In Section 2 , the DUMPRO DUst Movie PROcessing routines developedat CEAto extract dust trajectoriesis presented.In the case of intrinsic dust, the experimental data obtained by image pr
Trang 1ContentslistsavailableatScienceDirect
journalhomepage:www.elsevier.com/locate/nme
A Autricquea ,∗, S.H Hongb , N Fedorczaka , S.H Sonb , H.Y Leec ,d , I Songc ,d , W Choec ,d ,
C Grisoliaa
a CEA, IRFM, Saint-Paul-Lez-Durance,F-13108, France
b National Fusion Research Institute, 113 Gwahangno, YuSung-Gu, Daejeon 305-333, Republic of Korea
c Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
d Impurity and Edge plasma Research Center, KAIST, Daejeon 34141, Republic of Korea
a r t i c l e i n f o
Article history:
Received 13 July 2016
Revised 8 November 2016
Accepted 9 November 2016
Available online xxx
a b s t r a c t
Inthispaper, dusttransportin tokamakplasmas isstudied throughbothexperimentaland modeling aspects Image processing routines allowing dust tracking on CCD camera videos are presented The DUMPRO(DUst MoviePROcessing)code featuresadustdetectionmethodand atrajectory reconstruc-tionalgorithm.Inaddition,adusttransportcodenamedDUMBO(DUstMigrationinaplasmaBOundary)
isbrieflydescribed.IthasbeendevelopedatCEAinordertosimulatedustgrainstransportintokamaks andtoevaluatethecontributionofdusttotheimpurityinventoryoftheplasma.Likeotherdust trans-portcodes,DUMBOintegratestheOrbitalMotionLimited(OML)approachfordust/plasmainteractions modeling OMLgivesdirectexpressionsforplasmaionsand electronscurrents,forcesand heatfluxes
onadustgrain.Theequationofmotionis solved,giving accesstothe dusttrajectory.Anattempt of modelvalidationismadethroughcomparisonofsimulatedandmeasuredtrajectoriesonthe2015KSTAR dustinjectionexperiment,whereWdustgrainsweresuccessfullyinjectedintheplasmausinga gun-typeinjector.Thetrajectoriesoftheinjectedparticles,estimatedusingtheDUMPROroutinesappliedon videosfromthefastCCDcamera inKSTAR,showtwo distinctgeneraldustbehaviors,duetodifferent dustsizes SimulationsweremadewithDUMBOtomatchthe measurements.Plasmaparameterswere estimatedusingdifferentdiagnosticsduringthedustinjectionexperimentplasmadischarge.The exper-imentaltrajectoriesshowlongerlifetimesthanthesimulatedones.Thiscanbeduetothesubstitution
ofaboiling/sublimation pointtotheusualvaporization/sublimation cooling,OMLlimitations(eventual potentialbarriersinthevicinityofadustgrain areneglected)and/ortothelackofavaporshielding modelinDUMBO
© 2016TheAuthors.PublishedbyElsevierLtd ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Dust will be a critical issue for futurefusion devicessuch as
ITER Generated throughvarious processesrelatedto plasma/wall
interactions,dustgrainsareanimportantsourceofimpurities
hav-ing well known consequences in terms of radiative losses and
plasmainstabilitiesgeneration[1] DustcanbeobservedusingCCD
camerasastheyinteractwiththeplasma, throughrecycling
pho-tonemissionandthermalemissivity.Camerasprovidewithvideos
onwhichimageprocessingroutinescanbeappliedinorderto
de-tectdusteventsandmeasuredusttrajectories
∗ Corresponding author
E-mail address: adrien.autricque@cea.fr (A Autricque)
In Section 2 , the DUMPRO (DUst Movie PROcessing) routines developedat CEAto extract dust trajectoriesis presented.In the case of intrinsic dust, the experimental data obtained by image processingis delicate to analyze,since a dust trajectory depends
