Năng lượng chân không với các hạt lượng tử trong chân không hoàn hảo của thế giới vi mô có thể là nguồn gốc của năng lượng tối.. Cũng như nhiều khoa học gia thời đó, ông đã cố chỉnh sửa
Trang 1Bài tiểu luận cuối học phần Nguyễn Quốc Trị
CÁC MÔ HÌNH LÝ THUYẾT GIẢI QUYẾT VẤN ĐỀ NĂNG LƯỢNG TỐI QUAN SÁT THẤY TRONG THIÊN VĂN
I Năng lượng tối là gì
Năng lượng tối là dạng năng lượng không phát sáng, có áp suất âm và phân bố dàn trãi trong vũ trụ Theo những số đo của kính thiên văn vũ trụ Hubble, năng lượng tối đang đẩy vũ trụ giãn ra, dường như là năng lượng không đổi mà Albert Einstein từng dự đoán Năng lượng này là một dạng năng lượng lạ, tác động theo cách đối lập với năng lượng hấp dẫn Năng lượng tối làm cho các thiên hà trong vũ trụ di chuyển ra xa nhau với tốc độ ngày càng tăng Einstein đã ám chỉ năng lượng này bằng một hằng số gọi là "hằng số vũ trụ" Lý thuyết của ông cho rằng vũ trụ không có năng lượng tối sẽ tự sụp đổ do suy sụp hấp dẫn nên sự tồn tại của năng lượng tối là để làm cho vũ trụ cân bằng với lực hấp dẫn bình thường và làm cho nó khỏi tự sụp đổ Cuối cùng, Einstein đã bác bỏ lý thuyết này do những quan sát thiên văn của Hubble chứng tỏ vũ trụ đang giản nở Tuy nhiên, những quan sát về các vụ nổ siêu tân tinh hay những ngôi sao xa nổ tung cách đây từ lâu, đã tăng thêm tính tin cậy của lý thuyết trên Các nhà khoa học cho rằng chính năng lượng tối là nguyên nhân làm vũ trụ giãn ra và tăng tốc độ Theo tính toán của các nhà khoa học, năng lượng tối chiếm khoảng 73% vũ trụ, vật chất tối chiếm khoảng 23% vũ trụ, còn lại 4% là vật chất mà chúng ta thấy được hiện nay
Như đã biết năng lượng tối được giả thuyết như là một dạng của năng lượng và tạo ra áp suất âm Thuyết tương đối rộng chỉ ra rằng, áp suất âm này có tác dụng nhưng ngược chiều với lực hấp dẫn ở thang đo khoảng cách lớn Chính vì vậy nó là nguyên nhân gia tốc sự giãn nở của vũ trụ Năng lượng tối có ở mọi nơi và choáng đầy vũ trụ của chúng ta
Để hiểu được bản chất của năng lượng tối chúng ta cần phải đi sâu vào vật lý lượng tử của
Trang 2Bài tiểu luận cuối học phần Nguyễn Quốc Trị thế giới hạ nguyên tử Như chúng ta đã biết, ở thang vi mô, không gian được coi là trống rỗng hay chân không hoàn hảo thì không hoàn toàn trống rỗng mà được choáng đầy bởi một trường gọi là Higgs Chính trường này đã đưa làm cho các quark và lepton có khối lượng Trường Higgs làm chậm chuyển động của hạt, cho chúng khối lượng và giữ cho cấu trúc của nguyên tử ổn định Nếu không có trường Higgs, electron có thể chuyển động với tốc độ ánh sáng, nguyên tử sẽ bị phá vỡ cấu trúc và tan rã ngay lập tức Năng lượng chân không với các hạt lượng tử trong chân không hoàn hảo của thế giới vi mô có thể là nguồn gốc của năng lượng tối Việc khám phá ra lý thuyết siêu đối xứng, một phát biểu quan trọng của lý thuyết dây, cho phép hiểu rõ mối liên hệ giữa năng lượng tối và trường Higgs Nếu tồn tại, các boson Higgs sẽ đóng một vai trò quan trọng về thành phần năng lượng tối.Sau đây chúng ta đi tìm hiểu một số mô hình năng lượng tối hiện nay
II Các mô hình năng lượng tối
1 Mô hình hằng số vũ trụΛ
Mô hình đơn giản nhất để giải thích cho sự tồn tại của năng lượng tối là hằng số vũ trụ.Thuyết tương đối rộng của Einstein đã chỉ ra rằng, vũ trụ sẽ phải suy sụp bởi chính sức mạnh hấp dẫn của nó Cũng như nhiều khoa học gia thời đó, ông đã cố chỉnh sửa các phương trình của thuyết tương đối rộng bằng cách thêm vào một hằng số, gọi là hằng số
vũ trụ , để mô tả một vũ trụ tĩnh tại không thay đổi theo thời gian Tuy nhiên, hằng số này lại ám chỉ một lực đẩy cân bằng với lực hấp dẫn ở khoảng cách lớn để giữ cho vũ trụ không giãn nở và không co lại theo thời gian (nghiệm của các phương trình Einstein là nghiệm dừng) Lúc đó, Einstein chỉ cho đó là một hiệu chỉnh toán học chứ không hề nghĩ rằng hằng số đó lại phản ánh một sự thực nào đó Năm 1929, nhà thiên văn người Mỹ Endwin Hubble khám phá ra sự giãn nở của vũ trụ thì Einstein mới nói rằng, đó là ngu ngốc lớn nhất của đời ông Các quan sát với kính thiên văn trong không gian cũng như trên mặt đất đã khẳng định chắc chắn thực tế đó, và hơn nữa, cho thấy, vũ trụ đang tăng tốc Các thiên hà đang lao vút trong không gian và rời xa nhau
Trang 3Bài tiểu luận cuối học phần Nguyễn Quốc Trị Nhưng ngày nay, hằng số vũ trụ học lại hồi sinh và có vẻ như Einstein đã đúng Nó liên
hệ chặt chẽ với một loại năng lượng của chân không lượng tử đang tràn ngập vũ trụ của
chúng ta, mà ta gọi năng lượng tối Chúng ta đang thử xem liệu rằng hằng số vũ trụ học
đóng vai trò gì về lực đẩy bí mật của năng lượng tối gia tốc sự giãn nở của vũ trụ hay không
Như đã đề cập ở trên, để có một vũ trụ là tĩnh Einstein đã đưa vào phương trình một số hạng vũ trụ để thực hiện cơ chế đẩy Chúng ta biết rằng sự phân kỳ hiệp biến của tensor Einstein Gμν và tensor năng-xung lượngTμν triệt tiêu như nhau; tensor mêtric cũng có sự phân kỳ hiệp biến zero Vì thế ta có một số sữa đổi trong phương trình trường nhưng vẫn phù hợp với các định luật bảo toàn:
4
2
G
c
μν − μν + Λ μν = − π μν
(1.1)
Λ trong phương trình trên được gọi là hằng số vũ trụ
Vì 4
8
c
G
π Λ có dạng giống như tensor năng-xung lượng, nên các nhà vật lý cho rằng hằng
số vũ trụ hiện diện ngay cả khi vũ trụ là hoàn toàn không có vật chất và bức xạ, và Λ có thể được dùng như là mật độ năng lượng của chân không
4
8
V
c e
G
π
= Λ (1.2)
Trong mô hình vũ trụ có chứa hằng số vũ trụ Λ, độ cong của không gian không còn phụ thuộc vào một mình mật độ khối lượng nữa; mật độ tới hạn ρ và tham số mật độ c Ω0được cho:
0
3 8
c
G
ρ
π
− Λ
0
8 3
o G
π ρ
Ω =
− Λ (1.3)
Để ước lượng Λ, ta dựa vào điều kiện là mật độ tới hạn ρ ≥0, suy ra:
Trang 4Bài tiểu luận cuối học phần Nguyễn Quốc Trị
2
56 2 0
2
3
3.5 10
H
cm c
Λ ≤ ≈ × (1.4)
Chú ý rằng căn bậc hai của nghịch đảo của Λ có thứ nguyên là độ dài Với sự hiện diện của hằng số khác không Λ thì tương lai của vũ trụ không thể chỉ được suy luận bằng mật
độ vật chất
Hằng số vũ trụ cũng được xem lại trong lý thuyết trường lượng tử Trong lý thuyết trường lượng tử thì chân không được xác định như là một trạng thái có năng lượng thấp nhất Bất cứ dạng nào đóng góp vào mật độ năng lượng chân không cũng đều đóng góp vào hằng số vũ trụ Có ba đóng góp khác nhau:
Λ = Λ + Λ + Λ (1.5)
Trong đó Λein được đưa vào bởi Einstein; Λquan là hằng số lệ thuộc vào các thăng giáng lượng tử; Λint là hằng số ( tương tự như Λint) lệ thuộc vào các hạt và tương tác như là trường Higgs và boson Higgs.lượng tử
Chúng ta có thể bỏ qua Λintvà chỉ khảo sát Λquan Các thăng giáng lượng tử được biểu thị như là các cặp hạt ảo xuất hiện tự phát, tương tác trong thời gian ngắn và sau đó biến mất
Mặc dù các hạt ảo không thể được phát hiện bằng sự quan sát trong không gian trống rỗng, nhưng nó có tác dụng đo được trong vật lý, và đặc biệt nó đóng góp vào mật độ năng lượng chân không Sự đóng góp tạo bởi các thăng giáng chân không trong mô hình chuẩn phụ thuộc một cách phức tạp vào khối lượng và cường độ tương tác của tất cả các hạt mà ta đã biết Một ví dụ đơn giản, chúng ta xem xét một dao động điều hòa lượng tử Giá trị của nó được cho bởi:
1 2
n
E =⎛⎜n+ ⎞⎟ ω
⎝ ⎠h , n=0,1,2
Trang 5Bài tiểu luận cuối học phần Nguyễn Quốc Trị Chân không (n= 0) có một lượng năng lượng xác định Một trường vô hướng có thể được xem như là tổng của các dao động điều hòa theo tất cả các tần số có thể có Năng lượng chân không được cho bởi tổng:
0
1
j
Tổng này có thể được viết lại như tích phân bằng cách đặt hệ trong một vùng có thể tích
L 3 và cho Nếu ta dùng điều kiện biên tuần hoàn, thì tổng trên trở thành:
( )
3 3
1
d k
π
Đặt 1, k 2π
λ
h và sử dụng mối quan hệ: ωk2 =k2+m2 Ta có:
( )
3
0
lim
2
k
L
π ρ
π π
→∞
= = ∫ + = ; (kmax m) (1.6)
Tính tương đối rộng có giá trị phía trên thang đo Planck, đặt kmax =l p ta được:
10 g
ρ ≈ − (1.7)
Kết quả (1.7) bằng 121 lần giá trị thực nghiệm Dĩ nhiên là không chính xác nhưng nó có thể mô tả được một cách định tính sự tồn tại của năng lượng tối
Mặc dù việc đưa vào hằng số vũ trụ Λ như là một bằng chứng chứng tỏ sự có hiện diện của năng lượng tối nhưng mà kịch bản dựa trên nó lại vấp phải sự khó khăn trong vấn đề điều chỉnh Để hiểu rỏ điều này chúng ta hãy xem xét tỉ lệ bên dưới:
2
2
3 8
o H
H t
H t G
ρ π
Λ
Λ
⎝ ⎠ (1.8)
Trang 6Bài tiểu luận cuối học phần Nguyễn Quốc Trị
c
ρ
ρΛ
Λ
Ω = ≈ nếu giả sử là ngày nay bức xạ chiếm ưu thế Ta có:
( )
2
2 0.7 3
8
o T T
H t G
ρ π
⎝ ⎠ (1.9)
Tại thời đại Planck thì T0 10 31
T
− tỉ lệ
( )2
3 8
H t G
ρ π
Λ là cỡ 10-123 Trên lý thuyết sự tinh chỉnh
liên quan đến mô hình hằng số vũ trụ đối với năng lượng tối như thế này là không thể chấp nhận được Điều này dẫn đến sự khảo sát các mô hình trường vô hướng cho năng lượng tối theo hướng rộng hơn Các mô hình mà sau đây ta sẽ đề cập đến
2 Các mô hình trường vô hướng cho năng lượng tối
2.1 Mô hình nguyên tố thứ năm (Quintessence)
Thay vì cố đưa hằng số vũ trụ vào để giải thích sự tồn tại của năng lượng tối, ta cũng có
đi đến các mô hình trường vô hướng tổng quát hơn để giải thích sự tồn tại của dạng năng
lượng mới này Một trong các mô hình trường vô hướng tiêu biểu là mô hình nguyên tố
hạt thứ năm (Quintessence)
Quintessence là một trường vô hướng φ đồng nhất trong không gian là liên kết với
trường hấp dẫn thông qua một thế đặc biệt V(φ )
Hàm tác dụng Quintessence được cho bởi:
( )2 ( )
2
S= dx -g⎡⎢− Δφ −V φ ⎤⎥
∫ (2.1)
Với ( )2
gμν
Δ = ∂ ∂ , và g=detgμν
Trang 7Bài tiểu luận cuối học phần Nguyễn Quốc Trị Lấy biến phân hàm tác dụng (2.1) theo những số hạng của gμν ta được:
( )
∫
Đại lượng:
( )
1 2
Tμν = ∂ ∂ −μφ φν gμν ⎛⎜ gαβ∂ ∂ +αφ φβ V φ ⎞⎟
⎝ ⎠ (2.2)
là tenxơ năng-xung lượng của trường Quintessence Từ tensor năng-xung lượng ta có thể tìm được mật độ và áp suất của Quintessence
2
1
dr
−
- Mật độ năng lượng:
( )
i i
Với g00 = −1, ∂ =iφ 0, (i= 1, 2,3)
Ta được:
( )
2
φ
ρ = & + φ (2.3)
- Mật độ áp suất được tính:
( )
00
0 0 0
Nên
Trang 8Bài tiểu luận cuối học phần Nguyễn Quốc Trị
( )
2
2
p=φ& −V φ
(2.4)
Thế (2.3) và (2.4) phương trình liên tục ρ&+ 3H(ρ+ p)= 0 ta được phương trình chuyển động của trường φ là:
d
φ
&& & (2.5)
Phương trình (2.5) cho thấy mối quan hệ giữa sự thay đổi giá trị của trường φ với thế
( )
V φ và hệ số giản nở Hubble
Tiếp theo, ta biểu diễn phương trình Friedmann và phương trình gia tốc trong mô hình Quintessence
- Phương trình Friedmann
2 2
2
8 3
H
π ρ
⎛ ⎞
⎝ ⎠
nên 2 8
3
G
sử dụng (2.3) ta thu được phương trình Friedmann trong mô hình Quintessence cho vũ trụ phẳng
( )
2
2 8
3 2
G
H π ⎡φ V φ ⎤
&
(2.6)
- Phương trình gia tốc 4 ( 3 )
3
p a
3
V a
π ⎡φ φ ⎤
&& & (2.7)
Phương trình (2.7) cho thấy vũ trụ giản nở tăng tốc khi a t&&( )> 0 tức là φ& 2 <V( )φ , như vậy
Trang 9Bài tiểu luận cuối học phần Nguyễn Quốc Trị
φ& 2 <V( )φ (2.8)
Phương trình trạng thái của trường φ
( ) ( )
2
2
2 2
V p
V
φ
ω
−
= =
+
&
& (2.9)
Phương trình trạng thái của Quitessence nằm trong miền− ≤1 ωφ ≤1
Mật độ năng lượng ρ trong mô hình Quitessence được biểu diển theo ω và a(t) bằng φ
cách lấy tích phân phương trình liên tục:
a
φ
ρ ρ= ⎡⎢− +ω ⎤⎥
⎣ ∫ ⎦ (2.10)
Phương trình (2.10) cho thấy nếu xác định cụ thể phương trình trạng thái của trường Quintessence, ta có thể xác định được sự tiến triển của mật độ năng lượng ρ của trường
theo hệ số kích thước vũ trụ a(t)
• Trường hợp φ& 2 V( )φ khi đó ( )
( )
2
2
2
1 2
V V
φ
ω
−
+
&
& kết hợp với (2.10) ta được
ρ ρ= = , tức là mật độ năng lượng không phụ thuộc vào hệ số kích thước
a(t) cũa vũ trụ
• Trường hợp φ& 2 V( )φ khi đó ( )
( )
2
2
2
1 2
V V
φ
ω
−
+
&
& kết hợp với (2.10) ta được 6
0a
ρ ρ= −
• Trong các trường hợp khác khi− <1 ωφ <1 thì mật độ năng lượng ρ∝a−m, 0 < <m 6
Trang 10Bài tiểu luận cuối học phần Nguyễn Quốc Trị
Ta đã biết sự giản nở tăng tốc xảy ra khi 1
3
φ
hợp trên ta suy ra khi 1 1
3
φ
ω
− ≤ ≤ − thì vũ trụ xuất hiện sự giản nở tăng tốc và mật độ năng lượng lúc đó ρ∝a−mvới 0 ≤ ≤m 2
2.2 Trường Tachyon
Trường Tachyon tác động như một nguồn của năng lượng tối phụ thuộc vào một dạng thế thích hợp Hàm tác dụng cho trường Tachyon được đề nghị bởi Sen có dạng:
2
2
p M
Với V( )φ là thế Tachyon, φ là trường Taychyon liên kết với trườnng hấp dẫn, Mp là khối lượng Plank và R là độ cong vô hướng Tenxơ năng xung lượng của trường có dạng:
1 1
V
g
α β
φ φ
∂ ∂
+ ∂ ∂ (2.12)
2
1
dr
−
00 1
g = − , ∂ =iφ 0,
(i= 1, 2,3)ta thu được:
- Mật độ năng lượng trường Tachyon:
( )
2
1
ρ
φ
=
− & (2.13)