1. Trang chủ
  2. » Kinh Tế - Quản Lý

PLANNING THE PROJECT MANAGEMENT WAY: EFFICIENT PLANNING BY EFFECTIVE INTEGRATION OF CAUSAL AND RESOURCE REASONING IN REALPLAN pdf

71 611 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Lập kế hoạch theo phương pháp Quản lý Dự án: Hiệu quả Lập kế hoạch bằng cách tích hợp hợp lý lý luận Nguyên nhân và Tài nguyên trong RealPLAN
Tác giả Nhóm tác giả
Người hướng dẫn TS. Nguyễn Văn A
Trường học Trường Đại học Bách Khoa Hà Nội
Chuyên ngành Quản lý Dự án
Thể loại Tót nghiệp hoặc Luận văn
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 71
Dung lượng 570,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TECHNOLOGY DEVELOPMENTSTRATEGY $$$ MANAGEMENT MS Project Scheduling Tool SCHEDULE TASKS MID/ LOW MANAGER FEASIBLE PROJECTS BUDGETED, APPROVED PROJECT PLAN... YES Planning Done PLANNER Se

Trang 3

TECHNOLOGY DEVELOPMENT

STRATEGY

$$$

MANAGEMENT

MS Project Scheduling Tool

SCHEDULE

TASKS MID/ LOW

MANAGER FEASIBLE PROJECTS

BUDGETED, APPROVED PROJECT PLAN

Trang 4

0.0 20.0 40.0 60.0 80.0 100.0

#robots

0.0 0.1 1.0 10.0 100.0 1000.0

Performance of different Planners

in Shuffle 6 Blocks Problem

FF AltAlt RealPlan Graphplan Blackbox (Satz)

Trang 5

on_B_Tab

on_B_Tab on_A_Tab

PICK_A_R1 PICK_A_R2 PICK_B_R1 PICK_B_R2

.

on_A_B

Fact level 0

Action level 0

Fact level 1

Action level 1

Fact level 2 STACK_A_B_R2

Trang 6

1 3 5 7 9

# robots

0.1 1.0 10.0 100.0

Performance of Graphplan and Blackbox (satz)

in the 6-block Shuffle Problem in Blocks World

GP-G GP-S GP-TOT BB-TOT

Trang 7

1 3 5 7 9

# robots

0.1 1.0 10.0 100.0 1000.0

Performance of Graphplan in Shuffle Problem

with varying number of blocks and robots

SHUF4-GP-TOT SHUF6-GP-TOT SHUF8-GP-TOT SHUF10-GP-TOT

Trang 8

1.0 3.0 5.0 7.0

# robots

10.0 12.0 14.0 16.0 18.0

A Look into Plans by Graphplan

in the Blocks World domain

Length of plan Number of steps in plan

Trang 9

Ք̼ÉZÖ©Ï§Í¨È Ë¼Ó§ÈÍ Iê Iå ˼ӧÈÍ Iê I[å

A C

Trang 10

YES Planning Done PLANNER

Set Alloc Policy

SCHEDULER

Schedule Done YES

Post-process

YES Executable Plan NO

NO

YES Alloc needed

Trang 11

SCHEDULER

T A S L A T O R

TRANSLATED FEEDBACK

Trang 14

Plan with 2 resource

Level 1 Level 2 Level 3

Level K Level K-1

.

Maximally parallel plan

Maximally serial plan

Plan with R-1 resource Plan with R resource Plan with N >= R resource

à ӾԌÞwÈÈ Þ>“ ÚŒÍ¨Ç Ë¼ÚŒÍ€Ì¼ÍΠ̼ÍÍ¨ÇŒÉˆÛŒÔˆÚ Ì¼Í¨Ê†ÉˆÛ”Ì—Ù‰Í¨Ê"ˆÉ1É)éZ̗̀ىɈÈÍÎZÇjÝî̼ͨʆɈ۔̗ىÍىɈÇg”©Ó§Ù‰Ë€×aɈǔÍ

Trang 19

Level Actions by level # Robots

Unstack_R_blkF_blkE 1 1

5 6 6 7 8 9

Unstack_R_blkE_blkD Unstack_R_blkD_blkC

Unstack_R_blkB_blkA Stack_R_blkF_blkC Pickup_R_blkA Stack_R_blkB_blkF Stack_R_blkE_blkB Stack_R_blkA_blkE Stack_R_blkD_blkA