onthedustmaterial,temperature,sizeandelectriccharge,among others.Dustinjectionwasperformedinseveraltokamaksand al-lowsconstrictionofsome oftheseparameters.Severalcodes ded-icatedtothe modelingofdusttransportinplasmasalreadyexist, namelyMIGRAINe[2] ,DUSTT[3] andDTOKS[4] ,amongothers
InSection 3 ,thenewlydevelopedDUMBO(DUstMigrationina plasmaBOundary) codewillbe briefly presented.Theaimofthis workistopreparefortheinstallationofa dustgun-typeinjector
onthe WESTtokamak,aswell asthe image processingand sim-ulationtoolsdevelopedfordataanalysis.Sincetheinjector design
issimilar to that ofthe KSTARdustinjector [5] , the2015 KSTAR http://dx.doi.org/10.1016/j.nme.2016.11.012
2352-1791/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Pleasecitethisarticleas:A.Autricqueetal.,SimulationofW dusttransportintheKSTARtokamak,comparisonwithfastcameradata,
Trang 2example,inSection 4
2 DUMPRO: the image processing code
Intokamakoperation,thecommonlyuseddiagnostictoobtain
measurements on in-vessel dust transport is CCD cameras They
providewithRGB(Red-Green-Blue)videosthat need further
pro-cessingfordusteventstobedetected.Inthissection aredetailed
theDUMPRO(DUstMoviePROcessing)routinesusedtodetectdust
eventsonvideosandreconstructdusttrajectories
The firststepistoisolatethedusteventsappearingonframe
Ablackandwhite(BW)videoiscomputedfromtherawRGBdata
usinganoperationsequencesimilartothatdescribedin[6] :
gray-scale conversion, logical filtering (for pixel-size noise reduction),
backgroundremoval,BWconversion.Thelatterpreprocessingstep
differsfromthe usualpixel intensitythresholdingused toisolate
dust eventsin previous works [7,8] A peak detection method is
appliedtoeachpixeltemporalsignal, noted (t, x),wherexisthe
pixellocationonframeandtisthetime.Ashiftedsignal sh(t, x)is
createdasfollows: sh(t , x)= (t+dt , x+dx)+ds ,where dxisof
theorderofafewpixels,dtafewtimeindicesanddsisafraction
ofthepeakintensity.Peaksarelocatedwhereand/orwhen > sh
This method shows better results on movies with varying
back-groundssince onlysudden events are detected,whereas a brutal
thresholdcould keepsome long lastingelementsthe background
suppressionstepcould not deleteproperly, suchashot spots
ap-paritionorplasmaemissionchanges.DUMPROincludesother
fea-tures,suchasframevibrationcompensation,whichwerenotused
fortheresultspresentedinthispaper
The secondstepconsistsinassociatingthepreviouslydetected
dust events together to reconstruct trajectories The algorithm
worksusinga recurrence methodover time:given adust
trajec-toryreconstructeduntiltheframet0,aprobabilityisassociatedto
everydustdetected onthenextframet0+dt tobe thefollowing
point.Ifthemostprobabledustonframe(t0+dt)hasaprobability
overagiventhreshold,the pointis addedtothe trajectory,
mak-ing this method fully automatic Later on, two successive points
on a dust trajectory will be referred to as parent andchild,
re-spectively.InDUMPRO,theprobabilityformulathatdrivesthe
par-ent/childassociationdependsontwo parameters:(i)the distance
betweenpotentialparentandchild:sinceadustmotionismostly
inertia driven, its velocity vector norm and orientation changes
ratherslowlywithrespecttotheframerateofafastCCDcamera
(∼200HzinthecaseoftheTV2camera inKSTAR).Thus the
dis-tancebetweentwoconsecutivepointsonatrajectoryrecordedby
aCCDcamera mustnot changetoo drastically.(ii) Thedifference
inapparentsizeofthepotential parentandchild:similarlytothe
previous point, dust temperature and size evolutions are rather
slow processes compared to the frame rate of a fast CCD
cam-era.Hereiswherethealgorithmdiffersfrompreviousworks[7,8] ,
whichdidnottakeintoaccountthedustapparentsize.Letus
con-sideraBW videocontainingdusteventsandadusttrajectory
re-constructeduntilframet0.Letibethefinalpointofthetrajectory,
onframet0,andjadustlocatedonframet0+dt.Theprobability
forjtobethechildofiiswrittenasfollows:
P(i , j)=α1×
cosθi , j+1
2
× Gdist
d i , j
+α2× Gsize
s i , j
(1)
whereαi are weights, usually set asα1=5/6 andα2=1/6, d i, j
and i, j are the distance and apparent size difference between i
andj, respectively, Gk are Gaussian functionswithparameters to
be chosen (center andwidth), andθi, j is the anglebetweenthe
vectorslinking the parentofi toi andi toj.Thecenters ofGdist
andGsizearetheaveragedistanceandapparentsizedifference
be-tweentwosuccessivepointsofthedusttrajectoryup toframe t0,
Fig. 1 Map of the probability to find a dust position on frame t 0 + dt, given its
position at times t 0 ( i ) and t 0 − dt (Parent of i )
respectively.ThewidthsofGdist andGsizeareparameters depend-ingonthe cameraresolution,usuallyafew pixels.Fig 1 givesan overviewofthe probabilitycomputationinDUMPRO:anexample
oftrajectoryisplottedoverprobabilityvaluesforeachpixelofthe frame
ResultsofDUMPROroutinesare giveninFig 3 (b)foramovie fromthe2015 KSTARdust injectionexperiment Bluecircles rep-resentingthedetecteddusteventsonthewholevideoareplotted overthesuperimposedframeandbluelinesshowthetrajectories reconstructedbythealgorithm
3 DUMBO: the dust transport code
In parallel to the image processingroutines, a dust transport simulationcodehasbeendevelopedatCEA.NamedDUMBO(DUst MigrationinaplasmaBOundary),itisbasedontheOrbitalMotion Limited (OML) approach [9] Like in other dust transport codes, OMLexpressions are implemented fora spherical dustgrain and Maxwellian distributions for plasma particles energy, taking into accountameanflowvelocityinthecaseofions[10] The plasma background necessary to compute plasma/dust interactions is an input to DUMBO It can be obtained either by plasma modeling codessuchasSOLEDGE-2D[11] orbyexperimentalmeasurements [12] Theaimofthepresentsectionistogive aquickoverviewof themodelimplementedinDUMBO.Moredetailswillbepresented elsewhere
3.1 Dust charging
Adust grainimmersedin aplasmachargesup tothe floating potential φd,whichis determinedbysolving thecurrentbalance Plasmaelectronandioncurrents,notedJ iandJ e,aregivenbyOML [10] DUMBOalsotakesintoaccount secondaryelectron emission (SEE)andthermionicemission(TH)effects
The SEE yield δsee is computed using the Young–Dekker for-mula,sinceitwasshowntogive moreaccurateresultsat scrape-off layer (SOL)relevant energies than the Sternglass one [13] ,and
is integratedoverthe electron incidenceangleand aMaxwellian distribution.Thus δsee dependsmainlyon theincomingelectrons energy (i.e the electron temperature T e), the dust material and
φd.Similar expressions tothat ofMIGRAINe are implemented in DUMBO forφd ≤ 0[2] Inthe case φd ≥ 0,secondary electrons areassumedtobereabsorbedbytheattractinggrain,resultingin
δsee=0
THdesignatesthe electronemission generatedbythe temper-ature increase of a material The thermionic current J th depends
Trang 3on the dust material, temperature and φd and is given by the
Richardson–Dushmanformula[14]
Thecurrentbalancecanthenbesolvedtofindφd:
The dust electriccharge Q d is calculated usingthe expression
Q d=4π0dφd,where0 isthepermittivityofvacuumand dthe
dustradius[15]
3.2 Equation of motion
Amongstthemanyforcesactingonadustgrainimmersedina
plasma,threearekeptintheDUMBOmodel:theLorentzforce,the
gravity andthe iondrag force F id,whose expression comes from
theOMLtheory[2] Theequationofmotioniswritten:
M ddVd
where M d is the dust mass, V d its velocity, E and B are the
lo-calelectricandmagneticfields,respectively,and g isthe
accelera-tionofgravity.Theiondragforceisusuallythemainforce acting
ondustgrains.Nevertheless,thedustradius d playsanimportant
role intheamplitudeoftheseforces:giventhat F id ∼ r2
d , Q d ∼ r d
and M d ∼ r3
d (neglecting thedependance ofφd on d), it appears
thatgravityplaysanimportantroleforlargegrains
3.3 Dust heating
Theheatingequationiswrittenasfollows:
M d c pdT d
where T d is the dust temperature, p is the T d dependent heat
capacityand Q k are thedifferentheat fluxesimpacting the grain
[15] Q i and Q e are the plasma ions and electrons heat fluxes,
respectively Their expressions come from the OML theory, the
latter being generally the main source of dust heating Q see and
Q th are the secondary and thermionicelectron heat fluxes, given
by theYoung–Dekker andRichardson–Dushman formulas,
respec-tively.Q raddesignstheblackbodyradiationandQ recisthe
recom-binationheatflux.Collectedionsareassumedtorecombineonthe
dustsurfaceandformdihydrogenmoleculesbeforebeingreleased
intotheplasma.Heatfluxesduetootherspeciesarenottakeninto
account,sincetheyhavelowerdensitiesandcarrylessenergy
Va-porizationcoolingisneglected andreplacedbyaT dsaturationon
phasetransitions,whilsttheincomingheatingpowerisdirectedto
thisphasechange
3.4 Mass loss
Whilstinteractingwiththeplasma,adustgrainlosesmassdue
tophysicalsputtering,vaporization/sublimationand,insomecases,
chemicalsputtering.InDUMBO,themasslossequationiswritten:
dM d
dt
sput
dt
vap
(5)
where dM d
dt |sput is the mass loss due to sputtering The
expres-sions from Behrisch and Eckstein, considering different
impact-ing ions with different energies on different target materials,
are implemented in DUMBO [16] The variation of the
sputter-ing yield with the angle of incidence and the energy
distribu-tionfunctionoftheincomingparticlesistakenintoaccount,
sim-ilarly to what is done in MIGRAINe [2] dM d
dt |vap is the vapor-ization/sublimation massloss,expressed withtheHertz–Knudsen
formula[17]
Fig 2 KSTAR dust injection setup: (a) Injection point location in a poloidal section;
(b) Gun-type injector design [5] ; (c) MEB image of the injected W powder
4 Application to the 2015 KSTAR dust injection experiment
Comparingintrinsicandsimulated dusttrajectories isdelicate since CCD camerasdo not give access to importantdust param-eters on which the trajectory depends strongly, such as d , T d, the dust material and distance to the camera A way to con-strain some parameters iscontrolled dust injection Such experi-mentshavebeenperformedonvarioustokamaks(DIII-D,TEXTOR, NSTX,MAST,amongothers)duringthelastdecade.Detailsare pre-sentedin [18] andthe references therein.This section will focus
onthe dustinjectionexperimentperformedin KSTARduringthe
2015 campaign, the application of the DUMPRO routines on the video recorded by a fast visible camera and the comparison be-tweenmeasureddusttrajectoriesandsomesimulatedones gener-atedwithDUMBO
4.1 Dust injection experiment in KSTAR
During the 2015 campaign in KSTAR, dust injection was per-formed using a gun-type injector, whose design is shown in Fig 2 (b).Thechosen powder fallsfromthestoragereservoir into the canon by gravity and is propelled into the plasmaby a pis-ton,whichisputintomotionbyapiezo-electric motor.More de-tailsonthe KSTARgun-typeinjector canbe found in[5] The in-jectionpoint waslocated slightly below the outer mid plane, as shownin Fig 2 (a), andthe injectionvelocity wasa few m/s, di-rectedinwards.Theinjectedamountwas∼2mgofWpowderper shot.Thegrainssizedistributioniswide,rangingfrom∼10μ mup
to∼100μ m.AMEBimage inFig 2 (c)showsthat dustgrainsare
Trang 4Fig. 3 Application of the DUMPRO routines on the KSTAR #13101 TV2 video: (a) Frame at t = 4 836 s with the DUMPRO region of interest in red; (b) Dust trajectories (blue)
reconstructed on the whole video over the superimposed frame, zoomed in the region of interest, with the two dust behaviors, case 1 and case 2 , underlined in green (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
mostlyaccretedintoclustersof∼100μ msizeandirregularshape
Injected dust trajectories were recorded by the fast CCD visible
camerainstalledinKSTAR.Fig 3 (a)showsasnapshotofthevideo
TheseveralmilligramsofWpowderinjected heatupupon
enter-ingtheSOLandstartemittinglightinthevisiblespectrum,
gener-atingthebrightregionlocatedintheredsquareinFig 3 (a)
4.2 Image processing using DUMPRO
TheDUMPROroutineswereappliedtothevideoinordertoget
thedust trajectories.Results found bythe algorithm canbe seen
inFig 3 (b).Detecteddusttrajectoriesareplottedinblueoverthe
superimposedframeofthewhole video.Fromtheimage
process-ingresults,twodistinctdustbehaviorswereobserved.First,alarge
whitecloud fallsfromthe dustinjectionpoint towardsthe
diver-torregion Labeledascase 1,this maintrajectory corresponds to
thepowderthatjustleft theinjectorandfallsdownwardsdueto
gravity.This behavior isconsistent withtheDUMBO modelsince
theinjectedWpowderisaccretedinto∼100μ mclusters,asizefor
whichgravityisthedominantforce.Littletonotoroidalmotionis
seen onthe video At the end ofthe case 1trajectory, dust gets
closerto the wall andcools down enough to stop emitting light
inthevisiblespectrum,andtheydisappearfromthevideo.During
theendofthecase 1trajectory, otherdustgrainsareobservedon
thebottom-left corner ofFig 3 (b),beingmore isolated and
hav-ing a toroidal motion These dust trajectories will be labeled as
case 2 Assuming that they have a radius of ∼10μ m, the
domi-nantforce actingon themwillbe the iondrag,which isroughly
orientedalongthemagneticfieldlines
The dust grainsfromcase 2can eitherbe the resultofgrains
fromcase 1havingexperienced abouncing dust/wallcollision, or
grainsthat wereisolated fromthe dustcluster ofcase 1 atsome pointduringitsfallingtowardsthedivertor.Inbothcasesitisnot illegitimateto considerthat thetrajectoriesincase 2are isolated
∼10μ m dust grainssince the ∼100μ m size clustersfromcase 1
could be broken upon the eventual dust/wall collision or simply duetointernalforces.Sincetheendofthecase 1trajectorycannot
be observed withthe CCDcamera dueto toolow dust tempera-ture,noconclusionscanbemadeonthispoint andcases 1and2
willbetreatedseparatelylateron
4.3 Comparison with DUMBO simulations and discussion
Comparisonof observeddusttrajectorieswithsimulations has alreadybeenperformedonMAST[19] ,LHD[20] andTEXTOR[21] , usingstereoscopicobservationsinthelattercase.Since no binoc-ular view is available in KSTAR, the dust trajectories given by DUMPRO are 2D, result of 3D trajectories projected in the cam-erasensorplane Inordertocomparewithsimulateddust trajec-tories generatedwith DUMBO,3D trajectories are recreatedfrom themeasured 2D onesby assuming the following:(i) ForCase 1, since thedust areheavy ( d ∼100μ m) andhave agravity driven motion,we assume the trajectory to remain ata chosen toroidal angle.(ii) Concerning Case 2,dust grainsare lighter (d ∼10μ m) andhave an ion dragforce driven motion,which is roughly ori-entedalong themagneticfieldlines.Thus weassume thedustto remaininachosenfluxtube.Thetoroidalanglewherethecase 1
trajectorywasplacedwaschosen inawaythatitremainsmostly
intheSOL withoutcrossing thewall surface.The case 2 trajecto-rieswere placedonfluxtubes asfaraspossiblefromthe plasma corewhileensuringtheexistenceofasolution
Trang 5Fig. 4 T i (red) and n e (green) profiles at t = 6 4 s from charge exchange spec-
troscopy and line integrated density, respectively T e profile (blue) obtained by fit-
ting the T i one (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Note that in order to make this2D-to-3D extrapolation some
features ofthe CCDcamera must beknown: position inthe
ves-sel,focallength,sensorsize,amongothers.Asimplepinhole
cam-era model wasused,andthe camera parameters were chosen to
matchthe background(wall) frame asaccuratelyas possible
Re-sultsofthe2D-to-3Dextrapolationprocessareshownforthecase
1trajectoryandthreetrajectoriesfromcase 2inFig 5
For each of the four trajectories extrapolated in 3D from
the DUMPRO routines results, simulations were made using the
DUMBOcode.The plasmabackgroundwasdeterminedusing
sev-eral diagnosticson discharge#13101: EFIT data forthe magnetic
equilibrium and poloidal magnetic field, charge exchange
spec-troscopy forthe iontemperature(T i) profile,lineintegrated
den-sityfortheelectrondensity(n e).ProfileswereextendedintheSOL
usingexponentialdecaysrespectingaC1 matchwiththecore
pro-files The n e profile wasdetermined from the integrated density
using a square root profile in the core, andwe assumed T e=T i
Finally,quantitieswereassumedtoremainconstantoverflux sur-faces.Profilesforn eandT iareprovidedinFig 4 Thetoroidal mag-neticfieldwas∼3T,andtheplasmaionsflowvelocitymapcanbe seeninthebackgroundofFig 5 (a).Theionflowispredominantly parallel,eventhough E × Band∇B × Bdriftvelocitiesaretaken intoaccount
Inthe simulations, thedust grainswere initiatedatthe same location and with the same velocity vector asthe first point of eachexperimentaltrajectory.Theinitialdustradiiwere100μ mfor
case 1and10μ mforcase 2.ResultsareplottedinFig 5 alongwith theexperimentaltrajectoriesextrapolatedin3D Onecanseethat theagreementbetweenexperimentalandsimulatedtrajectoriesis satisfyingincase 1,sincetheyarebothdominatedbygravity Dis-crepancycanbeseenonthetoroidaltrajectory, sincetheiondrag force,whichisdominatedbygravityyetnotnegligible,pushesthe simulated dust in the toroidal direction, counter-clockwise Con-cerning case 2, if simulated trajectories seem close at first, they endupto bemuch shorterthantheexperimental ones This dis-crepancycanbeexplainedbyseveraleffects
First, some cooling mechanisms are not yet accounted for in DUMBO,since SEEisneglected for positivelycharged dustgrains andvaporization/sublimation latentheat cooling isreplaced with
aboiling/sublimationpoint.Theimplementationofthese phenom-enaisunderprogress
Second, it is known that the OML approach used in DUMBO (andotherdustsimulationcodes)presentsseverelimitations,since
it assumes the absence of barriers in the effective potential en-ergy Effectivepotential barrierscan trapa nonnegligible partof the slow incoming ions if d gets to the order of the screening length, which is ∼10μ m in our case[22] On the other hand,if theemittedelectronfluxgetsclosetotheincomingone,potential wellscanformandreducetheelectronemissionitself[1] Another OML limitationappears whilst plasma electrons become magne-tizedwithrespectto d:theirgyrationmotioninducesareduction
intheincomingelectron flux[23] Thesethreeeffectsare not ac-countedforinDUMBOandimpactthedustchargingandheating Third,inthe presentversionof thecode,thematerial ablated
orvaporized from thegrain does not affectit nor the surround-ingplasma.Tobeaccurate, theablatedmaterialcanformacloud
Fig 5 KSTAR dust injection experiment – comparison between dust experimental trajectories, reconstructed with DUMPRO, and simulated ones made with DUMBO: (a) in
a poloidal cross-section, above the ion flow velocity map, with the first wall geometry in white; (b) view from the top of the machine, with the first wall geometry at the mid plane in black
Trang 6shieldingthe grainfromplasmaheat fluxes InRef [24] ,the dust
radiusabovewhichvaporshielding effectsbecomenonnegligible
wasshowntobe∼1μ m(forWandundertheplasmaparameters
relevantinthisstudy),whichis belowthe dustsizesused inour
simulations.Vaporshieldingmodelshaveshownareductionofthe
evaporationrateuptoanorderofmagnitude[25]
Still, this overheating tendency has been reported on other
codesbased on the samemodel, namelyDUSTT, DTOKSand
MI-GRAINe.The MIGRAINe code wasused tocompare withdust
in-jectedinTEXTOR.The dustgrainsweresmallerthaninourstudy
(<5μ m)andinjectedfromthetopofthemachine.Asimilar
over-heating trend was observed [21] Compensation for overheating
wasaccomplishedintheDUSTTcodebyincludingalarge
empiri-calreductioncoefficienttotheincomingheatflux[26] Concerning
DTOKS,largerdustsizeswereusedinthesimulationstoreproduce
accuratelytheexperimentaldustlifetimes[19]
5 Conclusions
Imageprocessingroutines(DUMPRO)havebeendevelopedand
allowdetectionofdusttrajectoriesonaCCDcameravideo.Adust
transport simulation code (DUMBO) for trajectories modeling is
alsoavailable 2D-to-3D extrapolation ofmeasured dust
trajecto-ries was applied in the KSTAR dust injection experiment
exam-ple, confirmingthat lighter W dust grainsare more sensitive to
theiondragforcethanlargerones.Comparisonbetween
measure-ments andsimulations showeddiscrepancies due to OML
limita-tionsand/ortothelackofavaporshieldingmodel.Improvements
ontheseaspectsarecompulsoryifDUMBOistobeusedtopredict
thebehaviorofinjecteddustintheWESTtokamak
Acknowledgment
This research was partially supported by Ministry of Science,
ICT,andFuturePlanningunderKSTARprojectandwaspartly
sup-ported by National Research Council of Science and Technology
(NST) under the international collaboration & research in Asian
countries(PG-1314)
References
[1] S.I Krasheninnikov , R.D Smirnov , D.L Rudakov , Plasma Phys Controlled Fusion
53 (8) (2011) 083001
[2] L Vignitchouk , P Tolias , S Ratynskaia , Plasma Phys Controlled Fusion 56 (9)
(2014) 095005
[3] A.Y Pigarov, S.I Krasheninnikov, T.K Soboleva, T.D Rognlien, Phys Plasmas 12 (2005) 122508 http://dx.doi.org/10.1063/1.2145157
[4] M Bacharis, M Coppins, J.E Allen, Phys Plasmas 17 (2010) 042505 http://dx doi.org/10.1063/1.3383050
[5] H.Y Lee, S.-H Hong, J Hong, S.H Lee, S Jang, J Jang, T Jeon, J.S Park, W Choe, Rev Sci Instrum 85 (2014) 11D862 http://dx.doi.org/10.1063/1.4886958 [6] S.-H Hong, C Grisolia, P Monier-Gabet, T.S Team, J Nucl Mater 390–391 (20 09) 10 0–102 http://dx.doi.org/10.1016/j.jnucmat.20 09.01.120
[7] N Endstrasser, F Brochard, V Rohde, M Balden, T Lunt, S Bardin, J.-L Bri- ançon, R Neu, J Nucl Mater 415 (1) (2011) S1085–S1088 http://dx.doi.org/10 1016/j.jnucmat.2010.07.045 Proceedings of the 19th International Conference
on Plasma-Surface Interactions in Controlled Fusion
[8] W.U Boeglin, A.L Roquemore, R Maqueda, Rev Sci Instrum 79 (10) (2008) http://dx.doi.org/10.1063/1.2965001
[9] H.M Mott-Smith, I Langmuir, Phys Rev 28 (1926) 727–763, doi: 10.1103/ PhysRev.28.727
[10] C.T.N Willis, M Coppins, M Bacharis, J.E Allen, Phys Rev E 85 (2012) 036403, doi: 10.1103/PhysRevE.85.036403
[11] H Bufferand, G Ciraolo, L Isoardi, G Chiavassa, F Schwander, E Serre, N Fe- dorczak, Ph Ghendrih, P Tamain, J Nucl Mater 415 (2011) S589–S592 http: //dx.doi.org/10.1016/j.jnucmat.2010.11.037
[12] J.P Gunn, R Dejarnac, P Devynck, N Fedorczak, V Fuchs, C Gil, A Kocan,
M Komm, M Kubic, T Lunt, A Monier-Garbet, J.Y Pascal, F Saint-Laurent, J Nucl Mater 438 (2013) S184–S188 http://dx.doi.org/10.1016/j.jnucmat.2013.01
055 [13] P Tolias , Plasma Phys Controlled Fusion 56 (12) (2014) 123002 [14] S Dushman, Rev Mod Phys 2 (1930) 381–476, doi: 10.1103/RevModPhys.2.381 [15] G.L Delzanno, X Tang, Phys Plasmas 21 (2014) 022502 http://dx.doi.org/10 1063/1.4864190
[16] R Behrisch, W Eckstein, Sputtering Part Bombardment, 110, Springer Berlin Heidelberg, 2007, doi: 10.1007/978- 3- 540- 44502- 9
[17] R Marek, J Straub, Int J Heat Mass Transfer 44 (2001) 39–53 http://dx.doi org/10.1016/S0017- 9310(00)00086- 7
[18] S Ratynskaia , C Castaldo , H Bergsåker , D Rudakov , Plasma Phys Controlled Fusion 53 (7) (2011) 074009
[19] G.D Temmerman , M Bacharis , J Dowling , S Lisgo , Nucl Fusion 50 (10) (2010)
105012 [20] M Shoji , H Kasahara , M Tokitani , T Seki , K Saito , S Kamio , R Seki , Y Tanaka ,
A Pigarov , R Smirnov , G Kawamura , H Tanaka , S Masuzaki , Y Uesugi , T Mu- toh , T.L.E Group , Nucl Fusion 55 (5) (2015) 053014
[21] A Shalpegin , L Vignitchouk , I Erofeev , F Brochard , A Litnovsky , S Bozhenkov ,
I Bykov , N den Harder , G Sergienko , Plasma Phys Controlled Fusion 57 (12) (2015) 125017
[22] V Fortov, A Ivlev, S Khrapak, A Khrapak, G Morfill, Phys Rep 421 (1–2) (2005) 1–103 http://dx.doi.org/10.1016/j.physrep.20 05.08.0 07
[23] V.I Demidov, S.V Ratynskaia, K Rypdal, Rev Sci Instrum 73 (10) (2002) 3409–3439 http://dx.doi.org/10.1063/1.1505099
[24] B.T Brown, R.D Smirnov, S.I Krasheninnikov, Phys Plasmas 21 (2) (2014) http: //dx.doi.org/10.1063/1.4866599
[25] S.I Krasheninnikov, E.D Marenkov, J Nucl Mater 463 (2015) 869–872 http: //dx.doi.org/10.1016/j.jnucmat.2014.10.077
[26] R.D Smirnov, S.I Krasheninnikov, A.Y Pigarov, A.L Roquemore, D.K Mans- field, J Nichols, J Nucl Mater 415 (1) (2011) S1067–S1072 http://dx.doi.org/10 1016/j.jnucmat.2011.01.004 Proceedings of the 19th International Conference
on Plasma-Surface Interactions in Controlled Fusion