidations Where: a cone voltage for all the compounds was set to 20 V, * markers deemed exclusive to the associated species.
King Prawn
398.2
0.063
40
143.1
0.108
20
Tiger Prawn
615.0
0.016
40
131.0
0.016
20
Indian Pink
Shrimp
382.2
0.044
40
Indian White
Shrimp
369.2
0.016
20
Argentinian
Red Shrimp
Trang 9Fig 5. Box plots representing differences in response of king prawn (a, b, c) and tiger prawn (d, e, f) markers depending on the geographical origin of the samples Box plots with median of the absolute response measured in five samples per each region and whiskers at 5th and 95th percentile Significance levels: ***<0.001 and **<0.01.
Conflicts of interest
Acknowledgements
SB/OS/PDF-011/2015-16
04.001
References
[1] The State of World Fisheries and Aquaculture, 2018 (Accessed July 2018) http://www.fao.org/state-of-fisheries-aquaculture
[2] M.Á Pardo, E Jiménez, B Pérez, Villarreal, Misdescription incidents in seafood sector, Food Control 62 (2016) 277–283, http://dx.doi.org/10.1016/j.foodcont 2015.10.048
[3] S.M van Ruth, P.A Lunging, I.C.J Silvis, Y Yang, W Huisman, Differences in fraud vulnerability in various food supply chains and their tiers, Food Control
84 (2018) 375–381, http://dx.doi.org/10.1016/j.foodcont.2017.08.020 [4] J He, From country-of-origin labelling (COOL) to seafood import monitoring program (SIMP): how far can seafood traceability rules go? Mar Policy 96 (2018) 163–174, http://dx.doi.org/10.1016/j.marpol.2018.08.003 [5] I Ortea, J.M Gallardo, Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: an exploratory analysis, Food Chem 170 (2015) 145–153, http://dx.doi.org/10.1016/j.foodchem.2014.08.049
[6] Shrimp: Oceana Reveals Misrepresentation of America’s Favourite Seafood,
2019 (Accessed January 2017) https://oceana.org/news-media/publications/ reports/shrimpfraud
[7] Thai Seafood Action Plan March, 2016 (accessed November 2017) https:// www.nestle.com/media/news/progress-in-tackling-seafood-supply-chain-abuses
[8] M Bailey, S.R Bush, A Miller, M Kochen, The role of traceability in transforming seafood governance in the global South, Curr Opin Environ Sustain 18 (2016) 25–32, http://dx.doi.org/10.1016/j.cosust.2015.06.004 [9] L Tinacci, D Stratev, I Vashin, I Chiavaccini, F Susini, A Guidi, A Armani,
Trang 10identification by DNA barcoding: a first survey on the Bulgarian market, Food
Control 90 (2018) 180–188, http://dx.doi.org/10.1016/j.foodcont.2018.03.007
[10] I Ortea, A Pascoal, B Ca ˜ nas, J.M Gallardo, J Barros-Velázquez, P Calo-Mata,
Food authentication of commercially-relevant shrimp and prawn species:
from classical methods to Foodomics, Electrophoresis 33 (2012) 2201–2211,
http://dx.doi.org/10.1002/elps.201100576
[11] D.I Ellis, H Muhamadali, D.P Allen, C.T Elliott, R Goodacre, A flavour of
omics approaches for the detection of food fraud, Curr Opin Food Sci 10
(2016) 7–15, http://dx.doi.org/10.1016/j.cofs.2016.07.002
[12] Y.T Lo, P.C Shaw, DNA-based techniques for authentication of processed food
and food supplements, Food Chem 240 (2018) 767–774, http://dx.doi.org/10.
1016/j.foodchem.2017.08.022
[13] M.F Mazzeo, R.A Siciliano, Proteomics for the authentication of fish species, J.
Proteomics 147 (2016) 119–124, http://dx.doi.org/10.1016/j.jprot.2016.03.
007
[14] I Ortea, G O’Connor, A Maquet, Review on proteomics for food
authentication, J Proteomics 147 (2016) 212–225, http://dx.doi.org/10.1016/
j.jprot.2016.06.033
[15] P Ferranti, The future of analytical chemistry in foodomics, Curr Opin Food
Sci 22 (2018) 102–108, http://dx.doi.org/10.1016/j.cofs.2018.02.005
[16] M Costas-Rodríguez, I Lavilla, C Bendicho, Classification of cultivated
mussels from Galicia (Northwest Spain) with European protected designation
of origin using trace element fingerprint and chemometric analysis, Anal.
Chim Acta 664 (2010) 121–128, http://dx.doi.org/10.1016/j.aca.2010.03.003
[17] O Fiehn, Metabolomics-the link between genotypes and phenotypes, Plant
Mol Biol 48 (2002) 155–171, http://dx.doi.org/10.1023/A:1013713905833
[18] D Cavanna, L Righetti, C Elliott, M Suman, The scientific challenges in
moving from targeted to non-targeted mass spectrometric methods for food
fraud analysis: a proposed validation workflow to bring about a harmonized
approach, Trends Food Sci Technol 80 (2018) 223–241, http://dx.doi.org/10.
1016/j.tifs.2018.08.007
[19] K Böhme, P Calo-Mata, J Barros-Velázquez, I Ortea, Recent applications of
omics-based technologies to main topics in food authentication, Trends
Analyt Chem 110 (2019) 221–232, http://dx.doi.org/10.1016/j.trac.2018.11.
005
[20] M Castro-Puyana, R Pérez-Míguez, L Montero, M Herrero, Application of
mass spectrometry-based metabolomics approaches for food safety, quality
and traceability, Trends Analyt Chem 93 (2017) 102–118, http://dx.doi.org/
10.1016/j.trac.2017.05.004
[21] S Esslinger, J Riedl, C Fauhl-Hassek, Potential and limitations of non-targeted
fingerprinting for authentication of food in official control, Food Res Int 60
(2014) 189–204, http://dx.doi.org/10.1016/j.foodres.2013.10.015
[22] G.P Danezis, A.S Tsagkaris, V Brusic, C.A Georgiou, Food authentication:
state of the art and prospects, Curr Opin Food Sci 10 (2016) 22–31, http://dx.
doi.org/10.1016/j.cofs.2016.07.003
[23] S.M Rocha, R Freitas, P Cardoso, M Santos, R Martins, E Fi gueira, Exploring
the potentialities of comprehensive two-dimensional gas chromatography
coupled to time of flight mass spectrometry to distinguish bivalve species: comparison of two clam species (Venerupi sdecussata and Venerupis philippinarum), J Chromatogr A 1315 (2013) 152–161, http://dx.doi.org/10 1016/j.chroma.2013.09.049
[24] C Black, O.P Chevallier, S.A Haughey, J Balog, S Stead, S.D Pringle, M.V Riina, F Martucci, P.L Acutis, M Morris, D.S Nikolopoulos, Z Takats, C.T Elliott, A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry, Metabolomics 13 (2017) 153, http://dx.doi.org/10.1007/s11306-017-1291-y
[25] C Black, S.A Haughey, O.P Chevallier, P Galvin-King, C.T Elliott, A comprehensive strategy to detect the fraudulent adulteration of herbs: the oregano approach, Food Chem 210 (2016) 551–557, http://dx.doi.org/10 1016/j.foodchem.2016.05.004
[26] L.W Sumner, A Amberg, D Barrett, M.H Beale, R Beger, C.A Daykin, T.W.M Fan, O Fiehn, R Goodacre, J.L Griffin, T Hankemeier, N Hardy, J Harnly, R Higashi, J Kopka, A.N Lane, J.C Lindon, P Marriott, A.W Nicholls, M.D Reily, J.J Thaden, M.R Viant, Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI), Metabolomics 3 (2007) 211–221, http://dx.doi.org/10.1007/ s11306-007-0082-2
[27] Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC), Off J Eur Commun 221 (2002) 8–36 [28] T Kind, M Scholz, O Fiehn, How large is the metabolome? A critical analysis
of data exchange practices in chemistry, PLoS One 4 (2009) 440, http://dx.doi org/10.1371/journal.pone.0005440
[29] G.A Theodoridis, H.G Gika, E.J Want, I.D Wilson, Liquid chromatography–mass spectrometry based global metabolite profiling: a review, Anal Chim Acta 711 (2012) 7–16, http://dx.doi.org/10.1016/j.aca 2011.09.042
[30] L Eriksson, P.L Andersson, E Johansson, M Tysklind, Megavariate analysis of environmental QSAR data Part II – investigating very complex problem formulations using hierarchical, non-linear and batch-wise extensions of PCA and PLS, Mol Divers 10 (2006) 187–205, http://dx.doi.org/10.1007/s11030-006-9026-4
[31] H.W Cho, S.B Kim, M.K Jeong, Y Park, N Gletsu, T.R Ziegler, D.P Jones, Discovery of metabolite features for the modelling and analysis of high-resolution NMR spectra, Int J Data Min Bioinform 2 (2008) 176–192 [32] S Stein, Mass spectral reference libraries: an ever-expanding resource for chemical identification, Anal Chem 84 (2012) 7274–7282, http://dx.doi.org/ 10.1021/ac301205z
[33] E Wielogorska, O Chevallier, C Black, P Galvin-King, M Delêtre, C.T Kelleher, S.A Haughey, C.T Elliott, Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach The oregano adulteration case study, Food Chem 239 (2018) 32–39, http://dx.doi.org/10.1016/j.foodchem.2017.06.083