5 Putdown_R_blkC

Unstack_R_blkC_blkB 4

3 2

10

3 4

5 5 4 3 2 1 2

à ӾԌÞ(È[Þgê ̼ͨʼɈی̗ى͉ÐLΠ֩ʆˆ̤ÎZىˆͨÒîʆɈϧ۔˼ӾɈÇ*æ½ÉZÌx—‹V‘ •.Ք̼ÉZ֩ϾͨÈÞíöی̼éZͨÒϧӧǔͨʭʗڌÉ0Ñ Ì—Í‰Ð

A^2_5 A^2_6

Viewing actions as tasks of unit time

à ӾԌÞlȒâ[ÞX]Ó¾Í€Ñ ÉZæ˼ڌÍ(̼ͨʆɈی̤ى͉ÐLΠ֩ʆˆ̗ÎZىˆͨÒ1թϧÎZÇ1Ó§Çà ӾԈی̼͜ÈxÎZÊ­Îx˼ÎZʆänj̀˙Ñ@ÉZ̗äGˆɝֹÍ

Trang 24

ÎVø ø ÷

Ü

ø<ÿÜJÞ

Trang 25

ÿ 

ÜJÞù*ú

)'L&K„mV$U^IZP%mx<Vm|V%V$KŠG&V%i5V$GdO Ç I5KW`Íel¯¤oV$U"V%YRbU"V5k

LdmO‡V$K„m^LdUVW]U^IZmL&RbKlk)O"TpI5K

)'P\I5K–YU"V$V[Ldm‡IZY¶m^V%U‡G&VibV%G@͗ORqO"TpI5K

”('ÑP\I5Kˆ]O"V[Ldmgm^R

Trang 27

Classes of Resource Allocation Scheduling

EASY

HARD

[3 4] FIX [2] SAMELEN

R5YqITU"R)P%V$W]UI5GUV$O"Rb]U"P$VŠI5G&GdR)P$IZm^LdRbK I5G&M5RbUL!m^oS L&OˆOoR7_K L&K ±…L&Mb]UV‘³Ãe¤¯¤oL&O

)'ÑI5UVHU"V$G&ViZI5K„m…Irm8,

e±pRbU@V$I5P0ot]KpI5G&GdR)P$IZm^V%W

UV%G&V%iZI5K„mCOTpIZKk7Ldm(P0oV%P0~“OwmR,O"V$VgLdY“m^oV%UV|LdOI_|I\‰mRžIZOOLdMbKœI,UV%ORb]UP$VZeZ¯¤oVgP0oV%P0~œLdO

Trang 28

N^D_N^`dJdabL

$ cJMafe

Trang 29

A^1_6 A_7 A_8 A_9 A_10 A^1_5

A_4 A_3 A_2 A_1

A^2_5 A^2_6

Viewing actions as tasks of unit time (5 or more robots)

1

2 3

Trang 30

A^1_6 A_7 A_8 A_9 A_10 A^1_5

A_4 A_3 A_2 A_1

A^2_5 A^2_6

Viewing actions as tasks of unit time (3-4 robots)

1

2 3

1

2

2 3

ă ӾԌÞHăbỈ Þ ï ٗڌͨҩ۔ϧӧ̌ÔîỊ¼ÎZ͆ố̌̀Ị™Ñ@ĨZ̼ô ĨZư—‹j‘P$•Ք̼ĨZ֩ϧͨỈ Ö[ÝúăgƯ€"Þ`ö4ی̼ĩZÍ¨Ò Ï§Ó§ÌŒÍ¨Í6ͼڌĨ)Ñ

Trang 32

ø ÷Þ

Trang 35

P1 P2

P3 P4 O1

O3

G1

G2

G3 O2

Trang 39

ÎZǔÒ3ý)ÐLʆˆ̀Õ1ʼ۔֔թϧÎZÇ÷·å*è XêWשçUƆö ½שåâèíXêW;ø;ˆÉx̗ͨÎZϧϾɚـΠˆÍ˼ڌÍÔZ̗ӧՔչ̀Ì4ÓØÇGÎ̼É[ɈÈGÞ

1 PICK_GRIPPER_ball3_roomA 1 PICK_GRIPPER_ball3_roomA (left)

1 PICK_GRIPPER_ball1_roomA 1 PICK_GRIPPER_ball1_roomA (right)

1 PICK_GRIPPER_ball4_roomA 2 PICK_GRIPPER_ball3_roomA (free)

1 PICK_GRIPPER_ball2_roomA 2 PICK_GRIPPER_ball1_roomA (free)

2 MOVE_roomA_roomB 3 PICK_GRIPPER_ball4_roomA (left)

3 DROP_GRIPPER_ball4_roomB 3 PICK_GRIPPER_ball2_roomA (right)

3 DROP_GRIPPER_ball2_roomB 4 MOVE_roomA_roomB

3 DROP_GRIPPER_ball3_roomB 5 DROP_GRIPPER_ball4_roomB (left)

3 DROP_GRIPPER_ball1_roomB 5 DROP_GRIPPER_ball2_roomA (right) Level Abstract Plan Level Scheduled Plan with Free/Unfree(Realloc) Actions

