1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Business Administration potx

143 404 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Optimal Investment and Consumption Strategies for a Class of Utility Functions
Tác giả Nils Hemming Hakansson
Người hướng dẫn Professor George W. Brown, Chairman, Professor Leo Breiman, Professor Jack Hirshleifer, Professor Jacob Marschak, Professor J. Fred Weston
Trường học University of California, Los Angeles
Chuyên ngành Business Administration
Thể loại Thesis
Thành phố Los Angeles
Định dạng
Số trang 143
Dung lượng 7,69 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The diaclerta;tion of N i b Hemming Hakaneson is appsoved, and it is acceptable In quality and Unlveraity of California, Ins Augeles.

Trang 2

Copyright by

N I L S H E M M I N G HAKANSSON

Trang 3

The diaclerta;tion of N i b Hemming Hakaneson is appsoved, and it is acceptable In quality and

Unlveraity of California, Ins Augeles

Trang 4

TABLE O F CONTENTS

LIST O F FIGURES

ACKNOWLEDGMENTS

VITA

ABSTRACT

1 3 The Opportunity Set

2 4 The Solution When u ( x y ) = u(x) + u ( y )

2 5 The Solution Wher, u ( x t y ) = u ( x ) ( u ( ~ ) 1 , ,

2 6 P r o p e r t i e s of the Optimal Consumption

Trang 5

T A B L E O F CONTENTS ( C o n t )

2 8 P r o p e r t i e s of t h e O p t i m a l B o r r o w i n g a n d

Lending S t r a t e g i e s

2 8 1 The E x i s t e n c e of a M a r k e t I n t e r e s t R a t e

2 8 2 D i f f e r e n t R a t e s f o r B o r r o w i n g a n d

Lending 2 9 P r o p e r t i e s of t h e O p t i m a l I n v e s t m e n t S t r a t e g i e s

2 1 0 G e n e r a l i z a t i o n s

2 10 1 F i n i t e H o r i z o n

2 10 2 N o n - C o n s t a n t Non- C a p i t a l I n c o m e S t r e a m

2 1 0 3 T i m e -Dependent P r o b a b i l i t y

D i s t r i b u t i o n s 2 11 I m p l i c a t i o n s with R e s p e c t to t h e T h e o r y of The F i r m

2 11 1 B a s e s f c r t h e F o r m a t i o n of F i r m s 2 11 2 The Firm's O b j e c t i v e a n d I t s O p t i m a l

C a p i t a l S t r u c t u r e 2 1 1 3 T h e Debt of t h e F i r m : L i m i t e d L i a b i l i t y

111 A P P L I C A T I O N S AND E X A M P L E S 3 1 Individual De c i s i o n - M a k i n g

3 2 The Bal.aaced Mutual F u n d

3 3 Endowed E d u c a t i o n a l a n d C h a r i t a b l e O r g a n i z a t i o n s

IV RELATION T O O T H E R MODELS

4 1 F i s h e r ' s M o d e l of t h e I n d i v i d u a l

4 2 Consumptio:? M o d e l s 4 2 1 C l a s s i c a l Models

4 2 2 P h e l p s ! .M ode1

4 3 I n v e s t m e n t Models

4 3 1 The M e a r - V a r i a n c e A p p r o a c h

4 3 2 C h a n c e - C o s s t r a i n e d M o d e l s

4 3 3 Long-Ru-2 ~ n v e s t m e n t M o d e l s

4 3 4 O t h e r I n v e s t m e n t M o d e l s

4 4 T h e S t a t e - P r e f e r e z c e A p p r o a c h : A B r i e f

C o m m e n t 4 5 S u m m a r y

BIBLIOGRAPHY

Trang 6

S t r e a m o n O p t i m a l A ? l o c a t i o ~ of C a p i t a l ( A t E a c h

D e c i s i o n P o i s t ) When U(C) = l o g c , a = 9 0 , a n d

r , P2, B3, P4, a r e a s i n ( 3 - 1 ) VIII N o r m a t i v e I n v e s t m e n t a n d C o n s u m p t i o n M o d e l s :

A C o m p a r a t i v e S u m m a r y

Trang 8

ACKNOWLEDGMENTS

While the r e s e a r c h r e p o r t e d i n t h i s study was pri.ncipally conducted during the a c a d e m i c y e a r 1965-66, many of the underlying i d e a s a r e

of a n e a r l i e r vintage T h e s e e a r l i e r i d e a s i n p a r t i c u l a r r e f l e c t the influence of s e v e r a l individuals

My g r e a t e s t debt i s to P r o f e s s o r George W Brown The high

s t a n d a r d s which h e h a s s e t have not only benefitted t h i s s t u d y but

t h e giving of h i s t i m e , P r o f e s s o r Brown h a s a l s o b e e n a continual

