TECHNOLOGY DEVELOPMENTSTRATEGY $$$ MANAGEMENT MS Project Scheduling Tool SCHEDULE TASKS MID/ LOW MANAGER FEASIBLE PROJECTS BUDGETED, APPROVED PROJECT PLAN... YES Planning Done PLANNER Se
Trang 3TECHNOLOGY DEVELOPMENT
STRATEGY
$$$
MANAGEMENT
MS Project Scheduling Tool
SCHEDULE
TASKS MID/ LOW
MANAGER FEASIBLE PROJECTS
BUDGETED, APPROVED PROJECT PLAN
Trang 40.0 20.0 40.0 60.0 80.0 100.0
#robots
0.0 0.1 1.0 10.0 100.0 1000.0
Performance of different Planners
in Shuffle 6 Blocks Problem
FF AltAlt RealPlan Graphplan Blackbox (Satz)
Trang 5on_B_Tab
on_B_Tab on_A_Tab
PICK_A_R1 PICK_A_R2 PICK_B_R1 PICK_B_R2
.
on_A_B
Fact level 0
Action level 0
Fact level 1
Action level 1
Fact level 2 STACK_A_B_R2
Trang 61 3 5 7 9
# robots
0.1 1.0 10.0 100.0
Performance of Graphplan and Blackbox (satz)
in the 6-block Shuffle Problem in Blocks World
GP-G GP-S GP-TOT BB-TOT
Trang 71 3 5 7 9
# robots
0.1 1.0 10.0 100.0 1000.0
Performance of Graphplan in Shuffle Problem
with varying number of blocks and robots
SHUF4-GP-TOT SHUF6-GP-TOT SHUF8-GP-TOT SHUF10-GP-TOT
Trang 81.0 3.0 5.0 7.0
# robots
10.0 12.0 14.0 16.0 18.0
A Look into Plans by Graphplan
in the Blocks World domain
Length of plan Number of steps in plan
Trang 9Õ̼ÉZÖ©Ï§Í¨È Ë¼Ó§ÈÍ Iê Iå ˼ӧÈÍ Iê I[å
A C
Trang 10YES Planning Done PLANNER
Set Alloc Policy
SCHEDULER
Schedule Done YES
Post-process
YES Executable Plan NO
NO
YES Alloc needed
Trang 11SCHEDULER
T A S L A T O R
TRANSLATED FEEDBACK
Trang 14Plan with 2 resource
Level 1 Level 2 Level 3
Level K Level K-1
.
Maximally parallel plan
Maximally serial plan
Plan with R-1 resource Plan with R resource Plan with N >= R resource