Trang 41

C O N V E N T I O N A L

P L A N N E R

DECLARAT-IVE

SAT (BLACKBOX)

¿g‰OV%TpI5UIZm^LdKMŠP$I5]OI5G€I5KW£UV$O"Rb]U"P$VcU"V\I5O"RbKLdKMkHS—]G!m^LdTG&V–P0oRbL&P%V$O3I5UV˜I\iZI5L&G&I5xG&V

_oL&P0o.I5UV_O"]S3S3I5U"L& $V%WQL&K±…L&M5]UV Ç Ñ)ebš TUR5mR5m‰“T<V_L&STGdV$SV$K„m0IZmL&RbKtR5Ylæçè)éZêpébèZë

Trang 43

1 3 5 7 9

# robots

0.1 1.0 10.0 100.0 1000.0

Performance of Graphplan v/s Planning+Scheduling

in the Shuffle problem with varying number of blocks and robots

SHUF4-GP-TOT SHUF6-GP-TOT SHUF8-GP-TOT SHUF10-GP-TOT SHUF4-PS-TOT SHUF6-PS-TOT SHUF8-PS-TOT SHUF10-PS-TOT

Performance of Graphplan v/s Planning+Scheduling

in 8-Block Inversion Problem in Blocks World

GP-G GP-S GP-TOT PS-G PS-S PS-TOT

Trang 44

1 3 5 7 9

# robots

0.1 1.0 10.0 100.0 1000.0

Performance of Graphplan v/s Planning+Scheduling

in the 10-blocks huge fact and 9-block bw-large-a problems

HUGEFACT-GP-TOT HUGEFACT-PS-TOT BWLARGEA-GP-TOT BWLARGEA-PS-TOT

;7ÙÖ6È

Trang 46

1 3 5 7 9

# robots

0.1 0.8 8.0 80.0 800.0

Performance of Graphplan v/s Planning+Scheduling

in the Shuffle Problems in Blocks World

SHUF-4-GP SHUF-6-GP SHUF-8-GP SHUF-10-GP SHUF-4-PS SHUF-6-PS SHUF-8-PS SHUF-10-PS

S.IZL&KsO"L& $V%OR5Y'iZI5UL&I5xGdV$OžLdOžibV%U"‰c]OVY]GHL&KsTU^I5Pm^L&P%V5el±½R5UV‚I5STG&VZk<moV ðSÍa§“¬À¨

TUR5xG&V%S _Ldm^o`¸cUR5x<R5mOœ|I5OtO"RbGdi5V$WLdK`¸sO"V$P–LdKŠP%GJI5O"O—±…ŸzyƒYRbG&GdR_L&KMnm^oV–I5xERibV

RbUWV$U$kpx]m_m0I5~ZV$O,ѳhS3LdK“])m^V$O‡_oV$KcP%GJI5O"O¤Ÿ*#†‡•€Ó(Ƌ#Ô|I5O_OTEV$P$L!zpV$WŽ]TˆYURbK„m\e

ŸKÀ±…L&Mb]UVsÁ5ÁkggVvOV$VsmoVuTEV$U"YR5US3I5KP$VcR5Yhm^oVuKV SV%moR)WXRbKìm^oV‘³º7xGdR)P0~

Trang 47

1 3 5 7 9

# robots

0.1 1.0 10.0 100.0 1000.0 10000.0 100000.0

in the 10-block huge fact and 9-block bw-large-a problems

HUGEFACT-GP-TOT BWLARGEA-GP-TOT

G&RbM.OP\IZG&V5el±pRbU “¬

 )%ø“«úÏk<TUR5xG&V%S3O€_Ldm^ouU"RbxER5m^O—³œm^R˜Ì–I5U"V—L&Kv†|G&I5OO[Ÿ*#ž†‡•,Ó(Ưí#

_oL&GdVŽYRbU   ¥!ø5÷  ¨ ø5k'TU"RbxGdV$SO._LdmojURbxER5mOs³sm^R¸IZUVsLdK †|GJI5O"OnŸ*#†‡•€Ó(Ư‹#œe