I a m g r a t e f u l to the F o r d Foundation f o r c a r r y i n g the fi.nancia1

b u r d e n of the l a s t t h r e e y e a r s i n the f o r m of two P r e d o c t o r a l F e l l o w -

s h i p s and one D i s s e r t a t i o n Fellowship, and to t h e W e s t e r n Data P r o -

c e s s i n g Center of the University of California a t Los Angeles f o r

e x p r e s s m y s i n c e r e a p p r e c i a t i o n to the W e s t e r n Management S,' p i e m e Institute of UCLA and t h e RAND C o r p o r a t i o n f o r typing p o r t i o n s of

t h e e a r l y d r a f t s , and to M r s Libby H Connor and M r s L a u r i e

H a r r i n g t o n f o r t h e i r excellent typi.ng of the final m a n u s c r i p t

Trang 10

ABSTRACT O F THE DISSERTATION

Optimal I n v e s t m e n t and Consumption S t r a t e g i e s

F o r a C l a s s of Utility Functions

Nils Hemming Hakans s o n

Doctor of Philosophy i n B u s i n e s s A d m i n i s t r a t i o n University of California, Los Angeles, 1966

i n g ) and a n a r b i t r a r y n u m b e r of productive inve s t m e a t opportu.nlties

Trang 11

The i n t e r e s t r a t e i s p r e s u m e d to be known and i n v a r i a n t o v e r t i m e ;

t h e c a s e when the borrowing r a t e e x c e e d s the lending r a t e i s e x a m i n e d

f o r a s p e c i a l i z e d model The r e t u r n s f r o m i t h e productive opportuni-

t i e s a r e a s s u m e d to be r a n d o m v a r i a b l e s , whose p r o b a b i l i t y d i s t r i - butions m a y d i f f e r f r o m p e r i o d to peri.od The b a s i c ( F i s h e r i a n )

c h a r a c t e r i s t i c of the a p p r o a c h taken i s that the portfolio composition

decision, the financing decision, and t h e consumption d e c i s i o n a r e

a l l analyzed s i m u l t a n e o u s l y i n - one model The vehicle of a n a l y s i s i s

The o p t i m a l consumption s t r a t e g i e s t u r n out to be l i n e a r and i n -

c r e a s i n g i n wealth and i n t h e p r e s e n t value of t h e n o n - c a p i t a l i n c o m e

s t r e a m In t h r e e of the f o u r m o d e l s studied, t h e o p t i m a l c o n s u m p - ,

hypqtheses of Modigliani a n d B r u m b e r g a n d of F r i e d m a n precise1.y The o p t i m a l lending and borrowing s t r a t e g i e s a r e faun-d to be l i n -

e a r i n wealth T h r e e of the m o d e l s always c a l l f o r borrowing when

the individual i s poor while the fourth m o d e l always c a l l s f o r ler-iding when h e i s sufficiently r i c h

The o p t i m a l i n v e s t m e n t s t r a t e g i e s have t h e s u r p r i s i n g p r o p e r t y

t h a t t h e o p t i m a l m i x of r i s k y ( p r o d u c t i v e ) i n v e s t m e n t s i n e a c h m o d e l

-"

Trang 12

i s independent of the individual's wealth, non- c a p i t a l i n c o m e s t r earn, and i m p a t i e n c e to consume I t i s c o n j e c t u r e d that the c l a s s of utility functions examined i s t h e only one f o r which t h i s p r o p e r t y of the op-

t i m a l i n v e s t m e n t s t r a t e g i e s holds

The p r e c e d i p g r e s u l t a p p e a r s to have significant i m p l i c a t i o n s with

r e s p e c t to t h e t h e o r y of the f i r m S t a r t i n g with a collection of h e t e r o - geneous individuals, e a c h of whom i s bent on m a x i m i z i n g ( h i s own) utility f r o m consumption o v e r t i m e , i t i s shown that t h e r e e x i s t s a

b a s i s f o r the f o r m a t i o n of f i r m s by s u b - c o l l e c t i o n s of individuals,

w h e r e e a c h s u b - c o l l e c t i o n i n t u r n p o s s e s s e s significant h e t e r o g e n e i t y Each f i r m s o f o r m e d i s found to have a well-defined ( u n i q u e ) objective function, which m a y be i n t e r p r e t e d a s imputing a p r e c i s e meaning to the t e r m " p r o f i t maximization" u n d e r r i s k and with r e s p e c t to t i m e Since t h e c a p i t a l s t r u c t u r e of the f i r m i s found to be u n i m p o r t a n t , a n unexpected t i e - i n with P r o p o s i t i o n I of Modigliani and M i l l e r i s

obtained

Trang 13

CHAPTER I

The objective of this r e s e a r c h i s to d e r i v e o p t i m a l i n v e s t m e n t and consumption s t r a t e g i e s f o r individuals f r o m a l t e r n a t i v e but fundamen-

t a l s t a r t i n g - p o i n t s , to e x a m i n e and c l a s s i f y t h e i r p r o p e r t i e s , and to analyze t h e i r economic i m p l i c a t i o n s , p a r t i c u l a r l y i n r e s p e c t to the

t h e o r y of the f i r m The point of view, t h e r e f o r e , i s e s s e n t i a l l y p r e -

s c r i p t i v e , placing the study i n the d o m a i n of n o r m a t i v e d e c i s i o n theor)-

