The preferred method for disposal of used nuclear fuel is underground emplacement in a Deep Geological Repository (DGR). Many countries have light water reactor fuels which require large Used Fuel Container or Canister (UFC) designs weighing up to 25 ton for containment.
Trang 1Mechanical performance of integrally bonded copper coatings for the
a Nuclear Waste Management Organization, 22 St Clair Ave East, Toronto, Canada
b Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Canada
•AnovelUsedFuelContainerwithanintegrallybondedcoppercoatingisproposed
•Twodevelopedcoatingprocessessuccessfullyproducedprototypecontainercomponents
•Wecreatedavalidatedfiniteelementmodeltopredictcoatingstructuralperformance
•Mechanicaltestingconfirmscoatingsuitablyforrepositoryuse
Article history:
Received 15 April 2015
Received in revised form 29 June 2015
Accepted 4 August 2015
ThepreferredmethodfordisposalofusednuclearfuelisundergroundemplacementinaDeep Geo-logicalRepository(DGR).ManycountrieshavelightwaterreactorfuelswhichrequirelargeUsedFuel ContainerorCanister(UFC)designsweighingupto25tonforcontainment.Incontrast,Canadaexclusively usesheavywaterreactorfuel,whichissubstantiallysmaller.ThishasledtheNuclearWaste Manage-mentOrganization(NWMO)tocreateanovelUFC,whichusesstandardpressurevesselgradesteelfor structuralcontainmentandathick,integrallybondedcoppercoatingappliedtotheexteriorsurfacefor corrosionprotection.Currently,thecoatingisappliedusingtwodifferentmethods:electrodeposition andgasdynamiccoldspray.Thisnovelcoppercoatingneedstobefullyvalidatedtoensureadequate mechanicalstrengthandchemicalresistanceforuseunderrepositoryconditions.Detailedmechanical andcorrosiontestingprogramswereundertaken.Mechanicaltestsindicatedthatadhesionstrengths exceeded45MPaandtensilepropertieswerecomparabletowroughtcopper.AFiniteElementModel (FEM)ofthecopper–steelcompositewascreatedandvalidatedusingthreepointbendtests.Thismodel accuratelypredictstheresponseofthecomposite,includinglargedeformationanddebondingfailure mechanisms.Nowvalidated,thismodelwillbeusedtoassesstheperformanceofthecoatingonthe full-scaleUFCundersimulatedDGRloadingconditions
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
Theinternationallypreferredmethodforthelong-termdisposal
ofusednuclearfuelisaDeepGeologicalRepository(DGR).Many
countries,includingSweden,Switzerland,andCanada,beganDGR
researchanddevelopmentasearlyasthe1970s.Currently,there
areseveraladditionalcountriespursuingDGRs,includingFinland,
Japan,Korea,Belgium,France,andtheUnitedKingdom.The
long-termsafetyofaDGRreliesontheuseofmultipleengineeredbarrier
systems(EBS), which provide redundantcontainment, isolation,
∗ Corresponding author Tel.: +1 6472593736.
E-mail address: cboyle@nwmo.ca (C.H Boyle).
andretardationfunctions,asshowninFig.1.TheEBSconsistsof usedorspentfuelbundlespackagedintoalong-livedUsedFuel Con-tainerorCanister(UFC).Thecontainerissurroundedbybentonite clay,which retardstheflow ofwater and suppressesmicrobial growth(WolfaardtandKorber,2012;Stroes-Gascoyneetal.,2010) TheDGRisconstructedatadepthofover400m.Thegeosphereof denserock,whichhasnofreeflowingwater,limitsthemovement
ofradioactiveparticles.NaturalanaloguesofDGRs,suchastheCigar Lakeuraniumdeposit,haveeffectivelyisolatedhigh-gradeuranium oreformillionsofyears(Milleretal.,1994)
SincethebeginningofDGRresearchanddevelopmentinthe 1970s,copperhasbeenafavoredmaterialforcontainercorrosion prevention.Copperwasselectedduetoitsthermodynamicstability fromcorrosionunderDGRconditionsandseveralnaturalanalogues http://dx.doi.org/10.1016/j.nucengdes.2015.08.011
0029-5493/© 2015 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2Fig 1. Canada’s Deep Geological Repository (DGR) concept.