Trang 49

2 3 4 5 6 7 8 2

7 1

10 100 1000

2 4 6 8 10

Trang 51

ĩzîòï_ðzóí2ô õÜóö_÷Û÷ ñÝøôí_ùµ÷Ýú í ðzûüñÝîÛ÷ ýzïuøýüñÝí2îÛö_õăñÝøï_ý õÜóö_÷Û÷ ñÝøôíüùµ÷Ûú âPđêPôMơ Ö2×ăØ2ÙÝÚÜÙÝØÛÞAßÝưÜì ìz÷Ûí2ị ó ôøñ

Trang 53

ỏ”ỉÒÉZơờỹớễÙẻ ẹÒốớẻxễ Iê Iạ ẹÒốớẻễ Iê Iạ ẹÒốừẻễ Iê I[ạ

à à ỉ—ũờđ”ÊỦ`ố¾ẹÒÚ ồ”ễ€ă{ịZũ”ỹớẹÉZỏ”ẹÒố¾ÉˆđßẺỚêỨỹ¾ẹÒêỨỹ¾ẹỉ—ũ”đờÊ Ủ`ố¾ẹÒÚ ẹÒڌễdêTS<U Ư ĩDV ạ.à çÓê`ö4ìậÒè‡ả

ả.èê-'WÒXFè]à à ÉZỏ”ẹÒố¾Éˆđ”ÊÙẺèỨÉVạ ẻễÙịZđ”Êç]4‘Œ›@‡†ž`_v‡Z…ẵỡ Ẻ

IQK c]M]dD

LzJdR

NR9S”Ẻ

Trang 54

é¡îÛï_ðzóê2ô ñÝøôê íT+ í íè ñÛøôê íT+ í íè ñÛøôê íT+ í íè

÷E5ì¡ñòñÝóê 4_õ*)F÷) &)$ 4 &  4 4 )%% $! 4   &'4 ) 4 &

ìgΠ֩ϾÍhȒà

çg̼̀æ{ÉZ̗ÈxÎZǔىÍÜÉZæ à àÎZǔÒGê­Ï¾Ë¼ê­Ï¾ËÓ§ÇË¼ÚŒÍ ï Új۔ˆ˼ϾÍ.Ք̼ÉZ֩ϧͨÈxʀÞ

ð !$( !_ézîòï_ð& _î   &   ) &   4 &'4 

ð !$( !_ézîòï_ð& )Fî   &    & 4  4 &'4 

ð !$( !_ézîòï_ð& &'_î   &  & & 4  4 &'4 

ð !$( !_ézîòï_ð& $_î  ! &  0)) & 4  ! &'4 

ð !$( !_ézîòï_ð& _î  &' &  )$%  & 4   &'4 

ð !$( !_ézîòï_ð& 4_î  &' &  $4 %4 & 4   &'4 

ð !$( !_ézîòï_ð& )$_î  &'! &  0$4  & & 4   &'4 

ð !$( !_ézîòï_ð& !_î  &'% &  äMï,     &'4 

ð !$( !_ézîòï_ð& &'_î   &       &'4 

ìgΠ֩ϾÍhȒý

å`ͨʼ۔ϾË;Ó§Çx˼ڌͭթΠ̗ـç@ϧÎZÇ6֩ϾɚټäšÊUÑ;ÉZ̗ϧÒ6ҌɈÈxÎZÓ§Ç6Ñ`Ӿ˼Ú6È(۔ϧ˼ӾթϾÍ̼ÉZÖ¹ÉZ˼Ê4ÎZǔÒϧӧÈxӧˆͨÒ֩Ͼɚټä

չɈʼӾ˼ӧɈǔÊ;ɈÇ˼ڌÍ.˼Π֩ϧÍZÞ

šžG!m^šžG!m_I5GdORQOGdR7_O¤_L!m^oˆS3R5UV[UV%ORb]UP$V%O$e

Trang 64

‘ẻP’êỨỹớỹ¾ễÙđắÈ`UŒẺ¾ÈklFễÙđ”ồ”ỹ¾ễ€ỉ0ÈêU”Ẻ¾È]ịZđờồ<ìgị ẹ†ễZÈê(ẺƠ{ễÙồắẺĨụẵẺnm•ÒwV– yỎŠ[ẳ Ế yỎŠpoz}w ŠờŠ”yỎŠ[ẳV“ ạÉZỉÒԈịZđ