In t h i s c h a p t e r , the v a r i o u s components of the economic d e c i s i o n

p r o b l e m to be s t u d i e d a r e c o n s t r u c t e d The o b j e c t i v e of the individual

i s p o s t u l a t e d to be the m a x i m i z a t i o n of e x p e c t e d utility f r o m c o n s u m p - tion o v e r t i m e w h e r e the h o r i z o n i s infinitely d i s t a n t The individual's

r e s o u r c e s a r e a s s u m e d to c o n s i s t of a n i n i t i a l c a p i t a l p o s i t i o n (which

m a y be n e g a t i v e ) a n d a n o n - c a p i t a l i n c o m e s t r e a m which i s known with

c e r t a i n t y but which m a y pos s e s s a n y t i m e - s h a p e The indi.vidua1 f a c e s both financial o p p o r t u n i t i e s ( b o r r o w i n g and lending) and a n a r b i t r a r y

The components developed i n Chapter I a r e a s s e m b l e d into a f o r m a l

m o d e l i n Chapter 11, w h e r e the m a i n r e s u l t s a r e d e r i v e d The funda-

m e n t a l c h a r a c t e r i s t i c of the a p p r o a c h taken i s t h a t the portfo1i.o c o m - position d e c i s i o n , the financing d e c i s i o n , and the consumption

Trang 14

d e c i s i o n a r e all analyzed simultaneously, The b a s i c m o d e l developed

Optimal consumption and i n v e s t m e n t s t r a t e g i e s a r e d e r i v e d f o r the

amount of consumption i n p e r i o d j, s u c h that e i t h e r the r i s k a v e r s i o n index - u " ( x ) / u ' ( x ) o r the r i s k a v e r s i o n index - x u " ( x ) / u ' ( x ) i s a p o s i - tive constant f o r a l l finite x > - 0 It i s shown t h a t u ( x ) belongs to t h i s

c l a s s i f and only i f u ( x ) i s s t r i c t l y concave and s a t i s f i e s one of the

t h r e e "Cauchy" e q u a t i o ~ s u ( x -t y ) = u ( x ) I U ( ~ ) I, u ( x y ) = u ( x ) -t u ( y ) ,

o r ~ ( x y ) = U ( X ) I U ( ~ ) I , i e , u ( c ) = c , 0 < y < 1, u ( c ) = - c ,

y > 0, u ( c ) = log c, o r u ( c ) = - e l Y c , y > 0

Section 2 6 i s devoted to a d i s c u s s i o n of the p r o p e r t i e s of the o p t i -

m a l consumption s t r a t e g i e s , w h i c h t u r n out to be l i n e a r and i n c r e a s i n g

i n wealth and i n t h e p r e s e n t value of the n o n - c a p i t a l i n c o m e s t r e a m

Edmund P h e l p s , " T h e Accumulation of Risky Capital: A Sequential Utility Analysis, E c o n o m e t r i c a , October 1962

Trang 16

r e t u r n s , the i n t e r e s t r a t e , and the i n d i v i d u a l ' s o n e - p e r i o d utility

function of consumption It i s then c o n j e c t u r e d i n 2 11 t h a t the c l a s s

of utility functions examined i s the only one f o r which t h i s p r o p e r t y of the o p t i m a l i n v e s t m e n t s t r a t e g i e s holds

The p r e c e d i n g resu1.t a p p e a r s to have significant i m p l i c a t i o n s with

r e s p e c t to the t h e o r y of t h e f i r m S t a r t i n g with a collection of h e t e r o - geneous individuals, e a c h of whom i s bent o n m a x i m i z i n g this own) utility f r o m consumption o v e r t i m e , i t i s shown i n 2 11 that t h e r e

e x i s t s a b a s i s f o r the f o r m a t i o n of f i r m s by s u b - c o l l e c t i o n s of Indi- viduals, w h e r e e a c h sub-coll.ection i n t u r n p o s s e s s e s significant

h e t e r o g e n e i t y Each f i r m s o f o r m e d i s found to have a well-defined (unique) objective function, which m a y be i n t e r p r e t e d a s imputing a

p r e c i s e meaning to the t e r m " p r o f i t maximization" u n d e r r i s k an.d with r e s p e c t to t i m e , Since the c a p i t a l s t r u c t u r e of the f i r m i s found

to be u n i m p o r t a n t , a n unexpected t i e - i n with P r o p o s i t i o n I of

Modigliani and M i l l e r i s obtained

In Chapter 111; the r e s u l t s obtained i n Chapter IX a r e i l l u s t r a t e d by

m e a n s of e x a m p l e s , and s o m e of the appl.ications to which the m o d e l

l e n d s i t s e l f a r e d i s c u s s e d It i s noted t h a t the m o d e l I s app1.icabl.e to

t h e balanced m u t u a l fund a.s w e l l a s to endowed educational and c h a r -

i t a b l e o r g a n i z a t i o n s , In the l a s t c h a p t e r , the r e l a t i o n s h i p between t h s

m o d e l developed in this study a.nd o t h e r i n v e s t m e n t and consumption

