Nhiet dp la mot yeu to v6 cung quan trong trong qua de dam bSo dugc tinh chat cila skn phdm nhu mong mu6n, Mu6n vay ta cka tinh todn va dua ra luSt dilu khien thich hgp nh§t, Co thi si
Trang 1X A Y D l T N G M O H I N H T O A N H O C V A T I N H T O A N L U A T D I E U K H I E N T O I U U
C H O V O N G D I E U K H I E N N H I E T D O TIT B A N G D C L I E U T H C C N G H I E M
Dai hoc Cong nghe Thong tin •
Do Thi Mai
d Truyen thdng - DH Thai Nguyen
T O M T A T
Qua trinh san xuat la mot qua trinh phirc tap Nhiet dp la mot yeu to v6 cung quan trong trong qua
de dam bSo dugc tinh chat cila skn phdm nhu mong mu6n, Mu6n vay ta cka tinh todn va dua ra
luSt dilu khien thich hgp nh§t, Co thi sii dung phuong phap ly thuylt, phuong ph^p thirc nghiSm truyen dat va luat dieu khien toi uu cho vong dilu khien nhiet do vimg I true vit mdy ep nhua xuat san pham c6 ma s6 K ^ 5 2 y - 0 1
Tii'kh6a: may ep nhua; phuong phap thycc nghiem, irucvtt; luat diiu khiin; tdi uu
GIOI T H I E U
Chat l u g n g san phfim la y l u td q u a n trgng d a c
biet quyet dinh den san p h a m khi d u a ra thi
t r u d n g Dieu khien on djnh cd vai trd q u y e t
dinh chat l u g n g san p h a m n h u m o n g m u d n
Cd nhieu p h u o n g p h a p d e x a c dinh m d hinh
toan hgc va cac bg dieu khien thich h g p cho
he, N h u n g d e lua chgn d u g c bg dieu khien tdi
uu ta can x a y d u n g d u g c c a c d a c tinh tdi u u
cho tirng bg, va p h a n tich chat l u g n g dieu
khien cua he v d i cac bg dieu khien tdi uu dd
T r o n g bai bao nay, n h o m tac gia m u d n de
xuat mgt p h u o n g an x a c dinh bg dieu khien
tdi uu cho v d n g dieu khien nhiet d o true vit tijr
b a n g dir lieu t h u c n g h i e m , n h i m d u y tri nhiet
do theo gia tri dat d u g c tinh toan danh rieng
c h g san p h a m d a n g san xuat n h a m dat d u g c
chi tieu chat l u g n g c a o nhat
C O SCJ L Y T H U Y E T
X a c dinh m o hinh h a m t r u y e n dat cua ddi
t u g n g dieu khien dija tren h a m q u a d o
thux n g h i e m b a n g phirong p h a p tinh dien
t i c h [ l l ; | 3 )
Ham t r u y i n dat d u g c x a c dinh t h e o p h u o n g
phap tinh dien tich- p h u o n g phap tinh xSp xi
qua trinh qua dd tren may tinh T h e o p h u o n g
phap nay, chiing ta can thuc hien cac b u d c sau:
• Tel: 0966 643949 Email domai07I987@gmail.com
Buac J: D u a tren d a n g c o ban cua ham q u a
dd va mdi quan h e phu thugc vao cac tinh chat v^t ly c u a h8 da'ng nghien cii'u ta d u a ra
d a n g h a m truyen cua he
Bieac 2: Xac dinh h e sd c u a ham truyen tir
dieu kien cd Igi nhat khi thich u n g m d hinh va ddi t u g n g ,
Bwyc 3: Danh gia do chinh x i c cua phuong phap
tinh toan (phucmg phap tinh gia tri gan dung)
C h o ham sd h(t) thu d u g c tir cac gia tri t h u c nghiSm b o q u a d o tre ciia h a m G i a sir h(0) =
h ' ( 0 ) = 0 Khi tinh xap xi h a m h(t) tren t h g c te d u a ra 3
m d hinh sau:
f^Ap) =
f^Ap)
a^p^ +a2P^ +a^p + \
1
a^p^ + « , / ? + ! '
t,p + l
(11)
(1.2)
(1.3)
OjP +a^p + a , p + l
Vcji
H'AP) l~l-S,p + S^p^ + + 5^p*
V a i m o hinh (1.1); (1.2) : a,=8,: a2=Si:
di'Si
V 0 i i i i 6 h l n h ( 1 3 ) = > a l = b l + S I ;
a 3 = b l ' S 2 + S 3 ; a 2 = b l * S l + S 2 ; 0 = b l * S 3 + S 4 ;
N e u c a c he so S, d u o n g , t u o n g irng voi m o hinh (1.1) h o a c (1.2) N 6 u 1 t r o n g s 5 c a c h e s6 Si am, tirong iing voi m o hinh (1.3)
Trang 2Tap chi KHOA HQC & CONG NGHE fianh gia do chinh xac cua md hinh ham
truyen [3]
De danh gia do thich ung ciia md hinh toan
hgc va ddi tugng, ta danh gia thdng qua sai
lech giiia dudng chuin va dudng thuc
nghiem Md hinh dugc coi la thich u'ng neu
nhu sai lech dd khdng vugt qua 0.05-0,08,tuc
sai sd khdng vugt qua 5-8%
- Cac diem tren dudng chuin (dang chuan
Kosi) dugc tinh toan dga tren phan mim tren
CO sd giai bai toan he phuong trinh vi phan
bac nhat:
yo=/o(^ l'o V|, ,.!'„_,)
.y„-i-/„.,(j^,3'o,j'„-,:v„.|)
Vdi x-ddi sd ciia yk(x)
He phuong trinh vi phan bac nhat thu dugc se
duoc giai vdi su trg giup cua tinh toan tich phan
sd theo phuong phap Runge-Kutta bac 2
y' = fix,y)
Vdi dieu kien ban dau: y(xo) = yo Thuat toan
tinh toan theo phuong phap tren timg budc
tich phan cd dang nhu sau;
k,=hf{x,y)
lc,^hf(x + -h,y + -k,)
3 3 '
Ay = l(A,+3ft,)
Vdi h-budc tich phan ^ <— ' T.-hang sd
thdi gian nhd nhat cua he
Tinh toan dac tinh toi iru cho he vong don
vol luat dieu khien tuyen tinh[4]
He dieu khien dn dinh nlu thda man:
- He phai cd mgt do dn djnh du triJ dii Idn dl
dam bao giir tinh dn dinh cho he dudi su tac
ddng ciia cac dac tinh ddng va tmh thay ddi
lien tuc tac ddng vao cac khau cija he
- Trong mien dn dmh cua he phai tdn tai dilu
kien ma tai dd chat lugng dieu khien cua he la
tdt nhat
Theo nhung yeu cau tren, tinh toan 'ye tinh toi
uu ciia cac bg dilu khien phai trni qua 2 buac: Bir&c T Xac dinh mien dn dinh ciia he Buac 2: Tim dac tinh tdi uu cua bg dilu khiln
ma vdi chung, hg dat chit lugng dilu khiln toi uu
Cd nhilu tieu chi khac nhau de danh gia dg on dinh cua he: Xet dn dinh theo tieu chu5n dai sd; xet tinh on dmh theo tieu chuan tin s6 Cac phuong phap thuong hay sii dung nhat: Phuong phap md rgng pha-bien do; phuong phap dac tinh Idn nhat cua bien-tSn; phuong phap dao dgng t5t din Trong bai bao nay nhdm tac gia trinh bay phuong phap md rgng pha-bien do
Phuong phap nay dugc phat bieu nhu sau: NIU dac tmh bien-pha md rgng ciia he hd In dinh hoac nam tai bien gidi dn dinh
W/,j,(m,y£y)khi O) chay tu 0 —•oo di qua
diem (-1; jO), khdng bao diem do tai nhimg tan sd Idn hon, thi nghigm cua phuong trinh dac tinh ciia he hd se phan bd hoan toan ben nua mat phang trai dugc gidi han bdi cac tia
-mo) ± jO)
Dieu kien tren dugc viet dudi dang Wft;,(m,y£y)= W„(m,7fl;).W,,(w,» = - l
'^Am,Ja) = U + jV
Til' day ta cd thi tim djc tinh cac bd dilu khien ma vdi nhung dac tinh dd, cac bd dieu khien lam cho he hoat ddng vdi do du trif dn dinh m = mas,
Tacd: ^ ^ A(»'.'y)cosFo(m,(y)
V = -Ag{m,co)cosFa(m,a})
Va
^p Q){m^ +l)sin FAm,o}) _ tn sin Fo(w,Qi)-co5Fo(ff],a>) Ag{m,co) -Dac tinh tSn sd-bien dd md rgng
ciia ddi tugng f,,(m,(B)-Dac tinh tan sd-pha md rgng cua ddi tugng
Dd thj cho bilu thirc (*); (**) dugc bieu diln nhu hinh ve
Trang 3BSng 2: Bdng gid trj quy doi tin hieu do quy chudn
Hinh 1: Dudng dac tinh bQ diiu khien vdi m=0;
m^m^si
-Xac dinh dac tinh tdi uu cua cac bg dilu
khiln dua tren dilu kien tich phan binh
phuong nhd nhat:
/,, = m\xi\yit)-y{c^)]' dt
Kp
(?f | j , ^ - ^ \ V p
P' Wp Kp
Hinh 2: Diem dac tinh tdt uu bd dieu khien PID
Dlic tinh tdi uu ciia bd dieu khien PID xet
theo tieu chuan tren:
KT
=0.2—i-' T,
LTNG DUNG
Cho bang dir lieu thuc nghiem nhiet do vimg
I true vit
Bang 1: Kenh tin hieu dieu khien
I t w i n a l
rmliieada.8
0
W:S
0,J
187,6
i
187.8
1.5
188
2
IS8.2 2J
188.4
3
18GT J.5
188,9
116] gian.t
riBbi^&).8
4
189.0S
4,5
189,3
i
189,4
5,5
139.6
6 1 6,5
189.8 189.9
7
I9D 7.5
190
Ham truyen ciia ddi tugng dugc cho dudi
dang khau quan tinh bac 1
T=1.9phiit;K=0,25; w,.= ^
Tp+^
Xac dinh he so ham truyen theo kenh tin
hieu dieu khien[2]
Wnpa-l
tlnhifg G
0
0 0.5 0.04
1 0.12 1.5
0.2
2
0,28 2.5
0.J6
3
0,4* 3,5
0.56
Tlmgiiii t TmhiGD ,G 0.62 ^ 4.5 0,72
5 0.76 5.5 0.84
6
0.92 6,5 0.96
7
1 7,5
1
Theo chuong trinh KP 1, ta thu dugc:
S 1=3.32; (aJ) 52-3,8724; (a2) S3-l,844;(a3)
=>Ham truyen
K(P) = -3,32p' + 3,8724p' +1,844/? +1
Banh gia tinh diing &in cua mo hinh toan hgc
Theo chuong trinh KP2:
Bang 3: Bdng gid tri quy ddi tin hieu do thuc nghiem
Hwigjnbt
T m h i k -(
0
D 0,5
0,00499
1
0.1417
1.5
0,2484
2
0.3533
2,5
0.4337
3
0 5 4 1 !
3.3
0.6383
Tlifngm.l fmhieu ,9 ^
0.7013 4.S
0 7847
5
0,8489 5.5
0,9153
6
0,9493 6.5
0,9773
7 0,939 7,5
1
0 D.J
^^ii:a.po,i-^t^^ ^ga
^^-^' /
«„ih,«,
- | Tl,
/ ''
'"" ' ^ , U ' ' ' ' ' " ' "
Hinh 3: Dd thi sai lech dudng chuan vd dudng
th^c nghiem
Sai lech Idn nhat giira dudng thuc nghiem va dudng chuan la 7.9%, tuc nhd hon gia tri cho phep 8% Md hinh toan hgc tuong thich
He sd truyen dat thuc nghiem
Kp.e 2 Xay dung trong mat phdng dac tinh cua bo dieu khien PI gi&i han miin dn dinh
Miln gidi han dugc xay dung bdi SO(Kp/T,), Sl(Kp) va dudng thing S0=0 la miln dn dinh
dy tru- ciia he
Trang 4Hi so dac tinh cua cac bo dieu khien PI PID
k
y.i
y
X^ \
/ \
/ \ •
/ \ ;
/ \
'/////////////A
, , I, I V , , ^
Hinh 4: Ditang giai han dac tinh cua bg dieu
tthiin PI
Hinh 5: Cdu triic he su dung bo di^it lihiin PID
Ham truyen dat cua bg dieu khiln c6 dang:
W^(p)^K^ + -^+ K Tjp = S, +^ + S^p;
~i P
K'
KJ, = 0 , 2 — ^
J
So(Max)- Wo-> Wp=l,2*Wo
I
So(opT) — Si(OpT)
=>Dac tinh bp dieu khi6n PID
5„=5;"" • 0 , 2 ^
•^0
•^22 - -^1
cop'
• 0 , 3 - ^
S^,=S^'" 0 , 5 - ^
sr
$1
sr
Bang 4: He so dac tinh ciia cdc bo disii (.hien
B$ digu khien SO SI S2 PIDl
PID2 PID3
0,484 1,256 0 0.7S4 1,97 0,652 1,012 2,272 0,978 1.25 3.317 1,63
Xay dyng ham qua do he dieu khien vffi cac luat dieu khien khac nhau
Voi bo di6u khien PI: SO = 0,484; SI = 1,256; S2=0
He so thirc nghiem: K=I,25; He so ham truyJn: a,=3,32; a2=3,8724; a3=l,844; He so khuech dai: K2=0,25; Hang • so thai gian : T=l,9; Thay doi kenh dieu khien: 2; Kenh nhieu:20%; Buac tich phan h=0,5 Gia tri thai gian cuoi ciing w2=30 ' Ham qua do
l-Theo kenh tin hieu dat
I ';/ \1
/i—^\
Thoiaaas
Hinh 6: Qua trinh qud do he thdng su di^ngPI
Bg dieu khiln PID
PIDl
SO = 0,784, SI - 1,97,82=0,652
l-Tkokenhlii Ueudieukti^ 2-Theo kenh So hieu nhieu
Hinh 7: Qud trinh qud do he thdng su dung PIDl
PID2
S0=l,012, SI=2,272, S 2 - 0,978
/^'
j \ r\
i\\J
-i 1^ ;
/ 1 A
'? V ^^ ^\^> * / * / *
Trang 5Hinh 8: Qud trinh qud do he thdng su dung PID2
PID3
S0=I,25,S1=3,I37, S2=I,63
Hinh 9: Qud trinh qud dg h? thdng sir d^ngPID3
Danh gia chat lugng he dieu khien
Danh gia theo cac chi tieu chat lugng true tiep
Bang 5: Chi lieu chat luang he thdng su d\ing cdc
bd dieu khien khdc nhau
Bo dieu UiisL' d l liit
diitbos;
PI
PIDl
PD!
PID]
Hioi fiii iioi
2J
BJ
ll,S
K
Sii SD
OJ
11
1,1
0,1
Sii so
W
1,11
0)1
OJ)
Do III
l,)i
a
V)
m
Do qsa
M
«.!
«
l;j
So lio dio
w
!i
13
!J
Tir ket qua phan tich chat lugng he dieu khien vdi cac luat dilu khiln khac nhau, ta thay chat lugng dieu khien cua PI tdt hon cua PID, vdi sai sd ddng thap hon, he sd tat dan cao hon,
va dp qua dd nhd hon, KET LUAN Tii bang dii lieu thuc nghiem thu dugc qua qua trinh lam viec ciia he thdng, md hinh toan hoc ciia ddi tugng dugc xay dyng, tinh toan
va kiem chiing Bd dieu khien tdi uu cho he dugc tinh toan va lua chon dua tren md hinh toan hgc nay
Phuong phap nay dugc ung dung ehii yeu ddi vdi nhung he cd do phiic tap d mirc do trung binh va thap Ngoai ra bai toan tren da xay dyng, tinh toan bd dieu khien trong dieu kien
cd nhieu, nhimg khong xet do tre ciia ham truyen Vi vay, hudng phat trien tiep theo cd the danh cho vice nghien ciiu cac ddi tugnng phiic tap hon va xet din khau tre cua ham tmyln TAI LIEU THAM KHAO
1 Nguyen Doan Phuoc, Ly thuyet dieu khien tu dgng Nha xuat ban khoa hoc kj thuat, 2009
2 Nguyen Do3n Phudc, Phan Xuan Minh, Nhan dang diiu khiin Nha xuk b^n khoa hoc va kj
thu§t, 2001
3 TeopHH aBTOMaTHHccKoro ynpaBJieHua yHe6.ii)ifl By30B/C.E.7IyiuHH, H.C.SOTOB, A-X.MMaeB, H.H.KysMHH, B.B„aKOBJieB,2005
4 MeroflHiecKoe yKasaHwe K JiaSoparopHbiM pa6oTaM, KGTU,2008
Trang 6Tap chi KHOA HQC & CONG NGHE
SUMMARY
DETERMINING THE TRANSFER FUNCTION AND OPTIMAL CONTROL
LAW FOR TEMPERATURE LOOP FROM EXPERIMENTAL DATA T.l BLE
1
Do Thi M a i
College of Information and Communication Technology - TNU
The production prosess is a complex prosess The temperature is one of the most important factor
in the production process Depending on the technology require, to achieve the desired character of should calculate and provide the optimal control law Having two methods: theoretical and experimental methods Sometime we have to combinate both above methods.In this paper, the authors would recommend the way to get transfer function and optimal control law for temperature loop l" zone screw injection molding machine (KUASY-TRUSIOMA) from experimental data table, getting from production K/t52y-01 prosess
Keyword; injection molding machine; experimental method; screw; control law; optimal
Ngay nhdn bdi.30/9/20I4; Ngay phan bien:09/I0/2O14: Ngay duyet ddng: 05/3/2015
Phan biin khoa hoc: TS Pham Due Long- Trudng Dgi hgc Cong ngh4 Thdng tin & Truyin thong - DHTN
Tel- 0966 643949 Email: domai07!987@gmaiicom