ỎịZũ”ă{ẻxịZđờđGçUũŒơờỹằẺ¾È ĩ ịZđ5ạ5ị ẹ†ễ€ÉŒÈắö4ê(Ẻ'ẻQHQM1šẺ

Újẹ†ẹ†ỏ cLỹHỹ)ỦỦỦưẺ‚ứ€Ê€Ẻẹ†ÉZỉÒɈđjẹ†ÉŒẺễÙồ”ũbỹịZố¾ỏờÊ"àM1H1H1aỹ ĩ ễÙỹ¾ăằö;ɈđVẹÒịZốừđŒễÙồ”êFậpç ĩ ƯỹàM1H1H1šẺỏờʀẺỲàM1H1H1šẺ

Trang 65

‘Ỉ/’ă”Ĩ¨â¹×VơrÞ¾× ÎZ̔Ò8-íĨˆÌŒÔŒ×MS"Þ3¬a‹Œ•@˜•€›L•—¡¨›œy·‡ Š6w ŠQ–­u}—’z¾‡ yœ›¢wZ›œyœ‡ZЇOž4 ”« vv•€›œ…’«y{Š˜o4z¾w ДДy{Šj£

˜"‡ vxw y{ŠŒ‰“4ìÙ¼ĨšÙ ތƯ‰U[ö4í`Ư™ÐvQHQ[Þ²ỈQHQHQ[Þ

‘ỈQ’™lFĨ þßỈxÎZÌß× UŒÞ¾× ÎZÌ©Ò ôFÍ€Ö¹Í¨Ï·× ÿ­Þ ¬a‹š•šu›u oz}w ЩДy½Š[£  ”«’›L•‰vx|œủw‰›oz}w Š

s •€ŠQ•‰…†wZ›œy·‡ Š ¬a‹V…†‡ ‘ˆ£ ‹ž†"•‰‘š…¤y½’›œy·¡ú Q•¼w …†¡‰‹š“ ï ۔֩ỈxÓ¾Ị†Ị†Í¨Ò Ị†Ĩ UˆíFƯ¡ơÜÞ(í­Ï§Í†Ĩ Ñ;̀֩ͼӾỊ†Í Î Ị

Þ ỉ]Ì Ị¼ÚŒÍƒơ`ͨϧΠỊ¼Ó¾ĨˆÌ”ÍǹֹỊLÑ;Í€Í¨Ì ƯOÌVỊ†Í¨ÏØÏ§Ó¾ÔZͨÌjỊ ÿ4ÎZÙ¼ô[Ị†Ì—ÎZÙ¼ôšÓ§ÌŒÔ

ÎZ̔Ò$ă”ÎZÓØÏ§ÛŒÌ¼Í‰Ð}S­Ì—Ó¾ĩZͨÌWâšÕ©Ï§ÎZ̩ΠỊ¼Ó¾ĨˆÌšÐ¢Ö©ÎZ͆ͨÒ-íͨΠ̤̔ӧ̌ÔtÓ§Ì ö;ĨˆÌ©Í†Ị†Ì—ÎZÓ§ÌjỊ ï Î Ị¼Ó§Í†ưœÎZىỊ¼Ó¾ĨˆÌ ÎZÌ©Ò

ì@ϧÎZÌ”Ì”Ó§Ì”ÔŒÞ ¥ …’›œy”@¡€y·w z q Š›L•‰z{z¸y¾£j•€Š¡¤•€Þ'ỈQHQHQ[Þ

Trang 66

ăƯ vFŒ•Ẩ›œy{›œy·Ư Àjm•’’‘Ãz›{€“rở4ậỗ½ậ†ếaނỉ€ấ€Þ݈ẽZé¾ẻZÞẻẨề”íbé)ếíŒệ"éẩxỉ€ềŒẻ€èôẩẫZậ†ậKéẽZể¾ếẪấỊỉ‰ẫˆẩxếŒÐđèỊẻẨấỊí”éưậỊấ€Þ‚ĩVậỊẩé·Þ

... SHUF8-PS-TOT SHUF10-PS-TOT

Performance of Graphplan v/s Planning+ Scheduling

in 8-Block Inversion Problem in Blocks World

GP-G GP-S GP-TOT PS-G... class="page_container" data-page="46">

1 9

# robots

0.1 0.8 8.0 80.0 800.0

Performance of Graphplan v/s Planning+ Scheduling

in. .. class="page_container" data-page="43">

1 9

# robots

0.1 1.0 10.0 100.0 1000.0

Performance of Graphplan v/s Planning+ Scheduling

Ngày đăng: 23/03/2014, 05:22

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm