1. Trang chủ
  2. » Thể loại khác

Điều khiển bám hệ số truyền động bánh răng với bộ điều khiển dự báo có ràng buộc

9 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Điều khiển bám hệ số truyền động bánh răng với bộ điều khiển dự báo có ràng buộc
Tác giả Le Thi Thu H, Bộ Giáo dục và Đào tạo
Trường học Trường đại học Bách Khoa Hà Nội
Chuyên ngành Kỹ thuật điều khiển và tự động hóa
Thể loại Báo cáo khoa học
Thành phố Hà Nội
Định dạng
Số trang 9
Dung lượng 385,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

'Dgi hoc Bach Khoa Hd NQI TOM T A T Bai bio gidi thi?u m6t phucmg phap thiet ke bo di§u khiln du bao phan hoi trang th^i dk diku khien bam on dinh h6 truyen dong qua banh r5ng c6 cac

Trang 1

DIEU KHIEN BAM HE TRUYEN D Q N G BANH RANG

V 6 l BQ OIEU KHIEN DlT BAO C O RANG B U O C

Le Thi Thu Ha', B6 Thj Tu Anh^

Trudng Dgi hoc Ky ihuat Cong nghiep - DH Thai Nguyen

'Dgi hoc Bach Khoa Hd NQI

TOM T A T

Bai bio gidi thi?u m6t phucmg phap thiet ke bo di§u khiln du bao phan hoi trang th^i dk diku

khien bam on dinh h6 truyen dong qua banh r5ng c6 cac dieu kien rang buoc Bo dieu khiln du bdo ciia bdi bdo sir dung mo hinh xap xi tuyln tinh ciia he truySn dong banh rang va sir dung ham

thdnh bai todn khong rang buoc Do sir dung nguyen ly toi uu sai lech bdm la nho nhat nen mdc dii i\s

dyng mo hinh xap xi tuyen tinh, song bp dieu khien van cho thay dupe chat lupng bdm tot

Td' khda: Dieu khien du bdo; Hi truyen dong banh rdng; Toi uu hoa co rdng bugc

DAT VAN DE

H? truyen dgng qua banh rang (hinh 1) la mot

trong so cac he truyen dgng dugc sir dung

rgng rai nhat trong cong nghiep, vi vay van de

chSl lugng di8u khi6n he IruySn dgng qua

banh r5ng ciing giO" mgi vai tro khong nho

trong chSl lugng he thong di6u khien qua

trinh noi chung Tu ly do do ma viec nang cao

ehSt lugng dilu khiln h? truyin dong qua

banh rang luon mang tinh thoi su va nhan

dugc su quan tam d^c bi?t ctia cac nha thilt

ke he thdng dilu khiln qua trinh

Bai loan dieu khien he truyen dgng qua banh

rang dugc quan tam trong bai bao nay la phai

xac djnh dugc quy luat thay doi moment dan

dgng tao ra tiJ dpng co dSn dong de he co

dugc toe d^ goc ciia tai dau ra luon bam on

dinh dugc theo mgt quy dao dat truoc va dieu

nay phai khong dugc phu thuoc vao cac tac

dgng khong mong muon vao he Tat nhien de

dieu khien dugc he truyen dgng voi chat

lugng cao can phai co mo hinh toan mo ta

chinh xac he truyen dgng Tai lieu [5] da gioi

thieu mpt mo hinh nhu vay, trong do no chua

dung gan nhu day dii tat ca nhung thanh phan

phi tuyen rat kho xac dinh dugc mgt each

chinh xac, song lai giu vai tro khong nho toi

ch5t lugng truyin dong cua he Do la cac

thanh phan nhu nhung luc ma sat khac nhau,

khe ho giira cac banh rang, dp cung vDng cua vat lieu

Tuy nhien mo hinh cang chinh xac, cau true phi luyen ciia mo hinh cang rac roi, keo theo phuong phap dieu khien cung nhu bg dieu khien sau nay cang phuc lap va linh lin c|y cung nhu tinh ben vung cua be dieu khien cang giam Bdi vay Irong thuc te nguoi ta thudng chi can den mpt mo hinh loan vira

du chinh xae sao eho van co the dam bao dugc chat lugng dieu khien dat ra, ma lai khong lam phiic tap cau true ciia bp dieu khien sau nay

|BilnllnP~

Emad- hahienI977@gmad com

Hinh 1: Dieu khien he truyen dgng qua banh rdng

Phucmg phap dieu khiln don gian nhat thuong dugc ap dung la dieu khien PID [2] Day la phuong phap nay doi hoi mo hinh loan

he truyen dgng phai xap xi dugc ve dang tuyen tinh Song nlu x4p xi ve dang tuyen tinh nhu vay ta da phai gia thiet la Irong he truyen dgng khong co khe ho, ma sal va khong CO moment xoan (vat lieu la tuyet doi cung) Dieu nay da v6 tinh lam giam chat

Trang 2

Le Thi Thu Hd vd Dtg Tap chi KHOA HQC & CONG NGHE

lugng he thdng dilu khien, vi eac gia thiet

neu tren rat de bi pha vo trong thuc te

Nhu vay, mu6n nang cao ch§t lugng he thong

ta phai sir dung mo hinh phi tuyen cua no,

Tuy nhien khi sir dung mo hinh phi tuyen

cimg voi phuong phap dilu khiln tuyen tinh

ta phai tuyen linh hoa xap xi mo hinh phi

tuyen cita no xung quanh cac diem lam viec

Cac phuong phap da dugc gioi thieu o tai lieu

[7],[10] la nhiTng vi du vl nhom phuong phap

dieu khien nay

Song viec luyin tinh hoa xung quanh diem

lam viec ma khong phai tra gia cho su sut

giam chat lugng dilu khien khong phai luc

nao ciing thuc hien duoc, dac biet la khi co sir

Iham gia ciia cac thanh phan phi tuyen manh

nhu ma sat, khe ho, do cirng vUng ciia vat

lieu Do do, dl v5n khong lam giam chat

lugng he thdng khi phai tuyen tinh hoa ngucfi

ta da SIX dung them cac co cau nhan dang ma

sat, khe ho hay do cung vimg cua vat lieu de

dilu khiln bii su anh huong ciia chung tdi

thanh phin dgng hpc tuyIn tinh trong md

hinh, trudc khi sir dung bd dilu khien luyen

tinh Mpt sd tai lieu nhu [3], [12], [17] da

cdng bo cac ket qua dieu khien di theo huong

giai quyet nay Tat nhien vdi hudng giai

quyet bang each bd sung them eac co cau dieu

khien bii do, cau true bd dieu khien se cang

phuc tap them, keo theo do tin cay va tinh ben

virng ciia chat lugng dieu khien cang giam

Bdi vay, cudi ciing xu hudng thiet ke bp dieu

khien true tiep tren nen md hmh phi tuyen cua

he truyen ddng la mdt giai phap dung dan Nd

hua hen se khdng lam lang them tinh phirc lap

cLia cau trite he dieu khien ma van dam bao

dugc chat lugng dieu khien dat ra ban dau

Cac tai lieu [6], [8], [13], [14] da cdng bd mdt

so ket qua ve xu hudng dieu khien thich nghi

ben vGng phi tuyen nay,

Mac dii vay lat ca cac phuong phap dieu

khien neu tren, ke ca phuong phap dieu khiln

thich nghi ben virng phi luyen, se van bj ban

che nlu nhu trong yeu cau chat lugng dieu

khiln dat ra ban dau cd them gia thilt ve tinh

bi chan cua tin hieu dilu khien, d day dugc hieu la moment dat d banh rang chii d^ng, hoac khoang gia tri biin thien cho phep ciia eac trang thai trong he, chang ban nhu cac gidi ban vl toe do, gia tdc cua cac banh rang, Nhirng gia thilt nay, tir yeu clu vl linh bin vung cua he thdng, ludn phai dugc thda man, ,nham cd the dam bao dugc vat lieu ciia he banh rang khdng qua bj mdi trong thdi gian lam viec

Mpt trong cac bg dilu khiln dugc xay dung tir md hinh phi tuyen ciia ddi tugng dieu khiln ma vin thda man cac dilu kien bi ch|n

vl dai biin thien gia tri ciia cac tin hieu dilu khiln va Irang thai ciia he la bg dieu khien dy bao theo md hinh, dugc vill tat thanh MPC (model predictive controller)

Bai bao nay se trinh bay phuong phap Ihiet kl

bg dilu khien du bao eho he truyen ddng qua banh rang, cd md hinh phi tuyen chiia dSy du cac thanh phSn luc ma sat, khe hd va dp khdng cihig virng cua vat lieu ben trong la [5]:

'jsA=^i ~^m , -d(.t)rQ,iF,+D,)

•^Sr+\'Pr+i =(^l+\ +^m.il+\))- ( 0

-d(i)ro.,.,l(F,^,+A+,) trong do, d (I) ta da bo qua hien tugng va dap banh rang [5], Viec bd qua nay la hgp ly vi vdi bai toan dilu khiln thi khoang thdi gian xay ra qua trinh va dap banh rang la v6 ciing nhd so vdi oua trinh qua do, nen cd the xem nhu xap xi bang 0 Ngoai ra:

- d{t) la ham md ta khe ho,

- Mj„„ la tdng cac moment ma sat tai cap

banh rang thu" i,

A^,,M,+] la cac moment vao va ra d banh

rang thir J cd M, - M,i la moment dai d dau

vao, dugc lao bdi dgng ca, (Fi+D,) la luc bien dang dan hoi va luc giam chan giira hai banh rang trong cap banh

rang thu i dugc xac dinh theo cdng thirc:

(F, + DJ = q% cos^ tti(p, + J,_,+iP,+i) (2)

vdi To,, ^,, i,,+i, c, ISn lugt la ban kinh vdng

Iron CO sd, gdc quay, ty sd cac rang giira hai banh rang va do cung virng vat lieu cua cap

banh rang thir i

Trang 3

Nhiem vu dieu khien bam dn dinh ben vihig

cho he truyin dpng banh rang (I) dugc dat ra

d day cho bai bao la phai thilt ke dugc bg

dieu khien MPC phan hoi tr^ng thai de he

truyin dgng gdm n cap banh rang cd gdc

quay dau ra ^!9„ bam theo dugc quy dao mong

mudn Pj^j

<P„ ->*',<./

ddng thdi tin hieu dieu khien va cac bien

Irang thai phai cd gia trj bien thien trong dai

cho phep la:

KN^^max- k | < < I ' „ ^ = l,2, ,n (3)

vdi A/n,3^,<P,, 1 = 1,2, ,n la nhiing hang so

duong cho trudc,

THIET KE BO DIEU KHIEN DU BAO

CH9 HE TRUYEN D O N G BANH R A N G

Thiet ke bg dieu khien MPC co dieu kien rdng

bugc nha hdm muc tieu tham so bien ddi

Hinh 2a) bieu dien cau triic co ban eua he

dieu khien du bao ddi tugng phi tuyen, gdm 2

thanh phan la [1],[4]:

- Khoi md hinh khdng lien tuc ciia ddi tugng:

a = / ( ^ * ' l i O ' !it=^(^i) (4)

cd tac dung du bao cae vector trang thai ciia

be dugc tinh lir thdi dilm k hien tai, trong dd

X) la vector trang thai va w^ la vector cac tin

hieu dieu khien ddi tugng (lin hieu dau vao),

Cac gia tri trang thai i^.^^, 0 < i < TV dugc du

bao trong khoang cua sd du bao [A:,A: + N']

trong khoang thdi gian tuong lai, tinh tir thdi

diem hien tai i nhu md ta d hinh 2b) se la:

5 u =/(a-+i-i'?^fe4-,-i)

= /(/(^(+,-2.yjL-+,-2)'yi+,-l)

= /(/( 7(5(,a-)'^t4-i)' ••• )'a-+,-i)

Tir cac gia tri trang thai x^ ,.;, 0<i<N du

bao dugc trong ciira sd du bao hien tai [A;,/i:+Af] ta cung se cd cac gia tri dau ra du bao trong cua sd du bao do la:

= 5(/-(^t,yt.Mi-+h - 'ytk+i-]))

!-!?,(^t'?^t'Mt+i' ••• Mi+,-|) (5) Khdi tdi uu hda, cd nhiem vu xac dinh lin

hieu dieu khiln tdi uu ul Khdi nay chira

dung Irong nd 2 khdi con gdm ham muc tieu

va thuat loan Idi uu xac djnh nghiem ciia ham muc lieu dd

Ham muc lieu tuong ung trong khdi nay duoc xay dung tir chi tieu chat luong dat ra cho he thdng Vdi chi lieu chat lugng dai ra la tin

hieu dau ra y phai bam dn dinh theo dugc lin hieu dat w,., Ihi mdt trong cac ham muc

lieu thda man dugc chi lieu chat lugng do la

^ = i:((Hi+,,-j/,^,)^Q,(ii^t- JK

vdi Q,, /£, la nhiing ma tran ddi xiing xac dinh duong tiiy chpn va 0<N^,N2<N cung la hai

sd duong liiy chpn [16] Rd rang, khi sir dung kel qua du bao (5) cung nhu do z^ la da cd,

thi khi chpn N^-\ = N2 =N, ham muc tieu J

se Ird thanh ham ciia cac tin hieu dieu khien can tim:

%=col(Uj^,u^.^,, ,Mfc+jv)

Dieu khiindirbao

Mo hinh

doi tUdng

Toi Uu

hoa

Goi tUi^ng di«u Ichien

tr

Trang 4

tLrc la J = J(Wj ), luc nay dugc viet lai thanh:

trong do:

Kh6i con thu hai la khoi thuat toan t6i uu dS

tim nghiem bai toan toi uu:

= arg min /(W^,)

trong do U d R ' " la dieu kien rang budc ciia

vector lin hieu dieu khien uj dugc suy ra til'

(3) Thuat loan tim W^ thudng dugc sit dung

laSQP[ll]

Tuy nhien, khi su dung cac phuong phap tdi

uu hda de lim nghiem bai toan tdi uu c6 rang

budc (7)thi rat cd the ta chi thu dugc nghiem

dja phuong, Ndi each khac nd £^ tim dugc

CO the chi mdi la diem cue In eua /(W;.), chu

chua phai nghiem ciia (7), De lim nghiem

loan cue ciia (6), la can tdi phuong phap dieu

khien tdi uu, chang han nhu phuong phap

bien phan, hoac quy hoach ddng ciia Bellman,

song cac cdng thuc ludng minh xac djnh

Uj-Iheo phuong phap dieu khien tdi uu nay lai

mdi chi dirng lai cho Iru'dng hgp khdng rang

huge, do do khdng the ap dung dugc khi bai

loan dieu khien du bao cd them cac dieu kien

rang bugc nhu d cdng thii'c (3),

Mac dii vay, neu nhin lai va phan tich cau true

ham muc lieu (6) ciia bai loan tdi uu (7) ta se

thay:

- Khi ||72.|[ cang Idn, su tham gia ciia thanh

phan Uj^ T^lii trong ham muc tieu (7) cang

cao, keo Iheo khi cd dugc ^(W^)-> min, gia

tri eiia ||i^J| se cang giam Dieu dd ddng

nghTa vdi viec cang tang ||7?.|], dieu kien rang

bugc (3) cang de dugc thda man

- Nhung neu cang lang ||7?-||, gian tiep se cang

lam cho su tham gia ciia thanh phan thir hai la

^L Q^k- 'rong (6) lai cang giam, keo theo

cang khd cd dugc \\s^ | -> 0, lire la chat lugng

Tat nhien ta cang khdng thi vira tang pl\\

vua tang | | Q | , vi nhu vay tuong quan vl sy

tham gia cua hai thanh phdn uj.'^y.k ^^

^I^^k ''•°"8 -^(^fe) se khdng thay ddi

Bdi vay mdt y tudng dung hda xuat hien d

day la ngay ban dau (khi k nhd) la chpn ||7?.||

dii Idn dl cd llw^ 11 dii nhd sao cho vdi nd co dugc dilu kien rang budc (3) Khi dieu kien rang bugc (3) da dugc thda man, ta se giam

||7?.|| dk thdng qua dd lam tang them su Iham gia eiia thanh phan sai lech bam £^Q£_i trong

•KKk) nham lam giam sai lech bam sau nay,

Tuong tu ta cung cd thi chon ||Q|| dii nhd ban

dau, sau dd tang dan j|QJ| theo k Vdi hai,trudng hpp thay ddi hai ma Iran "R hay Q Iheo thdi gian k nhu tren, ham muc

lieu gdc ban dau (6) trd Ihanh:

JiiLk) = fkQi.^k^ui'^kllk (8)

va tuong img, bai loan Idi uu cd rang budc (7) trd thanh bai loan khdng rang budc:

ul =argminJ(Wj) (9) Sau khi da cd nghiem tdi uu U ciia (9), phan

lir dau tien cua Z^ la u^ se dugc dua vao

dilu khiln ddi tugng Irong khoang thdi gian

giira hai lan trich mau kT•<t<{k + \)T, trong

do T la chu ky trich mau Nhu vay bg dieu

khien du bao lam viec theo nguyen ly lap vdi cac budc sau:

1) Chgn W>O.Gan k-.= Q 2) Do Irang thai x^ va tim nghiem tdi uu U^

cua bai toan tdi uu cd rang bugc (9), 3) Xuat u J = ( / , 0 , ,0)W* de dilu khiln ddi lugng trong khoang thdi gian

kT<t<{k-i-\)T roi gan k:=k + \ va quay

ve 2,

Xdy dung mo hinh du bdo

Theo nguyen t k dieu khiln du bao vira trinh bay, dl cd dugc bd dieu khiln du bao cho he truyin ddng banh rang, thi tir md hinh (1) da

cd ciia he truyen dpng banh rang ta phai xay dung md hinh khdng lien tuc dgng (4) lam mo

Trang 5

Tir (1), tai lieu [9] da d u a ra md hinh t u o n g

u n g cho h e t u o n g u n g cd mdt c a p banh rang

n h u sau:

l 7 | ^ + c j i | C o s a i , ( ( ? , + % ^ ) = M , ; - M „ „

(10)

[Jlipi -CTij'^os ai{(p2+iQ_m) = -M,, -M„,,2

trong đ:

- ai gdc an k h d p c u a hai banh rang, va

cung la dai l u g n g d a n h gia khe hd giúa

cac banh rang, Khi hai banh rang tieu

chuan va khdng cd dp djch l a m , thi gdc

an k h d p or^ = a = 20° , Vdi he cd khe b d

thi \%°<a,<2S°,

- c la dai l u g n g d a n h gia do c u n g eiia banh

rang, G i a tri c cang nhd, dp mem deo

ciia banh rang cang Idn va

\c h che do an kh6p

[0 d c h e dp k b e h P

- J,h'^]'J2 ' ^ " ''J'9^ ' ^ m o m e n t quan linh

ciia d g n g c o , banh rang 1 va banh rang 2

va J^ = J ^ + J ] ,

~ M,, la m o m e n t can, bao gdm ca m o m e n t

tai,

- M„,,;|, M,„,(2 ' ^ m o m e n t ma sat trong cac 6

true banh rang,

ru, ri2 la ban kinh lan t u o n g iing cua hai

banh rang (ban kinh ngoai),

(Ol =g)i, 0)2=^ la van tdc gdc l u o n g u n g ciia

hai banh rang,

i|2 la ty sd truyen tií banh rang 1 sang

banh rang 2, tiic la (^2 = V2\^ •

N h u vay, gidng n h u (1), md hinh (10) nay ciia

he mdt cap banh rang c u n g chiira d u n g Irong

nd tat ca nhiJng thanh phan bat djnh khdng

the x a c djnh d u g c mgt each chinh x a c trong

nd, bao gdm m o m e n t can M,,, gdc k h d p hai

rang ai, chi sd d o d o cirng vu"ng ciia vat lieu

lam banh rang c , cac m o m e n t ma sat cOa hai

banh rang M ^ , | , M.^^2 •

Tat nhien vdi nhieu t h a n h phan bat dinh Irong

md hinh n h u vay, c d n g thiie (10) khdng t h i

sii d u n g d u g c lam m d hinh d y baọ D o đ la

cSn phai xSp xi nd va chap nhan rang trong

md hinh xap xi khdng cdn chira thanh phan

bat dinh nay Idn lai mdt sai lech md hinh

M a c dii cd sai lech m d hinh, luy nhien n h d linh tdi uu cua bd dieu khien d u bao sau nay

ma s u anh h u d n g ciia sai lech md hinh đ tdi chat l u g n g he thdng se d u g c giam thieu

T r u d c lien la xap thanh phan m o m e n t ma sat đng, bd qua ma sat Imh:

cung n h u cac he sd xap xi hang 0:

^1 - c r / i c o s ^ t r ^ , 6*^' -crljcos^ai

Ihi (10) chuyen ve d u g c thanh:

pi9\ +i9|(9)i +ii2¥2) = ^d -h9\

\j2ip2 -62^{<Pi+H29\) = -hh

Tir p h u o n g trinh I h i i h a i Irong (1 l ) c d :

9\ =^2\f2{J29l+h92)-<P2\

= 0^ip2+9i(P2-h2<P2

vdi

^ 3 = ^ 2 ' ^4=^12^2^2 Suy ra

q\=9^<p'-^^ +ế(P2-lx2<P2

T h a y vao p h u o n g Irinb Ihu nhat ciia (11)

d u g c :

(11)

M j = j , « 3 ? i ' » + ( j , e 4 + 6|fl3)^2 +

+ [\0, +9,^3 - J|I,2)?*2 +(91^4 -l>\\l)<h

hay:

Xj; - X;^+| khi 1 < ^ < 3

[ i 4 = f l j i + 9 , i (12)

V = il

trong do:

H = « ^ ^2 ='Pị'^i=<h-H=<h a: = CO1(:E2 ,3:3,2:4 ), u = M,;

•' J.ffj - ' J|93

«1»4-''|'|2_

61^4 +51^3 -J[l\2

1 ^4 ^"\^i

-a,

0 2 O3

Do chi quan tam tdi tdc do x^-ipi ii^i ^^ cd the bd bdt di bien Irang thai x\=(p2 trong md

hinh (12), Khi d o m d hinh he truyen d d n g q u a mdt c a p banh rang se la:

= Ax + ^ u va j/ = c ^ z (13)

Trang 6

Le Thi Thu Ha va Dig Tap chi KHOA HOC & CONG NGHE

i =

0 1 o"!

0 0 1 , £ =

G] (22 '^3 J

ó

0 ,«.y

,

£.-n

0

oJ

Tir day, va voi chu ky trich mau T chon

truoc, co:

(iị+l ='*&+»%

la = / a

trong do

 ế^.b^lếbdi

W^A"*')

A =

c'b 0 0 )

c^'Ab c^b ••• 0

, r , « i ,T.«-I

WA"b c'A"-'b c ' t ;

Wj=COl(»,.,lli+,, ,ut+„)

Suy ra, ham muc tieu (8) t6ng quat trcr thanh:

Qi,'

(14)

va ta se sir dung mo hinh (14) nay lam mo

hinh du bao cac trang thai 5^,^,, 0<i<N

trong cira so du bao hien taị

Xdy dimg khoi loi im boa

Vai mo hinh du bao (14) cho he truyen dpng

mpt cap banh rang, cong thuc du bao dau ra

t6ng quat (5)bay gia tra thanh;

= £'''4^il+,-2+£''''^"t+.-2+^''H+.-l

'C^Áxi + ( / ^ ' " ' 4 , c^Á^'b , , c'^iW,

trong do:

^;=™l(«t."l+ %+.-l)

Boi vay, neu ky hieu vector sai lech dau ra

tuang lai trong taan bp cOra so du bao

[t.t+W] la:

£ = <:»l('»l+l-Sui, ••• n+iV+l-i/J+iV+l)

ta se dugc:

trong do:

(15)

(16)

3*., 0 - 0

0 0 ••• Oi+jv+i

Rt 0 ••• 0

0 Rt^i •• 0

0 0 ••• Rt^f,)

N6u nhu cac ma tran £?;:+,,flfc+, doi xiing xac djnh duang dugc chpn sao cho nghiem toi uu

ul cua (9) luon thoa man dieu kien bi chfin

(3) ma cu the 6 day la:

Kl^^max- 1^,1 < 0 , , j = 1,2,3 (17)

thi bai loan tdi uu bj rang budc (7) se trd thanh bai loan khdng cd rang budc (9) Trong trudng hgp nhu vay ta cd ngay:

Uf^ =aigminJ(li,)

= aiBmin[i/(Á'q.A+9J,)i4 - 2 / ^ 4 4 ]

.[Âa,A*-R,]" ÂQ^a (18)

va cudi cimg la:

4 ={1,0 .,Q)l^ (19)

Hai cdng thiirc (18), (19) tren mgt ISn núa

khang djnh rang vdi Qi;+.,,Rk-vi ^^rgc chgn

sao cho Q va 7?.^, cd |Q|1.|| cang nhd hoac

LA Qic^t + Tii *^^ng Idn thi \uf\ se cang

nhd

Thudt todn dieu khien dir bdo he truyen dgng banh rdng co dieu kien rdng bugc

Tir eac cdng thirc (15), (16), (18) va (19) ta c6 dugc thuat toan dieu khien dy bao cho he truyin đng banh rang (12) gdm cac budc sau:

1) Chgn W>0 va cac ma tran (3t+,,ftt+, tuong iimg vdi dilu kien rang bupc (17) Xac

dinh ma tran Ạ theo (15) Gan jt:=0 2) Do trang thai x,^ va xac dinh u Iheo (15)

Trang 7

3) Xay dung cac ma Iran ^,'^k theo (16)

4) Tinh l£ theo (18) va tir dd la uj theo (19)

5) Xuat u^ de dieu khien ddi tugng trong

khoang thdi gian kT<t<(k + \)T rdi gan

k:=k + l vaquay ve2

KET QUA MO PHONG

De minh hga phuong phap, la xet he truyen

ddng banh rang cd md hinh tuyen tinh xap xi

dang (13) trong dd:

/ 0

0

- t )

1

0

-n

"1

- 6 J

6 =

("]

a

^-fi

0

0

Ta se ap dung thugt toan dieu khien du bao de

he thdng nay bam dugc tin hieu dat

Wj^ =1, Vfc va thda man dieu kien rang budc

cua tin hieu dieu khien |u^.|<30 Chpn ehu

ky trich mau T = 0.2 , eiia sd du bao N = 5 va

cac ma triin g^ = S = 10/, 7^^.-O.Ol(^) /

vdi I la ma tran don vj cd kich thudc phii

hgp Viec chgn 72.^ giam dan theo thdi gian

nhu tren xuat phat tir lap luan nhu sau Tii cau

true ham muc tieu (8) ta thiy khi 7^^ cang

nhd thi tin hieu dieu khien % se cang Idn Do

dd, d thdi diem ban dau, sai lech bam giira lin

hieu ra va tin hieu dat la Idn nhSt nen Ttj can

dii Idn de uj khdng vi pham dieu kien rang

bugc Sau dd, khi sai lech bam giam dan thi

do Uf cung cd xu hudng giam nen de nang

cao kha nang bam lin hieu dat, ta lai cd the

giam dan Tt/ nham tang u^ ma van dam bao

thda man dieu kien rang bugc Lap luan nay

se dugc kilm chiing d phSn md phdng qua so

sanh vdi trudng hgp ma tran nay khdng thay

ddi, tuc la khi 7^^ = 7^ = 0.003

Hinh 4: Tin hieu dieu khien u

Hinh 3 va hinh 4 minh hga cho tin hieu ra va tin hieu dieu khien eiia h? thdng Trong trudng hgp "K.^ giam dan (dudng net lien), ta thay tin hieu ra bam dugc theo tin hieu dat ma van dam bao thda man dieu kien rang budc

ctia tin hieu dieu khien \ui, | < 30 Trong khi dd neu giiJ nguyen TZ.j-='Tl (dudng net dirt) thi

Tt phai dugc chgn dii nhd nham tao ra tin

hieu dieu khien du Idn mdi cd thi dua he thdng bam dugc tin hieu dat Dieu nay dan den viec d nhirng thdi diem dau lien, dieu kien rang budc ciia u/ bi vi pham Ngoai ra, uu diem ciia viec sir dung ham muc lieu cd tham sd bien ddi so vdi ham muc tieu

cd tham sd cd djnh cdn dugc the hien qua ket qua md phdng d cac hinh 5 va hinh 6, De khdng vi pham dieu kien rang budc cua u^ thi viec gio- nguyen 72.^ = 72 = 0.01 lai khdng the dem lai chat lugng bam tdt, kl ca khi tang cira

sd dy bao Cu the ban, sai lech bam cDa he thdng img vdi ^ = 5 0 (dudng cham gach)

nhd hon so vdi sai lech bam irng vdi N = 5

(dudng net gach) Tuy nhien, A'' cang Idn thi khdi lugng linh loan ciing cang Idn Trong khi

do ta cd the dat dugc sai lech bam bang khdng vdi 7J.^=0.0lf^J / va A' = 5 (dudng net liln)

Trang 8

Hinh 6: Tin hieu diiu khien u

K E T L U A N

Bai bao da xay d u n g d u g c mdt p h u o n g p h a p

t h i l l k l bg d i l u khien d y bao cd rang budc

cho he thdng phi tuyen voi md hinh xap xi

d u g c ve dang tuyen linh lien tuc (13), T h d n g

qua viec sir d u n g ham m u c lieu cd tham sd

b i i n ddi, bg dieu khien d u bao phan hdi Irang

thai trong bai bao cd the lam tin hieu ra cua

he Ihdng bam d u g c t h e o tin hieu dat ddng thdi

thda man cac dieu kien rang bugc ciia vector

trang thai va tin hieu dieu khien Ket q u a md

phdng tren Matlab cho thay ro anh h u d n g ciia

viec thay ddi cac tham sd ciia ham m u c lieu

nay tdi chat lugng bam c u a be truyen d d n g

banh rang cd rang b u d c Viec phan tich linh

dn dinh bam cua h e t h d n g dieu khien d u bao

nay se la van d e nghien ciru tiep theo cua

chiing tdi

TAI LIEU T H A M K H A O

J Camacho, E and Bordons, C (1999): Model

predictive control Springer

2 Couwder,R.(2006) Electric Drivers and

Electro-mechanical Systems Elservier GB

3 Deur,J and Peric,N (1999): Analysis of Speed

Control for Electrical Drivers with Elastic

Transmission IEEE Intemaltional Symposium on

Industrial Electronics Bled, Slovenia, pp 624-630

4 Griine, L and Pannek, J (2010): Nonlinear

Springer

5 Ha,L.T.T (2014): Mo hinh hoa hi truyen dgng

banh rdng Tap chi Khoa hpc va Cong nghe Dai hoc

Thai Nguyen, tap 118, so 4,2014, Uang 67-78

6 Ha,L.T.T vd Phudc,N.D (2012): 7Vjie( ke Ap ticyin bdt dinh vd ung dmg vdo dieu khien h? truyen dgng qua banh rdng T^p chi Khoa hpc &

Cong nghe Dd ndng, S6 10(59), 2012, uang 1-6

7 Hd.L.T.T vd Phudc.N.D (2013): Dieu khiin PID thich nghi he truyin dgng ca khi qua banh rdng Tap chi Ngliian cuu Khoa hpc & Cong ngh§

Quan su, S6 25(06-2013), trang 25-32,

8 Hd.L.T,T vd Phudc.N.D (2012): Diiu khiin bdm thich nghi hf phi tuyin bdt dinh co de y tai tgp nhiiu vd ung diing vdo diiu khien hi truyen dong qua banh rdng Tuyen t | p bdo c^o H6i nghj

Co hoc todn qudc Idn thii 9 tai Hd Npi, 2012, Uang 158-170,

9 Ha,L.T.T (2013): Mgt sd gldl phdp ndng cao chdt luang h? truyin dgng co khe hd tren ca sd dieu khiin thich nghi, ben virng Lu^n dn tiln sJ

ky thuat, DHKTCN Thdi Nguyen

10 Lai.L.K yd Hd,L.T,T (2009): Hai gidi phdp

Tap chi Khoa hpc & Cong ngh$ Dai hgc Thdi nguyen So 4-2009, trang 34-37,

11 Nocedal,J, and Wright,S.J (1996): Numerical Optimization Springer-New York

12 Manish Vaishya and Rajendra Singh (2003):

Strategies for modelling friction in gear dynamics

Journal of mechanical design, vol.125, pp.383-393,

13 PhuocN.D and Ha,L.T,T (2012): Robust and Adaptive Tracking Controller Design for Gearing Transmission Systems by Using lis Third Order

91 Technical Universities, 2012, pp, 12-17,

14 PhuocN.D and Ha,L.T,T (2013): Model Reference Adaptive Controller Design for Gearing Transmission System Journal of Science and

Technology Technical Universities, Vol 95, pp 1-5

15 Tu_ Anh.D.T vdPhudc,N.D, (2013): Gidi thieu

ve diiu khiin du bdo Phan I: He tuyen linh

Tuyen tap bdo cao hoi nghi khoa hpc Khoa Dien tit, Trucmg Dai hpc ky thu$t cong nghiep Thai Nguyen, t r l 2 9 - l 3 8

16 Tu Anh,D.T ya Phudc,N.D (2014): dn dinh hda he song tuyen lien luc vdi bg dieu khiin du bdo Tap chi Nghien ciru vd cdng nghe khoa hoc,

Dai hoc Thdi Nguyen, tap 20, s6 6, trang 73-79

17 Walha, L.; -Fakhfakh, T and Haddar, M

(2009): Nonlinear dynamic of two stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash Mechanism and Machine

44, pp 1058-1069,2009

Trang 9

S U M M A R Y

T R A C K I N G C O N T R O L O F G E A R I N G T R A N S M I S S I O N S Y S T E M S

V I A C O N S T R A I N E D M O D E L P R E D I C T I V E C O N T R O L L E R

Le Thi Thu Ha'", Do Thi Tu Anh^

'College ofTechnology - TNU, 'Hanoi University of Science and Technology

This paper introduces a method to design feedback predictive controller for stable uacking control

of gear transmission system with boundary conditions The predictive controller of this paper uses form with parameters shift, hence, control problem with constrains is always being non-constrain problems Since the optimized principle with tracking error used is smallest, thus, despite of using linear approximate model, the performance of controller still recorded high tracking quality

Keywords: Model Predictive Control; Gear transmission system; Optimization with constrain

Ngdy nhdn bdi:01/10/2014; Ngdy phdn blen-03/11/2014; Ngdy duyet ddng 25/11/2014

Phan bien khoa hoc: PGS TS Lai Khac Lai - Dgi hoc Thdi Nguyen

Ngày đăng: 08/12/2022, 16:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w