Trang 17

l e s s d e f e r r e d enjoyment " Turning to the m o r e popular a u t h o r s , Loeb, f o r example, w r i t e s that "the p u r p o s e of i n v e s t m e n t i s to have funds a v a i l a b l e a t a l a t e r date f o r spending 1 1 2 In a d i f f e r e n t p a s s a g e

h e s t a t e s : "Any e a r n e r who e a r n s m o r e than h e c a n spend i s a u t o m a t i -

c a l l y a n i n v e s t o r It d o e s n ' t m a t t e r i n the s l i g h t e s t whether h e r e a -

l i z e s t h a t h e i s investing l~~ While no h a r d and f a s t line c a n be d r a w n between what c o n s t i t u t e s consumption and what c o n s t i t u t e s i n v e s t m e n t , consumption i s p e r h a p s b e s t viewed a s the exchange of p r e s e n t d o l l a r s

4 By this distinction, t h e o w n e r s h i p and occupancy of a f a m i l y h o m e

i s c l e a r l y both i n v e s t m e n t and consumption The down p a y m e n t , including the d i f f e r e n c e between m o r t g a g e p a y m e n t s plus e x p e n s e s

m i n u s the r e n t a l value, if p o s i t i v e , c o n s t i t u t e s a n i n v e s t m e n t The foregone r e n t a l i n c o m e c o n s t i t u t e s consumption The r e t u r n o n the

i n v e s t m e n t i s c o m p o s e d of the r e n t a l value l e s s m o r t g a g e p a y m e n t s and e x p e n s e s , i f p o s i t i v e , plus the f i n a l p r o c e e d s f r o m the s a l e of the house

The consumption of food, for e x a m p l e , might a l s o be c a l l e d a n

i n v e s t m e n t i n that i t p r e s e r v e s the health n e c e s s a r y for s u r v i v a l However, we s h a l l not take this view h e r e

Trang 18

The i n v e s t m e n t d e c i s i o n - c h a r a c t e r i z a t i o n The i n v e s t m e n t

decision, l i k e m o s t p r o b l e m s of d e c i s i o n p o s e d i n a r e a l i s t i c way, h a s two fundamental c h a r a c t e r i s t i c s : i t i s s e q u e n t i a l and it i s t a k e n u n d e r

r i s k o r u n c e r t a i n t y A s e q u e n t i a l d e c i s i o n p r o b l e m i s a p r o b l e m e x - tended i n t i m e , i n which t h e consequences thus f a r of d e c i s i o n s t a k e n

i n p a s t p e r i o d s become i n i t i a l conditions f o r p r e s e n t d e c i s i o n s A

d e c i s i o n p r o b l e m u n d e r r i s k o r u n c e r t a i n t y i s one i n which t h e m o d e l employed does not a s s u m e p e r f e c t f o r e s i g h t

The i n v e s t m e n t objective Any n o r m a t i v e m o d e l p r e s u m e s t h e e x -

i s t e n c e and a v a i l a b i l i t y of a n objective function Thus, t h e d e r i v a t i o n

of "optimal" i n v e s t m e n t s t r a t e g i e s , f o r example, i s contingent upon

the f i r m , t h e r e i s wide d i s a g r e e m e n t a s to what i t s o b j e c t i v e should be,

a d i s a g r e e m e n t which shows no s i g n of n a r r o w i n g Even if one w e r e

\

to adopt t h e classi.ca1 postulate of p r o t i t maximi.zation, one i m m e d i -

a t e l y r u n s into conceptual difficulties: what does i t m e a n to m a x i m i z e

p r o f i t s under r i s k o r u n c e r t a i n t y ? &d e v e n i n the c a s e of c e r t a i n t y

o n e f a c e s t h e i n t e r t e m p o r a l question: when do we m a x i m i z e p r o f i t s - ?

Since all c l a i m s to the c a p i t a l of t h e f i r m r e s i d e i n Individuals, i t

s e e m s r e a s o n a b l e t h a t the objective of t h e f i r m should be a t l e a s t

grounded i n t h e o b j e c t i v e s of the individual i n v e s t o r s of equity capital

1

The v a r i o u s o b j e c t i v e s s u g g e s t e d i n the l i t e r a t u r e a r e too n u m e r o u s

to be d i s c u s s e d h e r e J7or-a t a s t e of the d i f f e r e n t p r o p o s a l s , t h e

r e a d e r i s r e f e r r e d to R i c h a r d E l l s , The Meaning &f Modern Busi -

n e s s , New York, Columbia u n i v e r s i t y p r e s s , 1960, pp 117-21;

C h a r l e s G r a i n g e r , " T h e H i e r a r c h y of Objectives, " H a r v a r d B u s i -

n e s s Review, May-June 1964; and P e t e r D r u c k e r , " T h e Objectives

of a B u s i n e s s , " The P r a c t i c e of Management, New York, H a r p e r

Trang 20

The Theory of I n t e r e s t , and the writings of H i r s h l e i f e r , s t i l l s e e m s

to be lacking This i s the m o r e s u r p r i s i n g s i n c e , when t h e p r o b l e m

is viewed i n t h i s light, one i s h a r d put to find a n a p r i o r i r e a s o n f o r -

a s s u m i n g the two d e c i s i o n s to be independent of one a n o t h e r

The m o s t significant w o r k to date o n the p r o p e r t i e s of p r e f e r e n c e

See i n p a r t i c u l a r J a c k H i r s h l e i f e r , "On t h e T h e o r y of 0ptima.l 3n-

v e s t m e n t Decision", The Jour.r\_al of Political Economy, August 1 9 5 8 , and J a c k Hir s h l e i f e r , "Investment Decision under Uncertainty:

Choice- T h e o r e t i c Approaches", Q u a r t e r l y J o u r n a l of ~ c o n o m i c s , November 1965

Tjalling Koopmans, "Stationary O r d i n a l Utility and I m p a t i e n c e ? ' ,

Trang 21

i m p a t i e n c e and t i m e p e r s p e c t i v e i n a b r o a d c l a s s of s u c h p r o g r a m s The notion of i m p a t i e n c e goes back to Bohm-Bawerk, who in - The

P o s i t i v e Theory of Capital advanced the i d e a of p r e f e r e n c e f o r e a r l y timing of s a t i s f a c t i o n In Koopmans' work, i m p a t i e n c e i s e s s e n t i a l l y

t a k e n to m e a n that i f i n any given p e r i o d the consumption of the c o m - modity bundle x i s p r e f e r r e d to that of bundle x ' , then the consump-

t i o n i n c o n s e c u t i v e p e r i o d s of x, x' i s p r e f e r r e d to that of x ' , x, all

o t h e r consumption being the s a m e The notion of t i m e p e r s p e c t i v e

w i l l be b r i e f l y d i s c u s s e d l a t e r

While f o r m a l l y defined in t e r m s of a utility function, i m p a t i e n c e

i s viewed a s a p r o p e r t y of t h e underlying p r e f e r e n c e o r d e r i n g This

i m p l i e s that e v e r y utility fun.ction r e p r e s e n t i n g the p r e f e r e n c e o r d e r - ing m u s t have t h e i m p a t i e n c e p r o p e r t y Consequently, i m p a t i e n c e

m u s t be e x p r e s s e d i n t e r m s of a n o r d i n a l utility function An o r d i n a l utility function i s a utility function which r e t a i n s i t s m e a n i n g u n d e r a monotonic i n c r e a s i n g t r a n s f o r m a t i o n , that i s , i f V i s a utility func- tion, s o i s U = T(V), w h e r e T i s any monotonic t r a n s f o r m a t i o n and

T f ( V ) > 0

The p o s t u l a t e s a s s e r t continuity, s e n s i t i v i t y , and s t a t i o n a r i t y of the utility function, a b s e n c e of i n t e r t e m p o r a l c o m p l e m e n t a r i t y , and

t h e e x i s t e n c e of a w o r s t ar,d a b e s t p r o g r a m Thus, the p a p e r s e s -

s e n t i a l l y constitute a study of the i m p l i c a t i o n s of a continuous and

s t a t i o n a r y o r d e r i n g of infinite consumption p r o g r a m s

Notation The bundle of n c o m m o d i t i e s consumed i n p e r i o d j ,

j = 1 , 2, 3 i s g i v e n b y

Trang 22

w h e r e c > 0 An infinite p r o g r a m will be w r i t t e n

J -

Statement of the pos tu.lates P1 ( E x i s t e n c e and continuity) T h e r e

e x i s t s a utility function U ( l c ) , which i s defined f o r all l c s u c h that,

f o r a l l j, c i s a point of a bounded, convex s u b s e t C of the n -

J

d i m e n s i o n a l commodity s p a c e The function U ( l c ) h a s the continuity

p r o p e r t y that, i f U i s any of the values a s s u m e d by t h a t function, and

a p o s i t i v e n u m b e r 6 s u c h t h a t t h e utility U( c ' ) of e v e r y p r o g r a m l c '

1 having a d i s t a n c e d ( l c ' , c ) 1 ' sup jc; - c 1 < 6 , w h e r e l c ' - c j 1

U, t h e continuity p r o p e r t y given i n P 1 m a y be t e r m e d uniform conti-

nuity on e a c h equivalence c l a s s In the f i r s t p a p e r , P I stipulated both u n i f o r m continuity on e a c h equivalence c l a s s and unbol~.ndednes s

of C which s e v e r e l y l i m i t s t h e choice of functions Uo Evidently

Koopmans c h o s e to s a c r i f i c e unboundedness and with i t , p e r h a p s ,

s o m e r e a l i s m The d i s t a n c e function, o r m e t r i c , a l s o t r e a t s a l l

p e r i o d s a l i k e , the p r o p r i e t y of which m a y be questioned However,

r e m e m b e r i n g t h a t t h e p r e s e n c e of i m p a t i e n c e i s the phenomenon to be

Trang 23

e s t a b l i s h e d , t h i s a p p r o a c h certa-lnly provides a neutral s t a r t i n g point

I

2

This p o s t u l a t e i s clea,rly s t r o n g e r than one which s i m p l y r e q u i r e s

utility function f r o m being i n s e n s i t i v e to a l l p r o g r a m changes which affect a given p e r i o d The choice of the f i r s t p e r i o d for this p u r p o s e

This p o s t u l a t e s a y s that the consumption of a p a r t i c u l a r bundle of

c o m m o d i t i e s i n one p e r i o d does not affect p r e f e r e n c e s with r e s p e c t to

f u t u r e a l t e r n a t i v e s T h i s , of c o u r s e , i s a highly q i ~ e s t l o n a b l e p r o p o - sition It would p e r h a p s be m o r e palatable if total expenditures on consumption w e r e u s e d i n s t e a d a s a m e a s u r e of s a t i s f a c t i o n , but this

i d e a i s r e j e c t e d by Koopmans However, h e r e one r u n s into the r a t -

chet p r i n c i p l e 1

The r a t c h e t p r i n c i p l e e s s e n t i a l l y s t a t e s that the utility of c o n s u m p -

t i o n i n a given p e r i o d i s strong1.y conditioned on the h i g h e s t l e v e l of consumption p r e v i o u s l y e x p e r i e n c e d , particuJ.arly if this l e v e l i s of

r e c e n t o r i g i n This point was f i r s t m a d e by J a m e s D u e s e n b e r r y ic

Income, Saving and t h e the or^ of C o n s u m e r Behavior, Cambridge,

M a s s a c h u s e t t s , H a r v a r d University P r e s s , 1949, pp 84-85,114116

Trang 24

As a consequence of P3, i t c a n r e a d i l y be shown that U ( l c ) m a y

p e r i o d It should be p o i ~ t e d out that the o r d e r i ~ g in question applies only to the p r e s e r t The p a s s a g e of t i m e i s c o m p l e t e l y o u t s i d e the

s c o p e of the p o s t u l a t e s e t - t h u s , the question of changes i n p r e f e r -

e n c e s a s a function of t i m e i s not c o n s i d e r e d

It c a n be shown that P3b and P4 together i m p l y

U ( c l , 2 ~ ) - > U(c c ' ) i f and only i f U( c ) > U ( 2 c ' ) f o r a l l

I

c l , C 2 ' 2 c Since Y(u, T f i s i n c r e a s i n g i n T, P 4 i s equivalent to

T ( 2 ~ ) - > T ( 2 ~ ' 1 i f and only i f U ( c ) > U ( 2 c ' )

Consequently, t h e r e e x i s t s a monotonic t r a n s f o r m a t i o n H s u c h tha.t

Thus, letting V(u, U ) = Y(u, H ( U ) ), V(u, U ) p r e s e r v e s the p r e f e r e n c e defined by U ( l c ) so t h a t - w e obtain the r e c u r r e n c e r e l a t i o n

Trang 25

v e c t o r s c m a y be e v a l u a t e d , j = 1, 2 ,

j

Trang 27

With this r e s u l t , Koopmans h a s shown that impatience, which i s usually viewed as a psychological phenomenon, i s a l s o a consequence

of quite e l e m e n t a r y p r o p e r t i e s attributed to a utility function i n which the horizon i s infinite This i s a significant accomplishment indeed

A g e o m e t r i c r e p r e s e n t a t i o n of the t h r e e impatience zones of T h e o r e m

1 i n which the s c a l e s of u and U have been equated i s given i n Fig 1 Koopmans a l s o shows t h a t when weak ( s t r o n g ) t i m e p e r s p e c t i v e (to

be d i s c u s s e d below) i s p r e s e n t , one can p r o v e that t h e r e e x i s t s weak ( s t r o n g ) impatience i n the e n t i r e (open) i n t e r v a l (u2, u l ) , which of

c o u r s e includes zone 2 ( s e e Fig 1 )

-

Concerning the outlying i n t e r v a l s 0 -< U 3 < - U and U < U3 - C 1, nothing conclusive can be s a i d about impatience in t h e m when they

a r e non-empty Both i'mpatience and s t r o n g patience m a y exist, w h e r e

s t r o n g patience i s s a i d to exist in ( u I , u,, U,) if

Trang 28

tion p r o g r a m s s u c h that U1 E U ( l x ) > U 2 U ( l y ) NOW postpone

e a c h p r o g r a m by one p e r i o d , i n s e r t i n g consumption v e c t o r z i n the vacated f i r s t p e r i o d Then, by P 4 and P3b, U 3 E U ( z , x l , x2, )

A c.ardina1 utility function Koopmans s u g g e s t s that a g e n e r a l d i s - count f a c t o r , cr(U), be defined by the identity

t h a t i s , a s a function of t h e o v e r a l l l e v e l of s a t i s f a c t i o n achieved and

p r o v i d e s a s a n example a utility function with a discount f a c t o r which

d e c r e a s e s i n U ( U = W(u), denoted the c o r r e s p o n d e n c e function, i s the solution to the equation Vju, U ) = U f It c a n be shown that ( 1 - 4 )

i s i n v a r i a n t under differentiable monotonic t r a n s f o r m a t i o n s

Trang 29

It should be o b s e r v e d that if the s c a l e s of u and U a r e equated and

t h a t i s , the discount f a c t o r given by (1 - 4 ) i s c o n s t a n t , which a g r e e s with the conventional i n t e r p r e t a t i o n Thus, i t is c l e a r that the utility function ( 1 - 5 ) i m p l i e s that i m p a t i e n c e e x i s t s i n a l l p a r t s of the p r o -

g r a m s p a c e

It was noted by Koopmans that the addition of a s t r o n g e r v e r s i o n of the n o n - c o m p l e m e n t a r i t y postulate to the s e t P 1 - P 5 l e a v e s t h i s utility function a s the only function which i s c o n s i s t e n t with the expanded

p o s t u l a t e s e t The additional p o s t u l a t e i s given by

Trang 31

l e a s t , c o n c e r n o u r s e l v e s with how to find the p a r t i c u l a r t r a n s f o r m a -

tions which give u s a c a r d i n a l utility function f r o m a given o r d i n a l

a v a i l a b l e consumption p r o g r a m s a r e s u b j e c t to r i s k and only o r d i n a l utility fuslctions a r e known

1 2 2 P r o p e r t i e s and Limitations of t h e [Jtility Function

the f o r m ( 1 - 5 ) The m o s t s e r i o u s drawbacks of t h i s c l a s s of f u n c -

consequence of p o s t u l a t e s 3 and 3 ' , and t h e constancy of the &scount

f a c t o r cu As s u g g e s t e d e a r l i e r , t h e a s s u m p t i o n s of n o n - c o m p l e m e n -

t a r i t y a r e p a r t i c u l a r l y l i m i t i n g when consumption i s t r e a t e d a s a

commodity v e c t o r By focusing on t o t a l ( d o l l a r ) consumption alone,

c e r t a i n t y p e s of c o m p l e m e n t a r i t y between c o m m o d i t i e s need not be

r u l e d out Consequently, we s h a l l choose to be c o n c e r n e d with t h e

l e v e l of consumption r a t h e r t h a n the composition of the consumption

a l l p o s s i b l e p r o g r a m s ( c , , c 2 , cg, ) w h e r e c , j = 2 ,

3

i s the a m o u n t of consumption i n p e r i o d j

h e r e n t i n utility functions of the f o r m ( 1 -51, l e t u s examine s o m e con-

c r e t e e x a m p l e s As a c a s e i n point, l e t u s c o n s i d e r the function

u ( c ) = log c and p o s e the p r o b l e m of finding d i f f e r e n t consumption

p r o g r a m s between which the utility function ( 1 - 5 ) r e q u i r e s t h e indi- vidual to be indifferent F o r example, we might a t t e m p t to find t h e

consumption p r o g r a m s c ' a.nd , c" which a r e equivalent to the

1

Trang 32

p r e f e r s t h e c e r t a i n p r o g r a m e 1 c ' + ( 1 - 8 ) 1 ~ 1 1 to t h e p r o s p e c t of o b -

t a i n i n g I c ' w i t h p r o b a b i l i t y 9 a n d c" w i t h p r o b a b i l i t y 1 1 - 6

Trang 34

consumption, which i m p l i e s t h a t U i s s t r i c t l y concave This a s s u m p - tion, which h a s a high degree1of acceptance, i s c r u c i a l to a l l the r e -

s u l t s which follow But if U i s monotone i n c r e a s i n g and s t r i c t l y con- cave, i t follows t r i v i a l l y t h a t u ( c ) i s likewise

J The utility function (1 - 5 ) i s defined on infinite p r o g r a m s , which

m a y s e e m to be out of s t e p with the f a c t t h a t m a n ' s l i f e s p a n i s finite However, we s h a l l a r g u e t h a t a n i n d i v i d u a l ' s p r e f e r e n c e s g e n e r a l l y extend beyond h i s own l i f e t i m e , F i r s t , h i s d e p a r t u r e point i s indefi-

n i t e ; i t t h e r e f o r e behooves h i m to be c o n s e r v a t i v e i n r e f e r e n c e t o h i s planning h o r i z o n Second, h e usually w i s h e s to p r o v i d e i n s o m e f o r m

f o r h i s h e i r s a n d s u c c e s s o r s - i t i s i n f a c t t h i s benevolence which

k e e p s m a n f r o m p e r i s h i n g f r o m the e a r t h In the f i r s t twenty y e a r s

o r s o , e a c h of u s depends on s o m e o n e e l s e f o r the economic goods he enjoys Consequently, m a n h a s , during h i s l i f e t i m e , both the m o r a l

and l e g a l r i g h t to s u p p l e m e n t h i s own p r e f e r e n c e s with r e g a r d to con-

s u m p t i o n with the p e r c e i v e d p r e f e r e n c e s of h i s s u c c e s s o r s - to infinity This i s not to s a y t h a t a n investigation of finite p r o g r a m s would be without m e r i t However, if this a p p r o a c h i s u s e d , one i s f a c e d w i t h t h e

p r o b l e m of d e t e r m i n i n g j u s t w h e r e the h o r i z o n i s F o r the r e a s o n s given, coupled with the f a c t that a utility function with a d i s t a n t (but

f i n i t e ) h o r i z o n i n which i m p a t i e n c e i s p r e s e n t i s c l o s e l y a p p r o x i m a t e d

I

by the s a m e function with the h o r i z o n extended to infinity, the i d e a

F o r e x a m p l e , i n the c a s e of function ( 1 - 5 ) with w = 9, 9 9 9 p e r c e n t

of the utility obtained f o r m a c o n s t a n t consumption l e v e l i s a s s o c i -

a t e d with t h e f i r s t 64 p e r i o d s M o r e g e n e r a l l y , i f the utility of con-

s u m p t i o n a m o u n t c i n a p a r t i c u l a r p e r i o d i s u, then the c o n t e m p o r a r y utility of c 6 4 p e r i o d s la.ter i s 001 u

Trang 35

of evaluating infinite p r o g r a m s a p p e a r s intuitively much m o r e

s a t i s f a c t o r y

The p r e f e r e n c e o r d e r i n g s we have d i s c u s s e d have been c o n s i d e r e d

This i s i n a g r e e m e n t with economic t r a d i t i o n , which h a s always s e p -

modification of a n individual's p r e f e r e n c e s i n the light of e x p e r i e n c e

i s r u l e d out An a t t e m p t to g r a p p l e with the q u e s t i o n of allowing f o r

flexibility of f u t u r e p r e f e r e n c e h a s been m a d e by Koopmans 1

1 2 3 Note o n t h e Boundedness of the Utilitv Function

It h a s been shown by A r r o w (who c r e d i t s the d i s c o v e r y of the proof

to M e n g e r ) that a von N e u m a n n - M o r g e n s t e r n utility function i s

c a u s e f o r questioning the r e s u l t s obtained with t h e s e functions

n e v e r l e a v e s t h a t p a r t of the d o m a i n of the (unbounded) function f o r which i t s value i s finite, the unbounded p a r t of the function m i g h t a s

w e l l be " c u t off " In the ensuing m o d e l s , by eliminating t h e p o s s i b i l i t y

of s t a r t i n g out i n the t r a p p i n g s t a t e (to be d i s c u s s e d in 2 7 ) i n Models

Tjalling Koopmans, "On Flexibility of F u t u r e P r e f e r e n c e , " Human

Kenneth A r r o w , B e r n o u l l i Utility I n d i c a t o r s f o r Distributions Over

A r b i t r a r y S p a c e s , Technical Report No, 57, Department of Econo-

Trang 36

11 a n d 111, t h e r e s u l t s a r e i n d e e d t h e s a m e a s they would be if only the bounded p a r t of t h e function u ( c ) h a d b e e n employed H o w e v e r , if a

bound w e r e p l a c e d o n u ( c ) i n Model I, a s o l u t i o n would a l s o e x i s t ,

though p r o b a b l y not i n c l o s e d f o r m , when t h e c o n v e r g e n c e condition

A s e c o n d a v e n u e of d e f e n s e would be to s a y t h a t t h e continuity p o s t -

u l a t e , o n which t h e boundedness of t h e u t i l i t y i n d i c a t o r d e p e n d s , i s un-

n e c e s s a r i l y r e s t r i c t i v e a n d t h a t i t should be m o d i f i e d (which would be

e a s y enough) t o p e r m i t the u t i l i t y function to be unbounded 1

1 3 THE O P P O R T U N I T Y SET

function (1 - 5 ) Thus, we h a v e i n e f f e c t equipped h i m with the power

A c r i t i q u e of t h e continuity p o s t u l a t e m a y be found i n Duncan L u c e

a n d H o w a r d Raiffa, G a m e s a n d D e c i s i o n s , New York, John Wiley,

1 9 5 7 , p 2 7 ,

Trang 39

e a c h opportunity i s a r a n d o m v a r i a b l e To p a r a p h r a s e , we a r e s t i p u - lating that the only thing t h a t i s c e r t a i n about the r e t u r n f r o m a n i n v e s t -

m e n t i s t h a t i s i s u n c e r t a i n This, of c o u r s e , i s e s s e n t i a l l y what J P

M o r g a n e x p r e s s e d when, a s k e d what he thought about the s t o c k m a r k e t ,

a s p o s s i b l e , while s t i l l retaining the s t o c h a s t i c n a t u r e of r e t u r n s , we

s h a l l m a k e the following s e c o n d - o r d e r a s s u m p t i o n s :

1 All i n v e s t m e n t opportunities a r e of the point-input, point-output type, i e , i n v e s t m e n t and r e a l i z a t i o n take p l a c e i n s t a n t a n e o u s l y

r a t h e r t h a n o v e r t i m e

2 All i n v e s t m e n t s a r e r e a l i z a b l e i n c a s h a t the end of e a c h p e r i o d

3 The amount i n v e s t e d i n a n opportunity m a y be any r e a l n u m b e r

6 We s h a l l a r b i t r a r i l y define a s h o r t s a l e a s the opposite of a long i n -

v e s t m e n t That i s , i f the individual s e l l s opportunity i s h o r t i n the

amount 0 , h e will r e c e i v e 8 i m m e d i a t e l y (to do with a s he p l e a s e s ) i n

r e t u r n f o r the obligation to pay the t r a n s f o r m e d v a l u e of 0 a t the end

only n e e d s to put up the m a x i m u m amount h e m a y l o s e i n making a

long i n v e s t m e n t , c a n a l s o be handled without difficulty i n the

ensuing m o d e l s

Trang 40

While t h e s e a s s u m e d c o n d i t i o n s undoubtedly a r e too restrictive t o

Ngày đăng: 23/03/2014, 04:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm