1. Trang chủ
  2. » Giáo án - Bài giảng

simulation of w dust transport in the kstar tokamak comparison with fast camera data

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Simulation of W Dust Transport in the KSTAR Tokamak Comparison with Fast Camera Data
Tác giả A. Autricque, S.H. Hong, N. Fedorczak, S.H. Son, H.Y. Lee, I. Song, W. Choe, C. Grisolia
Trường học Korea Advanced Institute of Science and Technology
Chuyên ngành Plasma Physics, Fusion Energy
Thể loại Research Article
Năm xuất bản 2016
Thành phố Daejeon
Định dạng
Số trang 6
Dung lượng 1,69 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In Section 2 , the DUMPRO DUst Movie PROcessing routines developedat CEAto extract dust trajectoriesis presented.In the case of intrinsic dust, the experimental data obtained by image pr

Trang 1

ContentslistsavailableatScienceDirect

journalhomepage:www.elsevier.com/locate/nme

A Autricquea ,∗, S.H Hongb , N Fedorczaka , S.H Sonb , H.Y Leec ,d , I Songc ,d , W Choec ,d ,

C Grisoliaa

a CEA, IRFM, Saint-Paul-Lez-Durance,F-13108, France

b National Fusion Research Institute, 113 Gwahangno, YuSung-Gu, Daejeon 305-333, Republic of Korea

c Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

d Impurity and Edge plasma Research Center, KAIST, Daejeon 34141, Republic of Korea

a r t i c l e i n f o

Article history:

Received 13 July 2016

Revised 8 November 2016

Accepted 9 November 2016

Available online xxx

a b s t r a c t

Inthispaper, dusttransportin tokamakplasmas isstudied throughbothexperimentaland modeling aspects Image processing routines allowing dust tracking on CCD camera videos are presented The DUMPRO(DUst MoviePROcessing)code featuresadustdetectionmethodand atrajectory reconstruc-tionalgorithm.Inaddition,adusttransportcodenamedDUMBO(DUstMigrationinaplasmaBOundary)

isbrieflydescribed.IthasbeendevelopedatCEAinordertosimulatedustgrainstransportintokamaks andtoevaluatethecontributionofdusttotheimpurityinventoryoftheplasma.Likeotherdust trans-portcodes,DUMBOintegratestheOrbitalMotionLimited(OML)approachfordust/plasmainteractions modeling OMLgivesdirectexpressionsforplasmaionsand electronscurrents,forcesand heatfluxes

onadustgrain.Theequationofmotionis solved,giving accesstothe dusttrajectory.Anattempt of modelvalidationismadethroughcomparisonofsimulatedandmeasuredtrajectoriesonthe2015KSTAR dustinjectionexperiment,whereWdustgrainsweresuccessfullyinjectedintheplasmausinga gun-typeinjector.Thetrajectoriesoftheinjectedparticles,estimatedusingtheDUMPROroutinesappliedon videosfromthefastCCDcamera inKSTAR,showtwo distinctgeneraldustbehaviors,duetodifferent dustsizes SimulationsweremadewithDUMBOtomatchthe measurements.Plasmaparameterswere estimatedusingdifferentdiagnosticsduringthedustinjectionexperimentplasmadischarge.The exper-imentaltrajectoriesshowlongerlifetimesthanthesimulatedones.Thiscanbeduetothesubstitution

ofaboiling/sublimation pointtotheusualvaporization/sublimation cooling,OMLlimitations(eventual potentialbarriersinthevicinityofadustgrain areneglected)and/ortothelackofavaporshielding modelinDUMBO

© 2016TheAuthors.PublishedbyElsevierLtd ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Dust will be a critical issue for futurefusion devicessuch as

ITER Generated throughvarious processesrelatedto plasma/wall

interactions,dustgrainsareanimportantsourceofimpurities

hav-ing well known consequences in terms of radiative losses and

plasmainstabilitiesgeneration[1] DustcanbeobservedusingCCD

camerasastheyinteractwiththeplasma, throughrecycling

pho-tonemissionandthermalemissivity.Camerasprovidewithvideos

onwhichimageprocessingroutinescanbeappliedinorderto

de-tectdusteventsandmeasuredusttrajectories

∗ Corresponding author

E-mail address: adrien.autricque@cea.fr (A Autricque)

In Section 2 , the DUMPRO (DUst Movie PROcessing) routines developedat CEAto extract dust trajectoriesis presented.In the case of intrinsic dust, the experimental data obtained by image processingis delicate to analyze,since a dust trajectory depends

onthedustmaterial,temperature,sizeandelectriccharge,among others.Dustinjectionwasperformedinseveraltokamaksand al-lowsconstrictionofsome oftheseparameters.Severalcodes ded-icatedtothe modelingofdusttransportinplasmasalreadyexist, namelyMIGRAINe[2] ,DUSTT[3] andDTOKS[4] ,amongothers

InSection 3 ,thenewlydevelopedDUMBO(DUstMigrationina plasmaBOundary) codewillbe briefly presented.Theaimofthis workistopreparefortheinstallationofa dustgun-typeinjector

onthe WESTtokamak,aswell asthe image processingand sim-ulationtoolsdevelopedfordataanalysis.Sincetheinjector design

issimilar to that ofthe KSTARdustinjector [5] , the2015 KSTAR http://dx.doi.org/10.1016/j.nme.2016.11.012

2352-1791/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Pleasecitethisarticleas:A.Autricqueetal.,SimulationofW dusttransportintheKSTARtokamak,comparisonwithfastcameradata,

Trang 2

example,inSection 4

2 DUMPRO: the image processing code

Intokamakoperation,thecommonlyuseddiagnostictoobtain

measurements on in-vessel dust transport is CCD cameras They

providewithRGB(Red-Green-Blue)videosthat need further

pro-cessingfordusteventstobedetected.Inthissection aredetailed

theDUMPRO(DUstMoviePROcessing)routinesusedtodetectdust

eventsonvideosandreconstructdusttrajectories

The firststepistoisolatethedusteventsappearingonframe

Ablackandwhite(BW)videoiscomputedfromtherawRGBdata

usinganoperationsequencesimilartothatdescribedin[6] :

gray-scale conversion, logical filtering (for pixel-size noise reduction),

backgroundremoval,BWconversion.Thelatterpreprocessingstep

differsfromthe usualpixel intensitythresholdingused toisolate

dust eventsin previous works [7,8] A peak detection method is

appliedtoeachpixeltemporalsignal, noted (t, x),wherexisthe

pixellocationonframeandtisthetime.Ashiftedsignal sh(t, x)is

createdasfollows: sh(t , x)= (t+dt , x+dx)+ds ,where dxisof

theorderofafewpixels,dtafewtimeindicesanddsisafraction

ofthepeakintensity.Peaksarelocatedwhereand/orwhen > sh

This method shows better results on movies with varying

back-groundssince onlysudden events are detected,whereas a brutal

thresholdcould keepsome long lastingelementsthe background

suppressionstepcould not deleteproperly, suchashot spots

ap-paritionorplasmaemissionchanges.DUMPROincludesother

fea-tures,suchasframevibrationcompensation,whichwerenotused

fortheresultspresentedinthispaper

The secondstepconsistsinassociatingthepreviouslydetected

dust events together to reconstruct trajectories The algorithm

worksusinga recurrence methodover time:given adust

trajec-toryreconstructeduntiltheframet0,aprobabilityisassociatedto

everydustdetected onthenextframet0+dt tobe thefollowing

point.Ifthemostprobabledustonframe(t0+dt)hasaprobability

overagiventhreshold,the pointis addedtothe trajectory,

mak-ing this method fully automatic Later on, two successive points

on a dust trajectory will be referred to as parent andchild,

re-spectively.InDUMPRO,theprobabilityformulathatdrivesthe

par-ent/childassociationdependsontwo parameters:(i)the distance

betweenpotentialparentandchild:sinceadustmotionismostly

inertia driven, its velocity vector norm and orientation changes

ratherslowlywithrespecttotheframerateofafastCCDcamera

(∼200HzinthecaseoftheTV2camera inKSTAR).Thus the

dis-tancebetweentwoconsecutivepointsonatrajectoryrecordedby

aCCDcamera mustnot changetoo drastically.(ii) Thedifference

inapparentsizeofthepotential parentandchild:similarlytothe

previous point, dust temperature and size evolutions are rather

slow processes compared to the frame rate of a fast CCD

cam-era.Hereiswherethealgorithmdiffersfrompreviousworks[7,8] ,

whichdidnottakeintoaccountthedustapparentsize.Letus

con-sideraBW videocontainingdusteventsandadusttrajectory

re-constructeduntilframet0.Letibethefinalpointofthetrajectory,

onframet0,andjadustlocatedonframet0+dt.Theprobability

forjtobethechildofiiswrittenasfollows:

P(i , j)=α



cosθi , j+1

2



× Gdist



d i , j

+α2× Gsize



s i , j

(1)

whereαi are weights, usually set asα1=5/6 andα2=1/6, d i, j

and i, j are the distance and apparent size difference between i

andj, respectively, Gk are Gaussian functionswithparameters to

be chosen (center andwidth), andθi, j is the anglebetweenthe

vectorslinking the parentofi toi andi toj.Thecenters ofGdist

andGsizearetheaveragedistanceandapparentsizedifference

be-tweentwosuccessivepointsofthedusttrajectoryup toframe t0,

Fig. 1 Map of the probability to find a dust position on frame t 0 + dt, given its

position at times t 0 ( i ) and t 0 − dt (Parent of i )

respectively.ThewidthsofGdist andGsizeareparameters depend-ingonthe cameraresolution,usuallyafew pixels.Fig 1 givesan overviewofthe probabilitycomputationinDUMPRO:anexample

oftrajectoryisplottedoverprobabilityvaluesforeachpixelofthe frame

ResultsofDUMPROroutinesare giveninFig 3 (b)foramovie fromthe2015 KSTARdust injectionexperiment Bluecircles rep-resentingthedetecteddusteventsonthewholevideoareplotted overthesuperimposedframeandbluelinesshowthetrajectories reconstructedbythealgorithm

3 DUMBO: the dust transport code

In parallel to the image processingroutines, a dust transport simulationcodehasbeendevelopedatCEA.NamedDUMBO(DUst MigrationinaplasmaBOundary),itisbasedontheOrbitalMotion Limited (OML) approach [9] Like in other dust transport codes, OMLexpressions are implemented fora spherical dustgrain and Maxwellian distributions for plasma particles energy, taking into accountameanflowvelocityinthecaseofions[10] The plasma background necessary to compute plasma/dust interactions is an input to DUMBO It can be obtained either by plasma modeling codessuchasSOLEDGE-2D[11] orbyexperimentalmeasurements [12] Theaimofthepresentsectionistogive aquickoverviewof themodelimplementedinDUMBO.Moredetailswillbepresented elsewhere

3.1 Dust charging

Adust grainimmersedin aplasmachargesup tothe floating potential φd,whichis determinedbysolving thecurrentbalance Plasmaelectronandioncurrents,notedJ iandJ e,aregivenbyOML [10] DUMBOalsotakesintoaccount secondaryelectron emission (SEE)andthermionicemission(TH)effects

The SEE yield δsee is computed using the Young–Dekker for-mula,sinceitwasshowntogive moreaccurateresultsat scrape-off layer (SOL)relevant energies than the Sternglass one [13] ,and

is integratedoverthe electron incidenceangleand aMaxwellian distribution.Thus δsee dependsmainlyon theincomingelectrons energy (i.e the electron temperature T e), the dust material and

φd.Similar expressions tothat ofMIGRAINe are implemented in DUMBO forφd ≤ 0[2] Inthe case φd ≥ 0,secondary electrons areassumedtobereabsorbedbytheattractinggrain,resultingin

δsee=0

THdesignatesthe electronemission generatedbythe temper-ature increase of a material The thermionic current J th depends

Trang 3

on the dust material, temperature and φd and is given by the

Richardson–Dushmanformula[14]

Thecurrentbalancecanthenbesolvedtofindφd:

The dust electriccharge Q d is calculated usingthe expression

Q d=4π0dφd,where0 isthepermittivityofvacuumand dthe

dustradius[15]

3.2 Equation of motion

Amongstthemanyforcesactingonadustgrainimmersedina

plasma,threearekeptintheDUMBOmodel:theLorentzforce,the

gravity andthe iondrag force F id,whose expression comes from

theOMLtheory[2] Theequationofmotioniswritten:

M ddVd

where M d is the dust mass, V d its velocity, E and B are the

lo-calelectricandmagneticfields,respectively,and g isthe

accelera-tionofgravity.Theiondragforceisusuallythemainforce acting

ondustgrains.Nevertheless,thedustradius d playsanimportant

role intheamplitudeoftheseforces:giventhat F id ∼ r2

d , Q d ∼ r d

and M d ∼ r3

d (neglecting thedependance ofφd on d), it appears

thatgravityplaysanimportantroleforlargegrains

3.3 Dust heating

Theheatingequationiswrittenasfollows:

M d c pdT d

where T d is the dust temperature, p is the T d dependent heat

capacityand Q k are thedifferentheat fluxesimpacting the grain

[15] Q i and Q e are the plasma ions and electrons heat fluxes,

respectively Their expressions come from the OML theory, the

latter being generally the main source of dust heating Q see and

Q th are the secondary and thermionicelectron heat fluxes, given

by theYoung–Dekker andRichardson–Dushman formulas,

respec-tively.Q raddesignstheblackbodyradiationandQ recisthe

recom-binationheatflux.Collectedionsareassumedtorecombineonthe

dustsurfaceandformdihydrogenmoleculesbeforebeingreleased

intotheplasma.Heatfluxesduetootherspeciesarenottakeninto

account,sincetheyhavelowerdensitiesandcarrylessenergy

Va-porizationcoolingisneglected andreplacedbyaT dsaturationon

phasetransitions,whilsttheincomingheatingpowerisdirectedto

thisphasechange

3.4 Mass loss

Whilstinteractingwiththeplasma,adustgrainlosesmassdue

tophysicalsputtering,vaporization/sublimationand,insomecases,

chemicalsputtering.InDUMBO,themasslossequationiswritten:

dM d

dt





sput

dt





vap

(5)

where dM d

dt |sput is the mass loss due to sputtering The

expres-sions from Behrisch and Eckstein, considering different

impact-ing ions with different energies on different target materials,

are implemented in DUMBO [16] The variation of the

sputter-ing yield with the angle of incidence and the energy

distribu-tionfunctionoftheincomingparticlesistakenintoaccount,

sim-ilarly to what is done in MIGRAINe [2] dM d

dt |vap is the vapor-ization/sublimation massloss,expressed withtheHertz–Knudsen

formula[17]

Fig 2 KSTAR dust injection setup: (a) Injection point location in a poloidal section;

(b) Gun-type injector design [5] ; (c) MEB image of the injected W powder

4 Application to the 2015 KSTAR dust injection experiment

Comparingintrinsicandsimulated dusttrajectories isdelicate since CCD camerasdo not give access to importantdust param-eters on which the trajectory depends strongly, such as d , T d, the dust material and distance to the camera A way to con-strain some parameters iscontrolled dust injection Such experi-mentshavebeenperformedonvarioustokamaks(DIII-D,TEXTOR, NSTX,MAST,amongothers)duringthelastdecade.Detailsare pre-sentedin [18] andthe references therein.This section will focus

onthe dustinjectionexperimentperformedin KSTARduringthe

2015 campaign, the application of the DUMPRO routines on the video recorded by a fast visible camera and the comparison be-tweenmeasureddusttrajectoriesandsomesimulatedones gener-atedwithDUMBO

4.1 Dust injection experiment in KSTAR

During the 2015 campaign in KSTAR, dust injection was per-formed using a gun-type injector, whose design is shown in Fig 2 (b).Thechosen powder fallsfromthestoragereservoir into the canon by gravity and is propelled into the plasmaby a pis-ton,whichisputintomotionbyapiezo-electric motor.More de-tailsonthe KSTARgun-typeinjector canbe found in[5] The in-jectionpoint waslocated slightly below the outer mid plane, as shownin Fig 2 (a), andthe injectionvelocity wasa few m/s, di-rectedinwards.Theinjectedamountwas∼2mgofWpowderper shot.Thegrainssizedistributioniswide,rangingfrom∼10μ mup

to∼100μ m.AMEBimage inFig 2 (c)showsthat dustgrainsare

Trang 4

Fig. 3 Application of the DUMPRO routines on the KSTAR #13101 TV2 video: (a) Frame at t = 4 836 s with the DUMPRO region of interest in red; (b) Dust trajectories (blue)

reconstructed on the whole video over the superimposed frame, zoomed in the region of interest, with the two dust behaviors, case 1 and case 2 , underlined in green (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mostlyaccretedintoclustersof∼100μ msizeandirregularshape

Injected dust trajectories were recorded by the fast CCD visible

camerainstalledinKSTAR.Fig 3 (a)showsasnapshotofthevideo

TheseveralmilligramsofWpowderinjected heatupupon

enter-ingtheSOLandstartemittinglightinthevisiblespectrum,

gener-atingthebrightregionlocatedintheredsquareinFig 3 (a)

4.2 Image processing using DUMPRO

TheDUMPROroutineswereappliedtothevideoinordertoget

thedust trajectories.Results found bythe algorithm canbe seen

inFig 3 (b).Detecteddusttrajectoriesareplottedinblueoverthe

superimposedframeofthewhole video.Fromtheimage

process-ingresults,twodistinctdustbehaviorswereobserved.First,alarge

whitecloud fallsfromthe dustinjectionpoint towardsthe

diver-torregion Labeledascase 1,this maintrajectory corresponds to

thepowderthatjustleft theinjectorandfallsdownwardsdueto

gravity.This behavior isconsistent withtheDUMBO modelsince

theinjectedWpowderisaccretedinto∼100μ mclusters,asizefor

whichgravityisthedominantforce.Littletonotoroidalmotionis

seen onthe video At the end ofthe case 1trajectory, dust gets

closerto the wall andcools down enough to stop emitting light

inthevisiblespectrum,andtheydisappearfromthevideo.During

theendofthecase 1trajectory, otherdustgrainsareobservedon

thebottom-left corner ofFig 3 (b),beingmore isolated and

hav-ing a toroidal motion These dust trajectories will be labeled as

case 2 Assuming that they have a radius of ∼10μ m, the

domi-nantforce actingon themwillbe the iondrag,which isroughly

orientedalongthemagneticfieldlines

The dust grainsfromcase 2can eitherbe the resultofgrains

fromcase 1havingexperienced abouncing dust/wallcollision, or

grainsthat wereisolated fromthe dustcluster ofcase 1 atsome pointduringitsfallingtowardsthedivertor.Inbothcasesitisnot illegitimateto considerthat thetrajectoriesincase 2are isolated

∼10μ m dust grainssince the ∼100μ m size clustersfromcase 1

could be broken upon the eventual dust/wall collision or simply duetointernalforces.Sincetheendofthecase 1trajectorycannot

be observed withthe CCDcamera dueto toolow dust tempera-ture,noconclusionscanbemadeonthispoint andcases 1and2

willbetreatedseparatelylateron

4.3 Comparison with DUMBO simulations and discussion

Comparisonof observeddusttrajectorieswithsimulations has alreadybeenperformedonMAST[19] ,LHD[20] andTEXTOR[21] , usingstereoscopicobservationsinthelattercase.Since no binoc-ular view is available in KSTAR, the dust trajectories given by DUMPRO are 2D, result of 3D trajectories projected in the cam-erasensorplane Inordertocomparewithsimulateddust trajec-tories generatedwith DUMBO,3D trajectories are recreatedfrom themeasured 2D onesby assuming the following:(i) ForCase 1, since thedust areheavy ( d ∼100μ m) andhave agravity driven motion,we assume the trajectory to remain ata chosen toroidal angle.(ii) Concerning Case 2,dust grainsare lighter (d ∼10μ m) andhave an ion dragforce driven motion,which is roughly ori-entedalong themagneticfieldlines.Thus weassume thedustto remaininachosenfluxtube.Thetoroidalanglewherethecase 1

trajectorywasplacedwaschosen inawaythatitremainsmostly

intheSOL withoutcrossing thewall surface.The case 2 trajecto-rieswere placedonfluxtubes asfaraspossiblefromthe plasma corewhileensuringtheexistenceofasolution

Trang 5

Fig. 4 T i (red) and n e (green) profiles at t = 6 4 s from charge exchange spec-

troscopy and line integrated density, respectively T e profile (blue) obtained by fit-

ting the T i one (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Note that in order to make this2D-to-3D extrapolation some

features ofthe CCDcamera must beknown: position inthe

ves-sel,focallength,sensorsize,amongothers.Asimplepinhole

cam-era model wasused,andthe camera parameters were chosen to

matchthe background(wall) frame asaccuratelyas possible

Re-sultsofthe2D-to-3Dextrapolationprocessareshownforthecase

1trajectoryandthreetrajectoriesfromcase 2inFig 5

For each of the four trajectories extrapolated in 3D from

the DUMPRO routines results, simulations were made using the

DUMBOcode.The plasmabackgroundwasdeterminedusing

sev-eral diagnosticson discharge#13101: EFIT data forthe magnetic

equilibrium and poloidal magnetic field, charge exchange

spec-troscopy forthe iontemperature(T i) profile,lineintegrated

den-sityfortheelectrondensity(n e).ProfileswereextendedintheSOL

usingexponentialdecaysrespectingaC1 matchwiththecore

pro-files The n e profile wasdetermined from the integrated density

using a square root profile in the core, andwe assumed T e=T i

Finally,quantitieswereassumedtoremainconstantoverflux sur-faces.Profilesforn eandT iareprovidedinFig 4 Thetoroidal mag-neticfieldwas∼3T,andtheplasmaionsflowvelocitymapcanbe seeninthebackgroundofFig 5 (a).Theionflowispredominantly parallel,eventhough E × Band∇B × Bdriftvelocitiesaretaken intoaccount

Inthe simulations, thedust grainswere initiatedatthe same location and with the same velocity vector asthe first point of eachexperimentaltrajectory.Theinitialdustradiiwere100μ mfor

case 1and10μ mforcase 2.ResultsareplottedinFig 5 alongwith theexperimentaltrajectoriesextrapolatedin3D Onecanseethat theagreementbetweenexperimentalandsimulatedtrajectoriesis satisfyingincase 1,sincetheyarebothdominatedbygravity Dis-crepancycanbeseenonthetoroidaltrajectory, sincetheiondrag force,whichisdominatedbygravityyetnotnegligible,pushesthe simulated dust in the toroidal direction, counter-clockwise Con-cerning case 2, if simulated trajectories seem close at first, they endupto bemuch shorterthantheexperimental ones This dis-crepancycanbeexplainedbyseveraleffects

First, some cooling mechanisms are not yet accounted for in DUMBO,since SEEisneglected for positivelycharged dustgrains andvaporization/sublimation latentheat cooling isreplaced with

aboiling/sublimationpoint.Theimplementationofthese phenom-enaisunderprogress

Second, it is known that the OML approach used in DUMBO (andotherdustsimulationcodes)presentsseverelimitations,since

it assumes the absence of barriers in the effective potential en-ergy Effectivepotential barrierscan trapa nonnegligible partof the slow incoming ions if d gets to the order of the screening length, which is ∼10μ m in our case[22] On the other hand,if theemittedelectronfluxgetsclosetotheincomingone,potential wellscanformandreducetheelectronemissionitself[1] Another OML limitationappears whilst plasma electrons become magne-tizedwithrespectto d:theirgyrationmotioninducesareduction

intheincomingelectron flux[23] Thesethreeeffectsare not ac-countedforinDUMBOandimpactthedustchargingandheating Third,inthe presentversionof thecode,thematerial ablated

orvaporized from thegrain does not affectit nor the surround-ingplasma.Tobeaccurate, theablatedmaterialcanformacloud

Fig 5 KSTAR dust injection experiment – comparison between dust experimental trajectories, reconstructed with DUMPRO, and simulated ones made with DUMBO: (a) in

a poloidal cross-section, above the ion flow velocity map, with the first wall geometry in white; (b) view from the top of the machine, with the first wall geometry at the mid plane in black

Trang 6

shieldingthe grainfromplasmaheat fluxes InRef [24] ,the dust

radiusabovewhichvaporshielding effectsbecomenonnegligible

wasshowntobe∼1μ m(forWandundertheplasmaparameters

relevantinthisstudy),whichis belowthe dustsizesused inour

simulations.Vaporshieldingmodelshaveshownareductionofthe

evaporationrateuptoanorderofmagnitude[25]

Still, this overheating tendency has been reported on other

codesbased on the samemodel, namelyDUSTT, DTOKSand

MI-GRAINe.The MIGRAINe code wasused tocompare withdust

in-jectedinTEXTOR.The dustgrainsweresmallerthaninourstudy

(<5μ m)andinjectedfromthetopofthemachine.Asimilar

over-heating trend was observed [21] Compensation for overheating

wasaccomplishedintheDUSTTcodebyincludingalarge

empiri-calreductioncoefficienttotheincomingheatflux[26] Concerning

DTOKS,largerdustsizeswereusedinthesimulationstoreproduce

accuratelytheexperimentaldustlifetimes[19]

5 Conclusions

Imageprocessingroutines(DUMPRO)havebeendevelopedand

allowdetectionofdusttrajectoriesonaCCDcameravideo.Adust

transport simulation code (DUMBO) for trajectories modeling is

alsoavailable 2D-to-3D extrapolation ofmeasured dust

trajecto-ries was applied in the KSTAR dust injection experiment

exam-ple, confirmingthat lighter W dust grainsare more sensitive to

theiondragforcethanlargerones.Comparisonbetween

measure-ments andsimulations showeddiscrepancies due to OML

limita-tionsand/ortothelackofavaporshieldingmodel.Improvements

ontheseaspectsarecompulsoryifDUMBOistobeusedtopredict

thebehaviorofinjecteddustintheWESTtokamak

Acknowledgment

This research was partially supported by Ministry of Science,

ICT,andFuturePlanningunderKSTARprojectandwaspartly

sup-ported by National Research Council of Science and Technology

(NST) under the international collaboration & research in Asian

countries(PG-1314)

References

[1] S.I Krasheninnikov , R.D Smirnov , D.L Rudakov , Plasma Phys Controlled Fusion

53 (8) (2011) 083001

[2] L Vignitchouk , P Tolias , S Ratynskaia , Plasma Phys Controlled Fusion 56 (9)

(2014) 095005

[3] A.Y Pigarov, S.I Krasheninnikov, T.K Soboleva, T.D Rognlien, Phys Plasmas 12 (2005) 122508 http://dx.doi.org/10.1063/1.2145157

[4] M Bacharis, M Coppins, J.E Allen, Phys Plasmas 17 (2010) 042505 http://dx doi.org/10.1063/1.3383050

[5] H.Y Lee, S.-H Hong, J Hong, S.H Lee, S Jang, J Jang, T Jeon, J.S Park, W Choe, Rev Sci Instrum 85 (2014) 11D862 http://dx.doi.org/10.1063/1.4886958 [6] S.-H Hong, C Grisolia, P Monier-Gabet, T.S Team, J Nucl Mater 390–391 (20 09) 10 0–102 http://dx.doi.org/10.1016/j.jnucmat.20 09.01.120

[7] N Endstrasser, F Brochard, V Rohde, M Balden, T Lunt, S Bardin, J.-L Bri- ançon, R Neu, J Nucl Mater 415 (1) (2011) S1085–S1088 http://dx.doi.org/10 1016/j.jnucmat.2010.07.045 Proceedings of the 19th International Conference

on Plasma-Surface Interactions in Controlled Fusion

[8] W.U Boeglin, A.L Roquemore, R Maqueda, Rev Sci Instrum 79 (10) (2008) http://dx.doi.org/10.1063/1.2965001

[9] H.M Mott-Smith, I Langmuir, Phys Rev 28 (1926) 727–763, doi: 10.1103/ PhysRev.28.727

[10] C.T.N Willis, M Coppins, M Bacharis, J.E Allen, Phys Rev E 85 (2012) 036403, doi: 10.1103/PhysRevE.85.036403

[11] H Bufferand, G Ciraolo, L Isoardi, G Chiavassa, F Schwander, E Serre, N Fe- dorczak, Ph Ghendrih, P Tamain, J Nucl Mater 415 (2011) S589–S592 http: //dx.doi.org/10.1016/j.jnucmat.2010.11.037

[12] J.P Gunn, R Dejarnac, P Devynck, N Fedorczak, V Fuchs, C Gil, A Kocan,

M Komm, M Kubic, T Lunt, A Monier-Garbet, J.Y Pascal, F Saint-Laurent, J Nucl Mater 438 (2013) S184–S188 http://dx.doi.org/10.1016/j.jnucmat.2013.01

055 [13] P Tolias , Plasma Phys Controlled Fusion 56 (12) (2014) 123002 [14] S Dushman, Rev Mod Phys 2 (1930) 381–476, doi: 10.1103/RevModPhys.2.381 [15] G.L Delzanno, X Tang, Phys Plasmas 21 (2014) 022502 http://dx.doi.org/10 1063/1.4864190

[16] R Behrisch, W Eckstein, Sputtering Part Bombardment, 110, Springer Berlin Heidelberg, 2007, doi: 10.1007/978- 3- 540- 44502- 9

[17] R Marek, J Straub, Int J Heat Mass Transfer 44 (2001) 39–53 http://dx.doi org/10.1016/S0017- 9310(00)00086- 7

[18] S Ratynskaia , C Castaldo , H Bergsåker , D Rudakov , Plasma Phys Controlled Fusion 53 (7) (2011) 074009

[19] G.D Temmerman , M Bacharis , J Dowling , S Lisgo , Nucl Fusion 50 (10) (2010)

105012 [20] M Shoji , H Kasahara , M Tokitani , T Seki , K Saito , S Kamio , R Seki , Y Tanaka ,

A Pigarov , R Smirnov , G Kawamura , H Tanaka , S Masuzaki , Y Uesugi , T Mu- toh , T.L.E Group , Nucl Fusion 55 (5) (2015) 053014

[21] A Shalpegin , L Vignitchouk , I Erofeev , F Brochard , A Litnovsky , S Bozhenkov ,

I Bykov , N den Harder , G Sergienko , Plasma Phys Controlled Fusion 57 (12) (2015) 125017

[22] V Fortov, A Ivlev, S Khrapak, A Khrapak, G Morfill, Phys Rep 421 (1–2) (2005) 1–103 http://dx.doi.org/10.1016/j.physrep.20 05.08.0 07

[23] V.I Demidov, S.V Ratynskaia, K Rypdal, Rev Sci Instrum 73 (10) (2002) 3409–3439 http://dx.doi.org/10.1063/1.1505099

[24] B.T Brown, R.D Smirnov, S.I Krasheninnikov, Phys Plasmas 21 (2) (2014) http: //dx.doi.org/10.1063/1.4866599

[25] S.I Krasheninnikov, E.D Marenkov, J Nucl Mater 463 (2015) 869–872 http: //dx.doi.org/10.1016/j.jnucmat.2014.10.077

[26] R.D Smirnov, S.I Krasheninnikov, A.Y Pigarov, A.L Roquemore, D.K Mans- field, J Nichols, J Nucl Mater 415 (1) (2011) S1067–S1072 http://dx.doi.org/10 1016/j.jnucmat.2011.01.004 Proceedings of the 19th International Conference

on Plasma-Surface Interactions in Controlled Fusion

Ngày đăng: 04/12/2022, 16:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm