1. Trang chủ
  2. » Thể loại khác

Thiết kế bộ điều khiển dự báo dựa mô hình mạng nơ ron nhân tạo cho hệ nhiều chiều bằng Atmega

5 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Thiết kế bộ điều khiển dự báo dựa mô hình mạng nơ ron nhân tạo cho hệ nhiều chiều bằng Atmega
Tác giả Phan Xuan Minh, Doan Van Due
Trường học Hanoi University of Science and Technology
Chuyên ngành Engineering
Thể loại Bài báo khoa học
Năm xuất bản 2011
Thành phố Hanoi
Định dạng
Số trang 5
Dung lượng 162,32 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

DESIGNING AN ARFITICIAL NEURAL NETWORK MODEL PREi.c LIVE CONTROLLER FOR MIMO PROCESSES USING ATMEGA 128 THIET KE BO DIEU KHIEN DU BAO DU'A MO HJNH MANG NO-RON \H.\N TAO CHO HE NHIEU CHl

Trang 1

DESIGNING AN ARFITICIAL NEURAL NETWORK MODEL PREi).c LIVE CONTROLLER FOR MIMO PROCESSES USING ATMEGA 128

THIET KE BO DIEU KHIEN DU BAO DU'A MO HJNH MANG NO-RON \H.\N TAO

CHO HE NHIEU CHl£u B A N G ATMEGA 128

Phan Xuan Minh, Doan Van Due

Hanoi University of Science and

Technology-ABSTRACT

In this paper, one method to design an Artificial Neural Network Model Predictive Controki (ANNMPC) for MIMO processes Is presented The optimization problem Is solved by two methods Nonlinear Optimization (NO) and Nonlinear Prediction 8, Linearization (NPL) The proposed controki

Is implemented on a developed kit using Microcontroller Atmega 128 The obtained controller is the: used to control a simulator of a Distillation Column plant with two inputs and two outputs Tht experimental results demonstrate the usefulness of ANNMPC for MIMO processes

Keywords: Artihclal Neural Network Model Predictive Control (ANNMPC), Multi-Layer Perceptron (MLP), Multiple Input Multiple Output (MIMO), Nonlinear of Optimization (NO), Nonlinear Prediction and Linearization (NPL), Genetic Algonthm (GA), Distillation Column

TOM TAT

Bai bio trinh biy vi mdt phwang phip thiit ki bd diiu khiin dw bio dwa md hinh mang naron

nhin tao cho cic ddl twgng nhiiu diu vio nhiiu diu ra Bii toin tdi wu hoi dwgc thwc hien bing tiai phwang phip: til wu phi tuyin (NO), dw bio phi tuyin va tuyin tinh hoi (NPL) Thuat toin diiu ktiik

di xuit dwoc di dat tren vi diiu khiin Atmega 128 vi dwgc kiim chirng bing md hinh thip chwng dt hai via hai ra Cic kit qua thwc nghiem cho thiy khi ning u'ng dung cua bd diiu khiin ANNMPC cfio ddi twgng nhiiu chiiu

I INTRODUC TION

In recent vears the MPC for MIMO

Svslems has received much attention to

universal approximation as artificial neural

network (.ANN) or Fuzzy Logic System The

ANN is used as a predictive model of MPC

because of the abilitv to approximate the

process dvnamic exactiv

The intelligent control algorithm is

implemented on the Atmega 128, one micro

controller chip of AlAlll A real experiment,

in vvhich the designed controller is used to

control a MIMO real-time simulation system

with two inputs and two outputs, is developed

The paper includes:

•^ Introduction

•^ Model Predictive Control for MIMO

processes based on Artificial Neural

Network

-^ Designing a ANNMPC using

mierocontroller Atmega 128

-^ Applving ANNMPC to control the real

Disiillalion Column plant simulator

>^ Conclusion

II MODEL PREDICTIVE CONTROL BASED ON ARTIFICIAL NEURAL NETWORK FOR MIMO PROCESSES 2.1 Structure of the neural model

To model the nonlinear dynamic characteristic of each MISO process, a structure

of NARX (Nonlinear AuloRegressive willi

exogenous input) is used

'7 ' T" • ; > ,

Figure 2 1 Structure oflhe SARX network

78

Trang 2

The relationship between inputs and outputs of

the network is described as follows

v„,(A:) = (7„,(r„(A:))

Where

l i l ( f e - T "

(2.1)

^m(.k)

')

ui(fc-wr)

^'n,fk - l u )

"njfc-A/r-)

3m(fc - 1)

.(7^=R'^>'^^5:;]H.(.v-"-r-"+i)^^ ^ ^ 1

' " = 1 ".V- The "I-th output

T"'"" _ "I'l^e number of elements in the ^ -th

input"s TDL is not applied to the network of the

"^ -th output

N"

'"ei

The number of the elements in the "

th input's TDL of the network of the '" -th

output

^- ~ The number of the elements in the '" -th

output's TDL,

•'i/ ~ The number of inputs

''.V ~ The number of outputs

The relationship between inputs and outputs

can be rewritten as follows

y„Ak) = 9„,ixn,ii<)') :2.2)

where: ^n-ik) is an input vector of the network:

U i ( A - r ' " i )

^re(l<) =

Uj(fc-,V,fi)

u„Jk-z''•••'0

"n,(A-'v:;'''-)

y ^ ( / f - i )

v^(A'-A';")

When using Ml 1' network to model plant, we

have the relationship between inputs and

outputs of the neural network:

v.(v)=::.+5^Iii:(:)Wffl:{!,:)^.(^) + /fi"i:))

m = 1,2, , iLy

2.2 MPC algorithms based on the structure

of Artificial Neural Network [1,2,5]

The cost function:

Kk) = W'fik) -.y(;c)|f, + \lAUik)\\l

Constraints:

(2.4)

Y„ ,<?(,k)<Y„„,

AY„., < AYik) < AV^,,

where

Au(,k\k) AU(k) = \

Aii(k + N,- Ijfc)

dlm(zlt/(fc)) = n^,V^

dim(,l./p) = n,.; size(AO = iiyN^ X n,.Wp

dim(r.,„*) = dim(f/,„ax J = dim(Af/,„,„,)

= dim(AC/_,) = n„^,

y inin 1

^ i n i n / n '

; >™ =

^ i n a x !

-^max ny

d i i n ( L p

L =

= n^;size(L) =

i p 0 0

0 0

0 0 i p

mm

A } ' =

mm

" m m 1

_ " m , n „ „ _

;M ^

^ max

A ^ ' n m l

Av„„„„

Mp 0 0

0 - 0

0 0 i W p

" , „ a M

_ « m a , x „ „ _

• AY =

' max

'•

4v„aM

_Av

Trang 3

dim(y™„,v,) = d i m ( } ; , , , ) = dim(Ar„,„ ,^)

= dm(A)-,,,, ) = « iV,,

v'-'fik + llfc) '

Y'''f(,k)= ••

y'-'fik + Nplk)

dim(Y'''f(k)) = n.,\'.,

m + l\k)

Y(k} = :

y(k-i-N^\k)

dim(K(fe)) = r!, ,V„

?y(.k-i-p\k)

?{k + pifc) =

[?,,Xk + p\k)

?„ik + p\k) = v.^{k-i-pm + d„m

d„:(k) = v^(k)-Y„(k\k-i)

m = 1.2, ,11,

(2.5) (2.6)

rf^(fc) = V„ (fc) - ifin: + ^ tlt;,(i)/„(z„„ (fr)) I (2.7)

Z„, (fc) = /ll.'„, (I, : ) V „ (k) + IB,,, ( 0 (2.8)

PC

Digital

inpuls

Analog

inpuls

probes

(0-5\')

1

RTC

Microcontroller unit

i

,

Kc> board

— •

Digilal outputs Analog outputs probes (0-5V)

;

LCD

III DESIGN AN ANNMPC BASED C ATMEGA128 MICRO-CONTROLLER

• Hardware design

^ Microcontroller unit: Using AtmegaL microcontroller

•^ Digital input/output port: Digital sign; logic 0-5'V

'/ Two input/output probes

•/ Connect PC by RS232

•^ LPT programming port

•^ Analog board : Four standard sigm used: 0-5V 0-1 OV, 0-20mA, 4-20iiiA

• Software design

•^ Interface on PC using the Visual C+* language

•^ Software on Atmegal2!

microcontroller using the AVR Studio compiler

Analog inpul probes (from sensors 5V' 0-lOV 0-20mA 4-20mA)

Analog outputs probes (to actuators 0-5\'

0-lOV 0-20mA, 4-20mA)

Analog inpuls (to CPU Board 0-5V)

Analog outputs (to CPU Board 0-5V)

Figure 3.1 Diagrams of the CPU Board and Analog Board

The sampling time 7", is chosen as lOsec After identifv'ing the plant, we ha» structures of networks with each of outputs [4]

I\ APPLYING ,4NNMPC IN REAL-TIME

SIMLLATION OF A DISTILLATION

COLI MN PLANT

Consider the distillation column plant as

shown in Figure 4 I with the parameters at an

operating point being given in fable 4.1

80

Trang 4

''able 4.1 Parameters oflhe Distillation Column plant at the operating point

\

40

M

41

N,,

21

F

1

Z F

0.5

qF

1

a 1.5

D 0.5

L 2.706

V 3.206

X D

0.99

X B

0.01

M, 0.5

TL

0.063

Figure 4.1 Control system of the Distillation

Figure 4.3 Results wilh Ml\ '-NPL algorillmi ('""'c - 3- •"•'F

and MPC-S'O algorithm (^c = 2,A'„ = W.M.^

fable 4.2 Parameters oflhe structure with each

10, Ml = 1,M2 = 0.1, i l = 0.5 L2 0.5

, Af, 2 , i i = 1 5 , i 2 = I S

>f output.'

V ' i

1 ^ '

-I

1

1

AT'

>

NZ'^

3 '' 1 3

A""

9

9

We implement the MPC controller for

he distillation column plant (The plant is

iniulaled on Mallab Simulink and connected

real-time to the controller via Card Ni-PCI 6014)

Two algorithms MPC-NO & MPC-NPL are installed on the Atmegal28 chip The Distillation Column plant, which is simulated

on Matlab/Simulink, is connected to the MPC controller via Ni-PCI 6014 using Toolbo.x Real-Time Windows Target The structure of the control svstem are shown in Figure 4.2 and the experiment results are given in Figure 4.3

Trang 5

V CONCLUSION

In this paper, we have presented one

method to design an ANNMPC using MLP

with the structure of NARX network for MIMO

processes (two inputs/two outputs), and

successfullv implemented the intelligent

algorithm on the microcontroller Atmega 128,

An experiment with a distillation column plant

simulator (connected real-time the ANNMPC

controller via Card Ni-PCI 6014) is utilized lo illustrate the applicabilitv and effectiveness of the proposed controller

In the next research, a ne« microcontroller with higher perfonnances will

be used to implement MPC-GA for MIMO processes Studying of stability and robustness

of the closed-loop control system with ANNMPC is beina carried out

REFERENCES

ChenWah Sit; Application of Artificial Neural Network - Genetic Algorithm In Inferential Estimation and Control of a Distillation Column; Chemical and Natural Resource Engineering, 05.11.2007

Yahya Chetouani; Using Artificial Neural Network for the modeling of Distillation Column; Int Jounal of Computer Application 2007

S Skogestad: Dynamics and Control of Distillation Column; Trans IChemE 9-1997

Maciej Lawrynczuk; Suboptimal Nonlinear Predictive Control Based on MLP and RBF Neutal Models with Measured Disturbance Compensation Jounal of Automation; Mobile Robotic and Intelligent Systems.m 20008

Maciej Lawrynczuk; Computational Efficiency of Suboptimal Nonlinear Predictive Control Vi'ith Neural Model; ISSN 11896-7094 2007 PIPS

Author's address: Phan Xuan Minh -Tel.: (+84) 913.362.993, email: minhxp-ac(@mail,hut.edu.vn

Department of Automatic control School of Electrical Engineering Hanoi University of Science and Technology

No 1, Dai Co Viet Str., Hanoi, Vietnam,

82

Ngày đăng: 08/12/2022, 21:38

🧩 Sản phẩm bạn có thể quan tâm

w