proving its performance These analogues include
archaeologi-calartifacts(King,1995)(i.e.coins,cannons,etc.),whichcontain
metalliccopper,aswellas,mineraldepositsthatcontainnaturally
occurringmetalliccopper(Chastainetal.,2011).Inaddition,
cor-rosionprocessesthatimpactthelifespanofcopperwithinaDGR
havebeenextensivelystudiedforover30yearsbytheinternational
community.MostrecenteffortsbyCanada’sNuclearWaste
Man-agementOrganization(NWMO)(Kwong,2011),aswellas
indepen-dentcorrosionexperts(ScullyandEdwards,2013)havefocusedon
developingandreviewingcorrosionallowancestoaccountforall
theprocessesthatsignificantlyaffectcoppermaterials.Fromthese
reviews,acoppercorrosionallowanceoflessthan1.3mmhasbeen
deemedappropriateforonemillionyearsstorageinaCanadianDGR
Thiscorrosionallowanceisveryconservative;itisexpectedthat
muchlessthan1.3mmofcopperwillcorrodeoverthattimeperiod
Swedenand Finlandhaveproposeda“dual-vessel”container
designconsisting ofa largecast-iron innervesselfor structural
strength with a 50mm thick copper overpack vessel for
cor-rosionprotection Thisconcept is knownas theKBS-3 (Svensk
KärnbränslehanteringAB,2010).NWMOalsohasareference
dual-vesselcontainerdesign;however,akeydesigndifferenceistheuse
ofahollowinnersteelshellforthecontainmentvesselinsteadofa
honeycombcast-ironinsert.Canada’sheavywaterCANDUreactors
usesmall,naturaluraniumfuelbundles,whichcanbepackagedas
denselyaspossiblewithnegligibleriskofcriticalityinwaterorair
Asaresult,ashelldesignallowsmoreefficientstorageofCANDU
bundlesbytheuseofinternalbaskets.Whilethedual-vesseldesign
istechnicallyfeasible,thereare severalpotentialchallenges for
implementation.Fromafunctionalperspective,anominalradial
gapoflessthan2mmbetweentheinnerandoutervesselhasbeen
identifiedasarequirementtolimitthecreepstrain(Raikoetal.,
2010)and preventrupturefromlow creepductility (Petterson,
2012).Thisrequiresmanufacturinga9to14tsteelorcast-iron
ves-selanda7.5tcoppervesselalmost5minlengthwithtightradial
fit-uptolerances,followedbyprecisionassembly.Theassembled
UFCisthenhandledfromthecoppervesselandneedstosupport
theentire∼25tloadedcontainerweight.Consequently,the
thick-nessofthecoppershellmustbemuchgreaterthanwhatisrequired
forcorrosionprotection
Adaptivephasedmanagement(APM)is theNWMO’stechnical
methodandmanagementsystemforimplementingCanada’sDGR
(NWMO,2005).APMemphasizesadaptabilityandincorporationof
evolvingknowledgeandtechnology.Thisphilosophyhasdrivenan
initiativetodevelopanalternativeUFCforCanada’suniqueCANDU
fuelandgeosphere,whichovercomessomeofthepotentialissues
inherenttothedual-vesseldesign.ThisUFC,knownastheMark
IIandshowninFig.2,isunderdevelopmentwithseveralnovel
designconcepts:
Fig 2. NWMO’s Mark II Used Fuel Container for CANDU bundles (cut-away shown for clarity) Approximate dimensions 562 mm (∼22 ) diameter, 2514 mm (∼99 ) length.
• Copper coating: is integrallysupported bythe steelstructural substrate.The thicknessis driven bythecorrosion allowance requirementandcanbetailoredtosite-specificrequirements
• Hemi-sphericalheads:betterdistributionoftheexternalpressure loadresultinginbiaxialcompressivestresses.Flatheaddesigns canproducethetensilestressesduetobending;tensionis unde-sirableinthecontainerasitisakeycomponentincrackgrowth mechanisms,suchas,StressCorrosionCracking(SCC)andfatigue
• Pressurevesselmaterials:Theproposeddesignusescommon,weld understoodnuclearpressurevesselgradematerialsandsizes.For example,theshellismanufacturedfromstandardsizedextruded steelpipeorsmallforgings,approvedforusebyASMESection3 forstoragecontainments.Abenefitofusingthesematerialsis easeofavailability(comparedtolargesizedcustomcastingor forgings)
• Manageablesize:Manyinternationalnuclearwastemanagement organizationshaveverylargesteelorcastironUFCs,weighing
upto25tonceloaded.Handlingandundergroundemplacement
ofsuchheavycontainersrequireslarge,customequipment.The sizeofthesecontainersisdrivenbythelightwaterreactorfuel, whichcanexceed4minlength.Incontrast,Canada’sCANDUfuel
isonlyahalfmetreinlength.ThisallowedtheNWMOtooptimize theUFCdimensionsforthissmallerfueltype.TheresultingMark
IIUFCweighslessthan3tandcouldpotentiallybehandledusing radiationshieldedconventionalsizedforklifttrucks
Themostnovelaspectofthiscontaineristhecoppercoating Thisconceptallowsfordirectdepositionofthecoppercorrosion barrier layeronto thesteelor cast-iron structuralcomponents, formingarobustmetallurgicalormechanicalbondresultingina single,unifiedUFCcompositestructure.Assemblytolerancesand creepruptureissuesareresolved.Additionally,thethicknessofthe coppercanbetailoredtothesitespecificgeosphereand environ-ment.Currently,NWMOisproposinga3mmcopperlayerbased
onthepreviouslystatedcorrosionrequirement;however,various thicknessesupto10mmare beinginvestigated withinongoing workprograms
Theobjectiveofthisworkistodeveloparobust,coppercoating whichcanbeappliedtodisposalcontainersforthesafedisposalof usednuclearfuelinaDGR.Toaccomplishthis,twonovelcopper coatingprocesseswerestudied:gasdynamiccoldsprayandpulsed electrodeposition During process development, coating quality wasmeasuredagainsttwomajorfunctionalrequirements: corro-sionandmechanicalperformance.Chemically,thecoppercoating musthaveequivalentorexceedthecorrosionperformanceofthe referencewroughtcopperthatiscurrentlyproposed.Thisworkis ongoingandpreliminaryresultshavebeenpublishedelsewhere (Jakupi,2015;Keechetal.,2014).Mechanically,thecoppercoating musthavesufficientstrength,ductility,andadhesiontowithstand allloadingsunder DGRconditions Anexperimentallyvalidated mechanicalintegritymodelofthecoppercoatingwasdevelopedto predictitsbehaviourunderbeyonddesignbasisloading,including
Trang 32 Methods
2.1 Coatingprocessdevelopment
Thecoatingprocessdevelopmenthadthreemainobjectives:
1.Theperformance of thecoppercoating,both themechanical
structural response and chemical corrosion resistance, must
meetorexceedthatofthewroughtcopperasdeterminedby
experimentaltesting
2.Thecoatingprocess mustensurethat repeatable, fullydense
coatingsareproduced
3.Thecoatingprocessisfeasibleforlargescalecontainer
manu-facturing
TheNWMOhasinvestigatedseveraldifferentcoatingmethods
including:weldoverlay,gasdynamiccoldspray,and
electrode-position.Coldsprayandelectrodepositionprocessesfacilitatethe
production of highpurity coatings(i.e., noalloyadditions); on
thisbasis,thesemethodswereselectedforfurtherdevelopment
describedherein.Thetest programincorporatedtheapplication
of coatingsto steelsubstrates used in MarkII UFCfabrication,
includingplate,pipe,andhemi-sphereproductforms,rangingin
thicknessfrom12to46mm.Bothcoatingmethodsaredescribed
indetailelsewhere(Papyrinetal.,2006;Austetal.,2008)
Gasdynamiccoldsprayor“coldspray”involvesthe
accelera-tionofpowderswithinaninertcarriergastohighvelocities,at
whichtheyimpactasubstrateandformastrongmechanicalbond
(Irissouetal.,2008).Themethodissimilartothermalspraycoatings
butthetemperatureofthepowderdoesnotexceedthemelting
temperature-asolidstateprocess.Asaresult,thedepositedlayer
hasidenticalchemicalpropertiesastheinitialpowderfeed.While
veryhighdepositionratescanbeobtainedbya singlegun(i.e
upto 1kg/min), it hasbeenprimarilyused asa repair process
withinindustry.WithintheNWMOprogram,bothlowpressure
coldspray(LPCS)andhighpressurecoldspray(HPCS)havebeen
investigated,forcompleteUFCcoverage(i.e.factorysupplied
com-ponents),partialUFCcoverage(i.e.coatingweldclosurezoneafter
finalassembly),andcoatingrepair.TheuseofcoldsprayforUFC
manufactureisalsobeinginvestigatedbytheKoreannuclearwaste
managementprogram(Choietal.,2010)
Electrodepositioninvolvesimmersionoftwoelectrodesintoa
specializedchemicalbathsolution.Acurrentisappliedtothe
elec-trodes,oxidizingtheanodematerialproducingdissolvedcations
inthesolution,whicharethenreductivelyplatedatthecathode
Forthisapplication,ahighpurity,oxygenfreecopperanodewas
usedasthecoppersourceandpressurevesselgradesteelwasthe
substratecathode.Pyrophosphatewasusedastheprimarybath
solutiontominimizecarbonandoxygencontentwithinthecopper
coatingandpulsedpotentiometrywasusedtoapplysufficient
cur-rent.Inthisapplication,electrodepositionwouldbeusedtosupply
pre-coatedUFCcomponents
2.2 Coatingmechanicalperformance
Theprimaryfunctionofthecoppercoatingisacorrosionbarrier
Nonetheless,toremainaneffectivebarrieritmustbefullydense
2008a)togeneratestress–straincurves,asshowninFig.3.Five specimens ofeach materialwerepreparedbywireelectric dis-chargemachining.Theyieldstrength,ultimatetensilestrength,and overallstrainwerecalculatedfromthecurves.Inadditionaltothe coatings,theASTMA516Gr.70(ASTM,2010)carbonsteelsubstrate wasalsotestedintheas-receivedandannealedconditions Adhesionstrengthtestswereperformedtomeasurethebond strengthofthebimetalliccopper–steelinterface.ASTMC633-01 (ASTM,2008b)isthestandardtestingmethodforadhesionstrength
ofthermal/coldspraycoatings.Thetestingmethodologyinvolves applyingthecoatingtoa1diameterplugmanufacturedfromthe substratematerial,whichisbondedtoaseparateblankplugusing
astrongadhesivebondingagent(suchasepoxy).Forthiswork,the selectedbondingagentrequiredacuringheattreatmentof∼150◦C for1h