à Ó¾ÔÞwÈÈ Þ> ÚÍ¨Ç Ë¼ÚÍ̼ÍΠ̼ÍͨÇÉÛÔÚ Ì¼Í¨ÊÉÛÌÙͨÊ"ËÉ1É)éZÍÌÙÉÈÍÎZÇjÝî̼ͨÊÉÛÌÙÍÙÉÇg©Ó§ÙË×aÉÇÍ
Trang 19Level Actions by level # Robots
Unstack_R_blkF_blkE 1 1
5 6 6 7 8 9
Unstack_R_blkE_blkD Unstack_R_blkD_blkC
Unstack_R_blkB_blkA Stack_R_blkF_blkC Pickup_R_blkA Stack_R_blkB_blkF Stack_R_blkE_blkB Stack_R_blkA_blkE Stack_R_blkD_blkA
5 Putdown_R_blkC
Unstack_R_blkC_blkB 4
3 2
10
3 4
5 5 4 3 2 1 2
à Ó¾ÔÞ(È[Þgê ̼ͨʼÉÛÌÙÍÐLÎ Ö©ÊË̤ÎZÙËͨÒîÊÉϧÛ˼ӾÉÇ*æ½ÉZÌxV .Õ̼ÉZ֩ϾͨÈÞíöÛ̼éZͨÒϧӧÇͨÊÊÚÉ0Ñ ÌÍÐ
A^2_5 A^2_6
Viewing actions as tasks of unit time
à Ó¾ÔÞlÈâ[ÞX]Ó¾ÍÑ ÉZæË¼ÚÍ(̼ͨÊÉṲ̂ÙÍÐLÎ Ö©ÊËÌÎZÙËͨÒ1թϧÎZÇ1Ó§Çà Ó¾ÔÛ̼ÍÈxÎZÊÎx˼ÎZÊäÇÍËÑ@ÉZÌäGËÉÖ¹Í
Trang 24ÎVø ø ÷
Ü
ø<ÿÜJÞ
Trang 25ÿ
ÜJÞù*ú
)'L&KmV$U^IZP%mx<Vm|V%V$KG&V%i5V$GdO Ç I5KW`Íel¯¤oV$U"V%YRbU"V5k
LdmOV$Km^LdUVW]U^IZmL&RbKlk)O"TpI5K
)'P\I5KYU"V$V[LdmIZY¶m^V%UG&VibV%G@ÍORqO"TpI5K
('ÑP\I5K]O"V[Ldmgm^R
Trang 27Classes of Resource Allocation Scheduling
EASY
HARD
[3 4] FIX [2] SAMELEN
R5YqITU"R)P%V$W]UI5GUV$O"Rb]U"P$VI5G&GdR)P$IZm^LdRbK I5G&M5RbUL!m^oS L&OOoR7_K L&K ± L&Mb]UV³Ãe¤¯¤oL&O
)'ÑI5UVHU"V$G&ViZI5Km Irm8,
e±pRbU@V$I5P0ot]KpI5G&GdR)P$IZm^V%W
UV%G&V%iZI5KmCOTpIZKk7Ldm(P0oV%P0~OwmR,O"V$VgLdYm^oV%UV|LdOI_|I\mRIZOOLdMbKI,UV%ORb]UP$VZeZ¯¤oVgP0oV%P0~LdO
Trang 28N^D_N^`dJdabL
$ cJMafe
Trang 29A^1_6 A_7 A_8 A_9 A_10 A^1_5
A_4 A_3 A_2 A_1
A^2_5 A^2_6
Viewing actions as tasks of unit time (5 or more robots)
1
2 3
Trang 30A^1_6 A_7 A_8 A_9 A_10 A^1_5
A_4 A_3 A_2 A_1
A^2_5 A^2_6
Viewing actions as tasks of unit time (3-4 robots)
1
2 3
1
2
2 3
ă Ó¾ÔÞHăbỈ Þ ï ÙÚͨҩÛϧӧÌÔîỊ¼ÎZÍốÌÍỊÑ@ĨZ̼ô ĨZưjP$Õ̼ĨZ֩ϧͨỈ Ö[ÝúăgƯ"Þ`ö4Û̼ĩZÍ¨Ò Ï§Ó§ÌͨÍ6ͼÚĨ)Ñ
Trang 32ø ÷Þ
Trang 35P1 P2
P3 P4 O1
O3
G1
G2
G3 O2
Trang 39ÎZÇÒ3ý)ÐLÊËÍÕ1ʼÛÖթϧÎZÇ÷·å*è XêWשçUÆö ½×©åâèíXêW;ø;ËÉxÌͨÎZϧϾÉÙÎ ËÍ˼ÚÍÔZÌÓ§ÕÕ¹ÍÌ4ÓØÇGÎ̼É[ÉÈGÞ
1 PICK_GRIPPER_ball3_roomA 1 PICK_GRIPPER_ball3_roomA (left)
1 PICK_GRIPPER_ball1_roomA 1 PICK_GRIPPER_ball1_roomA (right)
1 PICK_GRIPPER_ball4_roomA 2 PICK_GRIPPER_ball3_roomA (free)
1 PICK_GRIPPER_ball2_roomA 2 PICK_GRIPPER_ball1_roomA (free)
2 MOVE_roomA_roomB 3 PICK_GRIPPER_ball4_roomA (left)
3 DROP_GRIPPER_ball4_roomB 3 PICK_GRIPPER_ball2_roomA (right)
3 DROP_GRIPPER_ball2_roomB 4 MOVE_roomA_roomB
3 DROP_GRIPPER_ball3_roomB 5 DROP_GRIPPER_ball4_roomB (left)
3 DROP_GRIPPER_ball1_roomB 5 DROP_GRIPPER_ball2_roomA (right) Level Abstract Plan Level Scheduled Plan with Free/Unfree(Realloc) Actions
Trang 41C O N V E N T I O N A L
P L A N N E R
DECLARAT-IVE
SAT (BLACKBOX)
¿gOV%TpI5UIZm^LdKMP$I5]OI5GI5KW£UV$O"Rb]U"P$VcU"V\I5O"RbKLdKMkHS]G!m^LdTG&VP0oRbL&P%V$O3I5UVI\iZI5L&G&I5xG&V
_oL&P0o.I5UV_O"]S3S3I5U"L& $V%WQL&K± L&M5]UV Ç Ñ)eb TUR5mR5mT<V_L&STGdV$SV$Km0IZmL&RbKtR5Ylæçè)éZêpébèZë
Trang 431 3 5 7 9
# robots
0.1 1.0 10.0 100.0 1000.0
Performance of Graphplan v/s Planning+Scheduling
in the Shuffle problem with varying number of blocks and robots
SHUF4-GP-TOT SHUF6-GP-TOT SHUF8-GP-TOT SHUF10-GP-TOT SHUF4-PS-TOT SHUF6-PS-TOT SHUF8-PS-TOT SHUF10-PS-TOT
Performance of Graphplan v/s Planning+Scheduling
in 8-Block Inversion Problem in Blocks World
GP-G GP-S GP-TOT PS-G PS-S PS-TOT
Trang 441 3 5 7 9
# robots
0.1 1.0 10.0 100.0 1000.0
Performance of Graphplan v/s Planning+Scheduling
in the 10-blocks huge fact and 9-block bw-large-a problems
HUGEFACT-GP-TOT HUGEFACT-PS-TOT BWLARGEA-GP-TOT BWLARGEA-PS-TOT
;7ÙÖ6È
Trang 461 3 5 7 9
# robots
0.1 0.8 8.0 80.0 800.0
Performance of Graphplan v/s Planning+Scheduling
in the Shuffle Problems in Blocks World
SHUF-4-GP SHUF-6-GP SHUF-8-GP SHUF-10-GP SHUF-4-PS SHUF-6-PS SHUF-8-PS SHUF-10-PS
S.IZL&KsO"L& $V%OR5Y'iZI5UL&I5xGdV$OLdOibV%U"c]OVY]GHL&KsTU^I5Pm^L&P%V5el±½R5UVI5STG&VZk<moV ðSÍa§¬À¨
TUR5xG&V%S _Ldm^o`¸cUR5x<R5mO|I5OtO"RbGdi5V$WLdK`¸sO"V$PLdKP%GJI5O"O± zyYRbG&GdR_L&KMnm^oVI5xERibV
RbUWV$U$kpx]m_m0I5~ZV$O,ѳhS3LdK])m^V$O_oV$KcP%GJI5O"O¤*#Ó(Æ#Ô|I5O_OTEV$P$L!zpV$W]TYURbKm\e
KÀ± L&Mb]UVsÁ5ÁkggVvOV$VsmoVuTEV$U"YR5US3I5KP$VcR5Yhm^oVuKV SV%moR)WXRbKìm^oV³º7xGdR)P0~
Trang 471 3 5 7 9
# robots
0.1 1.0 10.0 100.0 1000.0 10000.0 100000.0
in the 10-block huge fact and 9-block bw-large-a problems
HUGEFACT-GP-TOT BWLARGEA-GP-TOT
G&RbM.OP\IZG&V5el±pRbU ¬
)%ø«úÏk<TUR5xG&V%S3O_Ldm^ouU"RbxER5m^O³m^RÌI5U"VL&Kv|G&I5OO[*#,Ó(Ưí#
_oL&GdVYRbU ¥!ø5÷ ¨ ø5k'TU"RbxGdV$SO._LdmojURbxER5mOs³sm^R¸IZUVsLdK |GJI5O"On*#Ó(Ư#e
Trang 492 3 4 5 6 7 8 2
7 1
10 100 1000
2 4 6 8 10
Trang 51ĩzîòï_ðzóí2ô õÜóö_÷Û÷ ñÝøôí_ùµ÷Ýú í ðzûüñÝîÛ÷ ýzïuøýüñÝí2îÛö_õăñÝøï_ý õÜóö_÷Û÷ ñÝøôíüùµ÷Ûú âPđêPôMơ Ö2×ăØ2ÙÝÚÜÙÝØÛÞAßÝưÜì ìz÷Ûí2ị ó ôøñ
Trang 53ỏỉÒÉZơờỹớễÙẻ ẹÒốớẻxễ Iê Iạ ẹÒốớẻễ Iê Iạ ẹÒốừẻễ Iê I[ạ
à à ỉũờđÊỦ`ố¾ẹÒÚ ồễă{ịZũỹớẹÉZỏẹÒố¾ÉđßẺỚêỨỹ¾ẹÒêỨỹ¾ẹỉũđờÊỦ`ố¾ẹÒÚ ẹÒÚễdêTS<U Ư ĩDV ạ.à çÓê`ö4ìậÒèả
ả.èê-'WÒXFè]à àÉZỏẹÒố¾ÉđÊÙẺèỨÉVạ ẻễÙịZđÊç]4@`_îvZ ẵỡ Ẻ
IQK c]M]dD
LzJdR
NR9SẺ
Trang 54é¡îÛï_ðzóê2ô ñÝøôê íT+ í íè ñÛøôê íT+ í íè ñÛøôê íT+ í íè
÷E5ì¡ñòñÝóê 4_õ*)F÷) &)$ 4 & 4 4 )%% $! 4 &'4 ) 4 &
ìgΠ֩ϾÍhÈà
çgÍ̼æ{ÉZÌÈxÎZÇÙÍÜÉZæ à àÎZÇÒGêϾ˼êϾËÓ§Ç˼ÚÍ ï ÚjÛË˼ϾÍ.Õ̼ÉZ֩ϧͨÈxÊÞ
ð !$( !_ézîòï_ð& _î & ) & 4 &'4
ð !$( !_ézîòï_ð& )Fî & & 4 4 &'4
ð !$( !_ézîòï_ð& &'_î & & & 4 4 &'4
ð !$( !_ézîòï_ð& $_î ! & 0)) & 4 ! &'4
ð !$( !_ézîòï_ð& _î &' & )$% & 4 &'4
ð !$( !_ézîòï_ð& 4_î &' & $4 %4 & 4 &'4
ð !$( !_ézîòï_ð& )$_î &'! & 0$4 & & 4 &'4
ð !$( !_ézîòï_ð& !_î &'% & äMï, &'4
ð !$( !_ézîòï_ð& &'_î & &'4
ìgΠ֩ϾÍhÈý
å`ͨʼÛϾË;Ó§Çx˼ÚÍÕ©Î ÌÙç@ϧÎZÇ6֩ϾÉÙ¼äÊUÑ;ÉZÌϧÒ6ÒÉÈxÎZÓ§Ç6Ñ`Ӿ˼Ú6È(Ûϧ˼ӾթϾÍ̼ÉZÖ¹ÉZ˼Ê4ÎZÇÒϧӧÈxÓ§ËͨÒ֩ϾÉÙ¼ä
Õ¹ÉʼӾ˼ӧÉÇÊ;ÉÇ˼ÚÍ.˼Π֩ϧÍZÞ
G!m^G!m_I5GdORQOGdR7_O¤_L!m^oS3R5UV[UV%ORb]UP$V%O$e
Trang 64ẻPêỨỹớỹ¾ễÙđắÈ`UẺ¾ÈklFễÙđồỹ¾ễỉ0ÈêUẺ¾È]ịZđờồ<ìgị ẹễZÈê(ẺƠ{ễÙồắẺĨụẵẺnmÒwV yỎ[ẳ ẾyỎpoz}w ờyỎ[ẳV ạÉZỉÒÔịZđ
ỎịZũă{ẻxịZđờđGçUũơờỹằẺ¾È ĩ ịZđ5ạ5ị ẹễÉÈắö4ê(Ẻ'ẻQHQM1Ẻ
Újẹẹỏ cLỹHỹ)ỦỦỦưẺứÊẺẹÉZỉÒÉđjẹÉẺễÙồũbỹịZố¾ỏờÊ"àM1H1H1aỹ ĩ ễÙỹ¾ăằö;ÉđVẹÒịZốừđễÙồêFậpç ĩ ƯỹàM1H1H1ẺỏờÊẺỲàM1H1H1Ẻ
Trang 65Ỉ/ăĨ¨â¹×VơrÞ¾× ÎZÌÒ8-íĨÌÔ×MS"Þ3¬a@L¡¨y· 6w Qu}z¾ y¢wZyZO4 « vv «y{o4z¾w y{j£
" vxw y{4ìÙ¼ĨÙ ÞƯU[ö4í`ƯÐvQHQ[Þ²ỈQHQHQ[Þ
ỈQlFĨ þßỈxÎZÌß× UÞ¾× ÎZÌ©Ò ôFÍÖ¹Í¨Ï·× ÿÞ ¬auu oz}w ©y½[£ «Lvx|ủwoz}w
s Q wZy· ¬aV £ " ¤y½y·¡ú Q¼w ¡ ï ÛÖ©ỈxÓ¾ỊỊÍ¨Ò ỊĨ UíFƯ¡ơÜÞ(íϧÍĨ Ñ;Í֩ͼӾỊÍ Î Ị
Þ ỉ]Ì Ị¼ÚÍơ`ͨϧΠỊ¼Ó¾ĨÌÍnÖ¹ÍỊLÑ;ÍÍ¨Ì ƯOÌVỊÍ¨ÏØÏ§Ó¾ÔZͨÌjỊ ÿ4ÎZÙ¼ô[ỊÌÎZÙ¼ôÓ§ÌÔ
ÎZÌÒ$ăÎZÓØÏ§Û̼ÍÐ}SÌÓ¾ĩZͨÌWâթϧÎZ̩ΠỊ¼Ó¾ĨÌТ֩ÎZÍͨÒ-íͨΠ̤ÌÓ§ÌÔtÓ§Ì ö;ĨÌ©ÍỊÌÎZÓ§ÌjỊ ï Î Ị¼Ó§ÍưÎZÙỊ¼Ó¾ĨÌ ÎZÌ©Ò
ì@ϧÎZÌÌÓ§ÌÔÞ ¥ y@¡y·w z q Lz{z¸y¾£j¡¤Þ'ỈQHQHQ[Þ
Trang 66ăƯ vFÂẨy{y·Ư ÀjmÃz{rở4ậỗ½ậếaÞỉấÞÝẽZé¾ẻZÞẻẨềíbé)ếíệ"éẩxỉềẻèôẩẫZậậKéẽZể¾ếẪấỊỉẫẩxếÐđèỊẻẨấỊíéưậỊấÞĩVậỊẩé·Þ
... SHUF8-PS-TOT SHUF10-PS-TOTPerformance of Graphplan v/s Planning+ Scheduling
in 8-Block Inversion Problem in Blocks World
GP-G GP-S GP-TOT PS-G... class="page_container" data-page="46">
1 9
# robots
0.1 0.8 8.0 80.0 800.0
Performance of Graphplan v/s Planning+ Scheduling
in. .. class="page_container" data-page="43">
1 9
# robots
0.1 1.0 10.0 100.0 1000.0
Performance of Graphplan v/s Planning+ Scheduling