AlimitationofASTMC633-01testingstandardistheuseofa bondingagent.Commercialhighstrengthadhesivesprovidebond strengthupto60–70MPabeforefailingintheepoxy;asaresult,the testmayonlyidentifythatthecoatingadhesionexceedsthis mini-mumepoxystrength.Todeterminetheactualadhesionstrength,a modifiedversionoftheASTME08–04tensiletestisused.A bimetal-liccopper–steelmicrospecimen,similartothoseintheASTME8 tensilestandard, weremanufacturedandtested usingacustom fixture,asshowninFig.3.Fifteenspecimensforeachcoatingwere prepared.Thismethodallowsanaccuratemeasurementof adhe-sionstrength,asthegeometryensuresfailureinthebulkcopperor
atthebimetallicinterface
Three point bend tests were performed to assess ductility, resistancetocracking,and debondingofthecopper–steel com-posite.Thetestingand specimengeometryfollowedtheguided U-bendtestinaccordancewithASTME290-09(ASTM,2009).The thicknessesof thecopperand steelsubstrate were∼3mmand
∼6.5mm,respectively,foratotalspecimenthicknessof∼9.5mm (3/8 asperthestandard).Fivespecimensweretested foreach coatingtype.Thetestingapparatusmeasuredtheforce–deflection responsethroughoutthebend.Thespecimenswerefilmedwitha high-resolutioncameraduringtestingtodeterminetheonsetof surfacedefectsanddebonding
Itisimportanttonotethatthethreepointbendtestrepresents
anextremeloadingscenario,farexceedingthecontainer deflec-tionsand strainsresultingfrom theDGRloads Thecontainer’s steelsubstrateandcoppercoatingaredesignedtoremaininthe elasticrange duringnormal expectedloadings(i.e.groundwater hydrostaticheadandbentoniteswelling).Eveninextreme load-ingscenarios,includingthehydrostaticpressurefroma3000m thickglacierpositionedovertherepositorywouldinducestrains less than1%in thecoppercoating Thepurposeofthis beyond designbasistestistovalidatetheperformanceofthecoppercoating mechanicalintegritymodelandtoensureitcanaccuratelypredict thecoating’sbehaviourincludingpotentialfailuremechanisms
2.3 Coatingmechanicalintegritymodel
A coating mechanical integrity model, which canaccurately predict the behaviour of the copper–steel composite at the bimetallicinterfaceand inthebulkmaterials,ispresented.The
Trang 4Fig 3.Copper coating material property testing: (A) ASTM E08-04 tensile testing, (B) ASTM C633-01 adhesion test plug specimen, (C) modified ASTM E08-04 adhesion “Dog Bone” specimen, (D) custom test fixture for modified E08 adhesion testing.
following methodology was used to develop and validate the
model:
1.Materialcharacterization:Theindividualtensilepropertiesofthe
coppercoating(s)andsteelsubstrate;aswellas,the
correspond-ingadhesionpropertieswereexperimentallydetermined
2.Developmentofthecoatingmechanicalintegritymodel:AFinite
ElementModel(FEM)ofthebimetalliccopper–steelcomposite
wasdeveloped.Thebimetallicinterfacebondisimplemented
using the numerical Cohesive Zone Model (CZM) for
con-tact/interfaceelements.Ifthefailurecriteriaaremet,theCZM
willinitiatethefractureanddebondingofthecoating.The
exper-imentallydeterminedtensileandadhesionpropertiesactasthe
inputstothemodel
3.Experimentalvalidation viathreepointbendtesting: Usingthe
developedmodel,simulationsofthethree-pointbendtestsfor
thevariouscopper–steelspecimenswerecompleted.The
com-putationalresults,includingtheforce–deflectionresponseand
onsetofdebonding,werecomparedtotheexperimentalbend
tests
CZMisanumericalfracturemechanicstechnique,whichwas
originallydevelopedtopredictcrackgrowthinconcretebuthas
since been applied to other materials and failure mechanisms
(Hillerborgetal.,1976).ThebilinearCZMformulation,asproposed
byAlfanoandCrisfield(2001),wasimplementedtomodel
debond-ingbetweenthecopper–steelinterfaceandcrackpropagationin
thebulkcoppercoating.Theexpectedcontainerloadsactnormal
tothecoatingsurfaceanddonotcreatesubstantialshearingloads
atthebimetallicinterface,thereforetangentialslipwillnot
signifi-cantlycontributetocoatingdebonding.Atthistime,thetangential
slipfailurecriteriaareassumedtobeidenticaltonormal
separa-tion(i.e.failureisModeIdominated).ThebilinearCZMconstitutive
modelemploysalinearsofteningrelationshipbetweenthe
nor-malcohesivecontactstressandtheinterfaceseparationdistance
(contactgap)tosimulatethedebondingprocess
Thefiniteelementmodelingofthethree-pointbendtest
speci-mens,asshowninshowninFig.4,wascompletedinANSYSV14.5
software(ANSYS).Non-linear,largedeformationformulationwas
used.Allmaterialpropertiesweretakenfromtheexperiments
dis-cussedabove.Isotropicstrainhardeningwithmaximumdistortion
energytheoryflowrulewasusedtomodeltheplasticdeformation
behaviourofboththecoppercoatingsandsteelsubstrate.TwoCZM
zoneswereimplemented:betweenthebimetallicinterfaceandin
thebulkcoppercoating.Failureinthebulkcoatingtheoretically
occursatthecentreofthespecimenduetothehightensileloads;
Fig 4.Three-point bend specimen geometry and cohesive zone model (CZM) inter-face locations.
therefore,theCZMmodeltriggersfailureiftheexperimental ulti-matetensilestrengthisreached(99%oftheexperimentaltensile valueisusedtoavoidnumericalinstability).ThesecondCZMmodel
atthebimetallicinterfacetriggersdebondingiftheexperimental adhesionstrengthisexceeded.TheguidedU-bendsupportsand puncharemanufacturedfromhighstrength steeland assumed
toberigidinordertoreducecomputationaleffort.Thepunchis loadedincrementallytoatotaldeflectionof30mm,identicaltothe experiment,tomakeanapproximate90◦bendinthespecimen
3 Results and discussion
3.1 Coatingprocessdevelopment Gasdynamiccoldsprayprocessdevelopmentcommencedwith characterizing high purity, low-oxygen copper powders Fig 5 demonstratestypicalpowdershape/sizeusedinhighpressurecold spray(HPCS)coatings.Thenextphaseofdevelopmentoptimized various cold spray operating parameters, such asgas pressure, pre-heating,andfeedrate.Thesewereallexperimentallytested formechanical performanceand thetop performersselected.It wasdeterminedthatcosteffectivecoatingscouldbeproducedvia twostages:initiallya50–100mbondcoator“strikelayer”was depositedusingheliumasacarriergas,followedbyabulkcoating depositedusingnitrogen
Trang 5Fig 5. Scanning election microscope analysis of cold spray copper characteristics (A) low-oxygen copper powder, (B) cross-section of fully dense test coating, (C) cross-section depicting “Jetting” Bond.
Fig 6.Cold spray coating on 20 diameter pipe segment (A) cold spray equipment and process, (B) machined coating, (C) section showing >3 mm fully dense copper coating.
Theconstanthighvelocityimpactofparticlesresultsina
homo-geneouscoating,asshowninFig.5,withnonoticeableindividual
particlegeometryremaining Theintimate mixingbetweenthe
coppercoatingandsteelsubstrate,aprocessknownas“jetting”,
isalsovisible.Jettingis avisualindicationthat thecoating has
goodadherenceontothesubstrate.Aftercoatingparameter
opti-mization,thefinaltaskwastoensurefeasibilityofcoatingactual
containergeometry.Thetechnologywasusedtosuccessfullycoat
thepressurevesselshellmaterialtoathicknessexceeding3mm,
asshowninFig.6
The deposited coating material strain hardens due to the
high impact velocity and bonding process This highly cold
worked structure exhibits decreased ductility and increased
yield strength However, material properties consistent with
polycrystalline wrought copper can be achieved by annealing
the as-deposited coating (Eason et al., 2012) Several differ-entannealingtemperaturesare beingevaluatedwithinongoing research
Electrodepositionprocessdevelopmentfocusedonoptimizing thebath solutionchemistry and thepulsedcurrent application
toensureauniform, finegrained,highpuritydeposited copper layer.Thedeveloped electrodepositedcoppersamplesexhibited hightensilestrength,ductility,andadhesion.Incontrasttocold spray,nopostdepositionannealingisrequired.Forthisinitialwork depositionratesperunitareaweregenerallyslow,withthe3mm coatingtakingapproximately72htoproduce.However,thenature
oftheprocessallowssimilardepositionratesregardlessofthe coat-ingarea(i.e.smallplatesor thecontainercanbecoatedin the same time).The processis also easilyscalable, makingparallel production ofmultiplecontainers possible.Thetechnologywas
Fig 7. Electrodeposited coating on 22 diameter mock-up Mark II container section (A) electrodeposition solution tanks, (B) steel mock-up prior to immersion, (C) as-deposited
Trang 6Table 1
Tensile strength and ductility of used fuel container materials.
Copper electrodeposition—as-deposited 226.1 ± 4.7 312.1 ± 6.2 43.1 ± 5.6 Wrought SKB OFP-copper ( Sandström et al., 2009 ) ∼70 ∼194 ∼38
* NOTE: 2 specimens failed outside the gage length and were not considered.
usedtosuccessfullycoatamock-upMarkIIcontainersectionto
athicknessexceeding3mm,asshowninFig.7
3.2 Coatingmechanicalperformance
Tensile properties of the various copper coatings and steel
substrates, as summarized in Table 1, were comparable to or
exceededthereferenceSKBwroughtcopperwiththeexception
oftheas-deposited coldspray asexpected.Theductility ofthe
coldspraycoatingsvarieddependingonthedegreeofannealing
The as-deposited samples consistently had maximum strains
ofless than0.3% resultinginimmediate brittlefracture.Asthe
annealingtemperaturesincreased,ductilityincreasedwhileyield
strengths decreased Large variability in maximum strain at
fracturewasnotedfortheannealedspecimenswiththestandard
deviationrangingfrom13to22%ofthemean.Thevariabilityin
the600◦Cannealedspecimenswascompoundedsincetwotests
wereexcludedduetofailureoutsidethegagelength.Despitethe
variability,thesepreliminaryresultsindicatethatpost-deposition
annealing can achieve strengths and ductility suitable for the
container
Representativestress–straincurvesofthevariouscoatingsare
showninFig.8.Inordertodemonstratethevariabilityofthetensile
Table 2
Adhesion strength of copper coatings.
E8-04) [MPa]
near steel interface
necking prior to fracture
data,twocurvesdepictingthelowestandhighestachievedstrains
atfracturearepresentedforeachprocess(withtheexceptionof thelow performance,as-deposited coldspray) TheA516Gr.70 steelsubstratewasalsotestedintheas-received(normalized)and annealedconditions.Themeasuredyieldstrength exceededthe minimum260MPaspecifiedbytheproductformstandardforall conditions.Theannealedspecimenshadslightlylowerstrengthbut increasedductility
TheadhesionstrengthtestingresultsaresummarizedinTable2 andtypicalspecimenfailuresareshowninFig.9.Thecoldspray specimens failed in thebulk coating and exhibited noyielding
0
50
100
150
200
250
300
350
Enginee ring Strain [%]
Wrought Copp er: Representave SKB Electrodeposion: As-deposited (Highest Strain) Electrodeposion: As-deposited ( Lowest Strain) Coldspray: Ann ealed @ 60 0°C ( Highest Strain) Cold spray: Ann ealed @ 60 0°C ( Lowest Strain) Coldspray: Ann ealed @ 35 0°C ( Highest Strain) Cold spray: Ann ealed @ 35 0°C ( Lowest Strain) Cold spray: As-deposited ( Typical)
Fig 8.Engineering stress–strain curves of various copper coatings versus wrought copper The results of the coating specimens with the lowest and highest strain at fracture
Trang 7Fig 9.Typical copper coating adhesion test results: (A) cold spray as-deposited, (B) cold spray annealed (1 h@350 ◦ C), (C) cold spray annealed (1 h@600 ◦ C), (D) electrodepo-sition as-deposited.
beforefailure.The electrodepositedalsofailedin thebulk
cop-per; however, significant necking occurred This demonstrates
that the adhesion strength of the steel-copper interface likely
exceedstheultimatetensilestrengthofthebulkelectrodeposited
copper
Three-pointbendtestingresultsareshowninFigs.10–12.All
as-depositedcoldsprayspecimensexhibitedsurfacecracksinless
thanamillimetreofloading.Thecrackspropagatedquicklythrough
thebulkcoatingtothesubstrate,followedbyfulldebondingfailure
atthecopper–steelbimetallicinterfaceasobservedinFig.10.As
loadingcontinued,thecoppercoatingprogressivelypeeledaway
fromthesubstrateleavingnoresidualcopperattheinterface.The
annealedcoldspraycoatingsperformedmuchbetter,reaching50◦
to80◦ bendbeforecrack formation, correlatingto ∼15–28mm
of deflection.This highvariability ofinitialfailure deflection is
discussed inSection 3.3 Oncea crack developed it propagated
rapidlyanddebonding ensued,similartotheas-deposited cold
spray.Examinationofthebimetallicinterfacepost-failurerevealed
athinresidualcopperlayerthatremainedadheredtothesteel
sub-strate.Thisishypothesizedtobetheinitialheliumstrike layer
Fig.11showstheonsetofcrackformationforthe600◦Csamples;as
wellas,fulldebondingatmaximumbend.The350◦Csamples
per-formedsimilarly.Theelectrodepositedcoatingdemonstratedthe
bestperformancereachingthefull90◦+bendwithoutanycracking
ordebondingonallfivespecimens;atypicalresultsisshownin Fig.12
3.3 Coatingmechanicalintegritymodel The coating mechanical integrity model was compared to the experimental three-point bend tests for four coatings: as-depositedcoldspray,annealedcoldspray(1h@350◦C),annealed coldspray(1h@600◦C),andas-depositedelectrodepositionusing the force–deflection curves and onset of cracking Compari-son of the model and experimentalforce–deflection curves, as showninFigs.10–12,revealgoodagreement.Todemonstratethe influence of the tensile property inputs, two simulations were completed for each coating type, corresponding to the lowest andhigheststrainsatfractureforthetensiledataexperimentally obtained
Fig.13showsthegoodcorrelationbetweentheforcedeflection curvefortheas-depositedcoldspraysamplesandtheFEM.The peakforceatinitialcrackformationrangedfrom4857to5128N occurringat0.62–0.83mmofdeflection.Forthemodel,peakforce rangedfrom4623to4679Nat0.60mmofdeflectionwere pre-dictedcorrespondingthelowestandhighesttensileperformance,
Fig 10. Three-point bend results for as-deposited cold spray: (A and C) crack-initiation, (B and D) debonding at full-bend (A and B) Experimental results versus (C and D)
Trang 8Fig 11.Three-point bend results for 600 ◦ C annealed cold spray: (A and C) crack-initiation, (B and D) debonding at full-bend (A and B) Experimental results versus (C and D) model results.
Fig 12. Three-point bend results for as-deposited electrodeposition: no debonding at full bend (A) experimental result versus (B) model results.
Fig 13.Three-point bend force–deflection response: as deposited cold spray.
respectively.Afterdebondingbegan,themodel’spredictedforce
responsefallswithintherangeofexperimentalresults,asshown
inFig.13.Atfullbend,theexperimentalandmodelpeakforces
rangedfrom7408to7741N
Aspreviouslymentioned,theannealedcoldsprayspecimens showedthelargestvariabilitytermsinperformance,asreflected
inFigs.14and15.Forthe350◦Cannealedspecimens,allyielded
at approximately ∼4500N and 1mm of deflection, then had
a similar response up to 15mm of deflection Specimens then failedat16–24mmofdeflection,withfinalpeakforcesbetween
8172and8745N.Themodelpredictedcrack initiationat∼13.5 and20.4mmfor lowestand higheststraintensile data, respec-tively
Forthe600◦Cannealedspecimens,allyieldedatapproximately
∼4100Nand1mmofdeflection,thenhadasimilarresponseupto
15mmofdeflection.Atotalofthreespecimensfailedbetween15 and18mmandthefinaltwofailedat20mmand27mm,ascan
beobservedinFig.15.Forthefourspecimensthatfailedbetween
15and20mm,thefinalpeakforcewas7149–7268N.Themodel predictedcrackinitiationat∼16.5mmfortheloweststrain ten-siledata,followedbyrapidpropagationandcoatingdebonding Thefinalpeakforcewas7156N,whichiswithintherangeofthe experimentalresults.Forthehigheststraintensiledata,themodel predictednocoatingfailure;however,theresultingpeakstrainis within5%oftheultimatestrainandisclosetofailure.Itis hypoth-esizedthatinhomogeneitiesinherenttothecoldsprayprocessact
Trang 91000
2000
3000
Fig 14.Three-point bend force–deflection response: annealed (1 h@350 ◦ C) cold
spray.
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
Fig 15.Three-point bend force–deflection response: annealed (1 h@600◦C) cold
spray.
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
Fig 16.Three-point bend force–deflection response: as deposited
electrodeposi-tion.
asstressrisersandareenoughtoinitiatelocalizedfailurezonesnot
capturedinthemodel
For the electrodeposited specimens, yielding occurred at
∼6000Nandsubsequentloadingproducednofailuresofthe
coat-ingforallspecimens,asshowninFig.16.Themodelalsopredicted
nofailureusingboth thelowest andhighest straintensiledata
andfollowedtheexperimentalforce–deflectionresponsewithin4%
upto27mmofdeflection.Althoughnocrackingoccurs,thepeak
curveswereconsistentwiththeexperimentalresults,asshown
inFigs.13–16.Theannealedcoldsprayresultsshowedhigh vari-abilityinthetensiletesting;asaresult,thethree-pointbendtests producedawiderangeoffailures.Coldsprayprocessoptimization
isstillongoingandfabricationvariabilitycontinuestobereduced
Aspreviouslymentioned,itisimportanttonotethatpreliminary UFCdesignanalysishasshownthecopperstrainswouldbemuch lessthan1%evenundertheglacialloadingscenario.Eventheworst performingannealedcoldspraycoatingtestspecimensexceeded 20%strainandwouldbeatnoriskoffailure.Thethreepointbend loadingsrepresentabeyonddesignbasisscenariowithinduced strainsapproaching28%atfullbend
4 Conclusion
The experimentaldevelopmentand mechanical modeling of
arobustcoppercoatingforuseasa UsedFuelContainer corro-sionbarrierhasbeenpresented.Coldsprayandelectrodeposition coatings withcomparable mechanical performance to wrought copperhavebeenfabricatedonthefull-scalecontainermaterials Themechanicalperformanceoftheannealedcoldsprayandas depositedelectrodepositioncoatingswerecomparableorexceeded thatofthereferencewroughtcopperandaresuitableforthe con-tainerdesign.Variabilityintheperformanceofcoldspraycoatings wasnoted.Thisworkrepresentsonlytheinitial“proofofconcept” results;aspartoffuturework,additionalprocessrefinementsand researchintoalternativeannealingscheduleswillbecompletedto reducethisvariabilityandimproveoverallperformance
A mechanical integrity model for the copper–steel compos-ite was developed and experimentally validated It accurately predicted the various copper coating responses, including the bimetallic interfacefailure Themodel’s averageforceresponse deviated less than 4% from the experiments, with localized maximumsofapproximately10–15%.Forfuturework,thismodel willbeusedtoevaluatetheperformanceofthecoatingsonthe MarkIIUFCunderrepositoryloadingconditions;aswellas,beyond designbasisanalysestodemonstratetheconservativenessofthe design
In conclusion, this work demonstrates that copper coatings can be reliably fabricated on container materials and geome-tries These coatings have beenextensively tested and confirm amplemechanicalperformanceforcontainerdesign.Wecan accu-ratelymodeltheirresponseunderexpectedrepositoryconditions andbeyond Productionoffull-scalecontainers,additional opti-mizationofcoatingparameters,andapplicationofthemodelto containergeometriesarecurrentlyunderway
Acknowledgments
Coatingprocessdevelopment,optimization,andexperimental workhasbeenconductedincollaborationwithIntegran Technolo-giesInc.andtheNationalResearchCouncilCanadafacilities
References
Alfano, G., Crisfield, M.A., 2001 Finite element interface models for the debonding analysis of laminated composites: mechanical and computational issues Int J.
Trang 10ANSYS ® Mechanical, Release 14.5 Help System, Workbench ANSYS Inc.,
Canons-burg, PA http://www.ansys.com/Industries/Academic/Tools/Citations
ASTM, 2008a Standard test methods for tension testing of metallic materials In:
ASTM E8/E8M-08 ASTM International, West Conshohocken, PA.
ASTM, 2008b Standard test method for adhesion or cohesion strength of thermal
spray coatings In: ASTM C633-01 ASTM International, West Conshohocken, PA.
ASTM, 2009 Standard test methods for bend testing of material for ductility In:
ASTM E290-09 ASTM International, West Conshohocken, PA.
ASTM, 2010 Standard specification for pressure vessel plates, carbon steel, for
moderate- and lower-temperature service In: ASTM A516/516M-10 ASTM
International, West Conshohocken, PA.
Aust, K., Brooks, I., Gonzalez, F., Lin, P., Palumbo, G., Tomantschger, K.,
Nagara-jan, N., 2008 Method for preparing polycrystalline structures having improved
mechanical and physical properties Canadian Patent No 2674403.
Chastain, M.L., Deymier-Black, A.C., Kelly, J.E., Brown, J.A., Dunand, D.C., 2011
Met-allurgical analysis of copper artifacts from Cahokia J Archit Sci 38, 1727–1736.
Choi, H.J., Lee, M., Lee, J.Y., 2010 Application of a cold spray technique to the
fab-rication of a copper canister for the geological disposal of CANDU spent fuels.
Nucl Eng Des 240 (10), 2714–2720.
Eason, P.D., Kennett, S.C., Eden, T.J., Krull, I., Kowalski, B., Jones, J.L., 2012 In situ
observation of microstrain relief in cold-sprayed bulk copper during thermal
annealing Scr Mater 67, 791–794.
Hillerborg, A., Modeer, M., Petersson, P-E., 1976 Analysis of crack formation and
crack growth in concrete by means of fracture mechanics and finite elements.
Cem Concr Res 6, 773–782.
Irissou, E., Legoux, J.-G., Ryabinin, A., Jodoin, B., Moreau, C., 2008 Review on cold
spray process and technology: Part I Intellectual property J Therm Spray
Tech-nol 17, 495–516.
Jakupi, P., Keech, P.G., Barker, I., Ramamurthy, S., Jacklin, R.L., Shoesmith, D.W.,
Moser, D.E., 2015 Characterization of commercially cold-sprayed and
electrode-posited copper grains on mild steel J Nucl Mater 466, 1–11.
Keech, P.G., Vo, P., Ramamurthy, S., Chen, J., Jacklin, R., Shoesmith, D.W., 2014 Design
and development of copper coatings for long term storage of used nuclear fuel.
Corros Eng Sci Technol 49, 425 (Special Issue on Corrosion in Nuclear Waste
Systems).
King, F., 1995 A natural analogue for the long-term corrosion of copper nuclear waste containers—reanalysis of a study of a bronze cannon Appl Geochem 10, 477–487.
Kwong, G.M., 2011 Status of corrosion studies for copper used fuel containers under low salinity conditions In: NWMO Technical Report, NWMO-TR-2011-14 Nuclear Waste Management Organization, Toronto, Canada.
Miller, W.M., Chapman, N., McKinley, I., Alexander, R., Smellie, J.A.T., 1994 Natu-ral Analogue Studies in the Geological Disposal of Radioactive Wastes Elsevier Science, Amsterdam, The Netherlands.
NWMO, 2005 Choosing a Way Forward: The Future Management of Canada’s Used Nuclear Fuel Nuclear Waste Management, Toronto, Canada.
Papyrin, A., Kosarev, V., Klinkov, S., Alkhimov, A., Fomin, V.M., 2006 Cold Spray Technology Elsevier, Amsterdam, The Netherlands.
Petterson, K., 2012 A review of the creep ductility of copper for nuclear waste can-ister application In: SSM Technical Note 2012:13 Strålsäkerhetsmyndigheten, Stockholm, Sweden.
Raiko, H., Sandström, R., Rydén, H., Johansson, M., 2010 Design analysis report for the canister In: SKB Technical Report TR-10-28 Svensk Kärnbränslehantering
AB, Stockholm, Sweden.
Sandström, R., Hallgren, J., Burman, G., 2009 Stress Strain flow curves for Cu-OFP In: SKB Rapport R-09-14 Svensk Kärnbränslehantering AB, Stockholm, Sweden.
Scully, J.R., Edwards, M., 2013 Review of NWMO copper corrosion allowance In: NWMO Technical Report, NWMO-TR-2013-04 Nuclear Waste Management Organization, Toronto, Canada.
Stroes-Gascoyne, S., Hamon, C.J., Maak, P., Russell, S., 2010 The effects of the physical properties of highly compacted smectitic clay (bentonite) on the culturability of indigenous microorganisms Appl Clay Sci 47, 155–162.
Svensk Kärnbränslehantering AB, 2010 Design and production of the KBS-3 repos-itory In: SKB Technical Report TR-10-12 Svensk Kärnbränslehantering AB, Stockholm, Sweden (updated 2013-10).
Wolfaardt, G.M., Korber, D.R., 2012 Near-field microbiological considerations rele-vant to a deep geological repository for used nuclear fuel-state of science review In: NWMO TR-2012-02 Nuclear Waste Management Organization, Toronto, Canada.