Samples density, open and closed porosity and water absorption were estimated by Archimedes method [19].. 2 – W–H diagram of milled samples for calculation of crystalline sizes and mean
Trang 1w w w e l s e v i e r e s / b s e c v
Q1
Q2
a r t i c l e i n f o
Accepted24January2017
Availableonlinexxx
Keywords:
Sintering
Hardness
Nano-composite
SPS
Strength
Density
XRD
Wear
a b s t r a c t
Inthispaper,Al2O3–SiCcompositeswereproducedbySPSattemperaturesof1600◦Cfor
weresinteredinaSPSmachine.Aftersinteringprocess,phasestudies,densificationand mechanicalpropertiesofAl2O3–SiCcompositeswereexamined.Resultsshowedthatthe specimenscontainingmicro-sizedSiChaveanimportanteffectonbulkdensity,hardness andstrength.Thehighestrelativedensity,hardnessandstrengthwere99.7%,324.6HVand
2329MPa,respectively,inAl2O3–20wt%SiCmicrocomposite.Duetoshorttimesintering,the growthwaslimitedandgrainsstillremainedinnano-meterscale
©2017SECV.PublishedbyElsevierEspa ˜na,S.L.U.Thisisanopenaccessarticleunderthe
CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Producción de nano-composites – SiC–Al2O3por spark plasma sinterizado
Palabras clave:
Sinterización
Dureza
Nano-composite
SPS
Fuerza
Densidad
DRX
Desgaste
EnestetrabajosemuestrancompuestosdeAl2O3-SiCproducidosporSPS,envacío,a1.600◦C durante10min.Paralapreparacióndemuestras,semolieronpolvosdeAl2O3durante5h conlasegundafasedemicro-y-nanopolvodeSiC.Posteriormente,estospolvosmolidos
sesinterizaronmedianteSPS.Despuésdelprocesodesinterización,serealizaronestudios
defase,densificaciónypropiedadesmecánicasdeloscompuestosdeAl2O3-SiCobtenidos Losresultadosmostraronquemicro-SiCenlasmuestrastieneunefectoimportanteensu densidadaparente,durezayresistencia.Lamayordensidadrelativa,durezayresistencia fueronrespectivamentedel99,7%,324,6HVy2.329MPaparaAl2O3 conun20%enpeso micro-SiC.Debidoalcortotiempodesinterización,elcrecimientolosgranosfuelimitadoy
semantuvieronenescalananométrica
©2017SECV.PublicadoporElsevierEspa ˜na,S.L.U.Esteesunart´ıculoOpenAccessbajola
licenciaCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗ Corresponding author.
E-mailaddress:m-razavi@merc.ac.ir(M.Razavi)
http://dx.doi.org/10.1016/j.bsecv.2017.01.002
0366-3175/©2017SECV.PublishedbyElsevier Espa ˜na,S.L.U.Thisisanopen accessarticleundertheCCBY-NC-NDlicense (http:// creativecommons.org/licenses/by-nc-nd/4.0/)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Trang 2Introduction
Thermalandchemicalstability,relativelyhighstrength,
ther-Q3
advan-tages,lowfracturetoughnessofthismaterialleadtolimitation
ofitsapplication.Compositesareoneofthemethodswhich
overcometothislimitation.Inthistechniquealuminamatrix
isreinforcedbyparticlesorfibersassecondaryphase,which
canbemetal,polymerorceramic.Siliconcarbide(SiC)asa
ceramicmaterial canbe one ofthe option which leads to
improvementofaluminamatrix[6–10].Niharaetal.reported
thatsinteringofAl2O3–SiCcompositewasdonesuccessfully
They found out that adding a little amount of SiC to
alu-minamatrixcanimprovemechanicalpropertiesofcomposite
significantly in comparison with non-composite materials
Theyincreasedstrengthandfracturetoughnessfrom350to
1520MPaand3.5to4.8MPam1/2,respectivelybyadding5vol.%
SiC[11]
There are different methods of sinter this composite
Non-pressureandhotpresssinteringarethemostcommon
methodofsintering forthiscomposite, but newtechnique
whichisconsiderabletodayissparkplasmasintering (SPS)
[6,12–15] On the base of spark plasma, which is created
byapulsed directcurrent,SPSleadstoquickincreasingof
mold’sandthepowder’stemperature.Highheatingrate,using
pressure and electricalcurrent is the specifications ofthis
technique which distinguishthis technique in comparison
withothermethod.Inadditiontoreductionofparticle’s
coars-ening,highheatingrateincreasedcondensationthroughthe
eliminationofsurfacediffusionmechanismandcreatingof
extra driving force by high temperature gradient Pressure
applyingduringtheheatingcanincreasethedrivingforceof
processandfacilitatethesinteringprocess.Electricalcurrent
cancondensethepowderinmoldbycreatingofmanysparks
betweenparticlesandcreatingofplasmaenvironment.Effect
ofplasmaonsurface’s cleannessofparticles and
improve-mentofsintering processhasbeen reportedbyresearchers
[16–21]
SynthesisofAl2O3–SiCcompositebySPShasbeen
inves-tigatedbyafewresearchers[16,17],buttheeffectofparticle
sizeonthedensification,mechanicalandwearpropertieshas
notbeenreporteduntilnow.Sointhispapersintering
pro-cessandpropertiesofAl2O3matrixreinforcedbymicroand
nano-sizedSiCwillbeexamined
Experimental
Al2O3andSiCpowdersinmicroandnano-meterscalewith
purity99.8%,99.5%and99.9%andmeanparticlesizeof1.5m,
10mand 50nm, respectivelywere usedasraw materials
Al2O3 powder withtwo sourcesofSiC(microand nano as
systems1and2,respectively)powderweremilledina
plan-etaryballmill(asahighenergyballmill)for5hindistilled
water.Balltopowderratiowas10to1inalltests.Inthe
fol-lowing,preparedpowdersweresinteredinamoldwith8cmin
diameterunderspecificconditionsaccordingtoTable1bySPS T
◦C)
Soaking time
Al2
O3
∗Systems
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Trang 3machine.Thesinteringprocesswasdoneunderhighpulsed
directcurrent(1000–3500A)invacuum.Auniaxialpressureof
10MPawasusedduringthereactionandincreasedto20MPa
afterreachingtotheexpectedtemperatureandmaintained
duringholdingtime.Afterholdingtimetheuniaxialpressure
decreasedto10MPaandmaintainedduringcooling
Aftersinteringprocess,thesampleswerepolishedandcut
Inordertodetectofphasesinsample’sstructureand
eval-uateofpropertiesXRD (Siemens,30kV,25mA,CuK␣)was
used.Thecrystallitesizeandstrainwereevaluatedthrough
ScherrerandWilliamson–Hallmethodsapplyingthefollowing
equations[18]:
d= 0.9
bcos Scherrerequation
Bcos= 0.9
d +2sin Williamson-Hallequation
whereB,,,dandarethefullwidthofthepeakathalf
inten-sity(rad.),positionofpeakinthepattern(rad.),thewavelength
ofX-ray(nm),crystallinesize(nm),andmeaninternalstrain,
respectively
Samples density, open and closed porosity and water
absorption were estimated by Archimedes method [19]
Strengthofthesampleswasmeasuredthroughthreepoints
test.Fivesampleswithdimensionof3×4×45mmwere
pre-paredandaverageofstrengthreported[20].Hardnessofthe
samplewasdeterminedthroughVickersmethod.5testswere
doneforeachsampleandaverageofresultswerereported[21]
Microstructuresofmilledandsinteredsampleswerestudied
byscanningelectronmicroscope(Cambridgemodel).Finally,
wearresistanceofsampleswasdoneinordertodetermine
thewearproperties.Inthistestcompositesampleswereused
asapinandaluminawasusedasthedisc.Theforceonthe
pintipwas15.3N.Themachinewasstoppedinthedistances
of1000mandtheweightlossesofthesampleswerewiththe
accuracyof0.0001g[22]
Result and discussion
PatternsofX-raydiffractionofmilledpowdersareillustrated
inFig.1.Asitisseeninthesepatterns,millinghasnotled
tophasetransferinrawmaterials,andidentifiedphasesare
Al2O3 and SiC with1125-071-01 and 00-002-1048reference
code,respectively.Asit stands,byincreasingofSiCphase,
intensityoftheirpeakshasbeenincreased.Crystallinesize
(d)andmeanstrain()ofmilledpowderweremeasured.The
changesofB·costo2sinareseeninFig.2.Calculationresults
arebroughtinTable2, asit isseeninthistablecrystalline
sizeofmilledpowderinallcompoundsforbothphasesare
innano-meterscale.Thecrystallinesizesofmilledsamples
(whichallofthemhavebeentreatedinasimilarway)havea
rangebetween36and40nmand17and36nmforAl2O3and
SiCphases,respectivelyandnosignificantdifferencebetween
sizes.Asitstands,sizeofphasesinthesecondsystemisfiner
thanfirstsystem,thatcanbeattributedtotworeasons:the
firstoneisusingofSiCwithnanoscaleinthesecondsystem
andthenextoneisthepresenceofmorefinerSiCparticlesin
thesecondsystematequalweightfractionwhichcanoperate
asfineballsandfacilitateofmillingprocess.Theseparticles
increasesmillingenergyandleadtocrushofparticles[23]
Counts
10n
5n
20m
15m
5m
Position [º2Theta](copper (cu))
10m
Fig 1 – X-ray patterns of milled samples (*) Al 2 O 3 , (+) SiC.
SEMimageformmilledsamplesarepresentedinFig.3.Asit
isobviousinthisfigure,millingleadtodecreasingthesizeof particlesinbothsystemsandthemeanparticlesizesarein nanometerscale.Thesizeofparticlesinthesystem contain-ingnanoSiCarelowerthanthesystemwithoutthat
X-raypatternofsinteredsampleisbroughtinFig.4,asitis seen,thereisnochangeinphasesofsinteredsamplesandin milledsample(Fig.1 Al2O3andSiCareidentifiedphases.As
itisobviousinFig.5,theonlyconsiderablepointin compar-isonofthispatternwithmilledsamplepatternisincreasing
ofpeak’sintensityanddecreasingofpeak’swidthinsintered sample.Increasingoftemperatureduringthesintering can leadtogrowthofcrystalsandreducingofmeanlatticestrain
[24,25] Thechanges ofB·cos to 2sin insintered samplesare showninFig.6.Theresultsofthesecalculationsarebrought
in Table 2 As these calculations show, although the crys-tallinesizesareinnanometerscalewiththerangeof59–66nm and30–52nmforAl2O3andSiCphases,respectivelybut sin-tering leads togrowth of crystals and decreasing ofmean
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
Trang 40.005 0.01 0.015 0.02 0.025
1.4 1.2
1 0.8
0.6 0.4
2 sinθ
5m (Alumina) 10m (Alumina) 10m (Silicon carbide) 15m (Alumina) 15m (Silicon carbide) 20m (Alumina) 20m (Silicon carbide) 5n (Alumina) 10n(Alumina) 10n (Silicon carbide)
Fig 2 – W–H diagram of milled samples for calculation of crystalline sizes and mean strains of phases.
latticestrainslightly.Unlikecommonmethodsofsintering,
whichfollowextremegrowth,sinteringthoughSPShasalittle
growth,sothatthecrystalsareinnanoscaleyet.Whenthe
sintering(includingheatingandkeepingprocesses)is
com-pletedinafewminutes,thecrystalscouldbesmall[26]
The changes of sample’s thickness to time for sample
whichcontaindifferentamountofSiCincludethreezones
Atfirst,thetimeoflessthan35min,whichsamplehasbeen
heatedandhasalittleexpansion.Inthefollowingby
increas-ingthetemperature,sinteringprocessoccurredandsamples
werecontractedquicklyduringabout5minandthenchange
ofdisplacementwillbeconstant.Asitstands,thesintering processwascompletedattheendofsecondzoneand sam-plesweredense.Accordingtothechangesofsamplethickness andtemperatureversussinteringtimeplots,beginning tem-peratureofsintering(beginningofsecondzone)isdetermined ThisinformationisbroughtinTable3.Decreaseinthickness
ofthesamplesandthestartingofsecondzoneisduetothe overcomingofcontractionofsinteringonthermalexpansion
ofthesamples
Table 2 – Results of calculations of crystalline sizes and mean strain of milled and sintered samples.
Codeofsample Phase Crystallinesize(nm) Meanstrain(%) Usedmethod
Milled
samples
Sintered
samples
158
159
160
161
162
163
164
165
166
167
168 169 170 171 172 173 174 175 176 177
Trang 5Fig 3 – Microstructure of milled samples for 300 min (a) 10m sample and (b) 10n sample.
Asit isseen in Table 3, inthe first system by
increas-ingofSiCto10wt.%,beginningtemperatureofsinteringhas
beenincreasedandthendecreased.SiCwithhighermelting
pointthanAl2O3,increasethesinteringtemperatureofAl2O3
Counts
10n
5n
20m
15m
5m
Position [º2Theta](copper (cu))
10m
Fig 4 – X-ray patterns of sintered samples (*) Al 2 O 3 , (+) SiC.
But increasing ofSiC which has lower thermal expansion (TEC)coefficientincomparisonwithAl2O3leadsto decreas-ing ofthermal expansioncoefficientofcomposite (melting point and thermal expansionofAl2O3 and SiC are 2072◦C and8.1×10−6/Cand2730◦Cand4.0×10−6/C,respectively)
[27].Hencetheearlyexpansionhasbeendecreasedduringthe heatingandasaresultbeginningtemperatureofcontraction
isdecreasedtoo.So,after10msample,decreaseofsintering temperatureisseen.Thistreatmentissimilarlyseenin sec-ondsystemtoo.Onlyinthissystem,overcomingofthesecond phenomenontofirstoneisquickerthanandishappenedin lessamountofSiC
The changes ofrelativedensity ofsintered samplesfor the twosystemsare presentedinTable3.As itisobvious,
in system 1, addition ofdifferent amount of SiC to Al2O3
matrixleadstocompletingofsinteringandachievementto samples withnearlyfull density.Lower sintering tempera-ture, short temperature and holdingtimes have prepare it possibletoproducenano-compositeofSiC–Al2O3tonear the-oreticaldensitywithlittlecrystalgrowth[28].Toattainment fulldensitybycommonsinteringtechnique,higher tempera-tureandsoakingtimeisneeded.Shietal.succeededtosinter
Al2O3–SiC composite with relativedensity of100% via hot presstechniqueattemperature over1700◦C.Theyreported sintering byhot pressleaded toabnormalgrowth insome samples[29]
Against,presenceofnano-sizedSiCinsystem2couldnot obtainasamplewithhighdensity.Agreatdifferencebetween particle sizeofmatrix and the reinforcementphasein the second systemdecreased packingand leadstodecreaseof finaldensity.ThereisevidencewhenaSiCasfinecomponent are addedtotheAl2O3particles,itadheretothe large par-ticlesstronglyanddelaythepenetrationoffinecomponents
tothemixtures[30].Widedistributionofparticlesinsystem
2confirmsthis point(Fig.3b).Furthermore,asitisobvious
inTable3,byincreasingtheweightpercentofSiC,densityis decreased.Thiscouldbeduetothepoorsintering property
ofSiCatexaminedtemperaturesinthispaper.Similarresult wasreportedbyotherresearchers[29,31,32]
Fig.7showstheSEMimagesforthemicrostructureofthe sintered compacts There are twodifferent phases inboth
178
179
180
181
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
Trang 610n 5n
20m 15m 10m 5m
Intensity after milling (cts) 647.10 616.10 575.31 534.81 638.86 612.33 Intensity after sintering (cts) 659.99 622.22 582.11 561.88 648.64 622.74 FWHM after milling (2θ) 0.6085 0.6240 0.6331 0.6341 0.5384 0.5451 FWHM after sintering (2θ) 0.5112 0.5324 0.5347 0.5552 0.5434 0.5153
0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00
Fig 5 – The changes of intensity and full width at half maximum (FWHM) of alumina peak for milled and sintered samples (2 Â = 40–45 ◦ ).
systems,i.e.,darkandlightphase.AsitisseenfromFig.4and
asitwasdiscussedearlier,XRDpatternimpliedthattherewas
noreactionbetweentherawmaterials.SoAl2O3andSiCare
onlyphasesinsinteredsamples.Accordingtotheseimages,
SiCwithlowermassabsorptioncoefficientthanAl2O3aslight
anddarkphases,respectivelyweredispersedinthematrix
[33,34].AsitwascalculatedporositybyArchimedesmethod,
porositycanbeseeninmicrostructuralimagesofsamples
Theamountandsizesofporosityinsystem2ishigherthan system1
Flexural strength and hardness ofsintered samples are illustratedinFig.8.Asitstands,insystem1withadensity closetoeachother,theflexuralstrengthofsamplesincreased
by increasing the amount of SiC particles up to 10% and after that adding moreSiC could not increasethe flexural strength.WhentheweightpercentofSiCwasmorethan10,
0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019 0.021 0.023 0.025
1.4 1.2
1 0.8
0.6 0.4
2 sinθ
5m (Alumina) 10m (Alumina) 10m (Silicon Carbide) 15m (Alumina) 15m (Silicon Carbide) 20m (Alumina) 20m (Silicon Carbide) 5n (Alumina) 10n(Alumina) 10n (Silicon Carbide)
Fig 6 – W–H diagram of sintered samples for calculation of crystalline sizes and mean strains of phases.
223
224
225
226
227
228
229
230
231 232 233 234 235 236 237 238
Trang 7Fig 7 – Microstructure of sintered samples (a) 10m sample and (b) 10n sample.
Table 3 – Temperature of sintering with physical
properties of sintered samples.
Codeof
sample
Temperature
ofsintering (◦C)
Relative density(%)
Amount porosity(%)
Water absorption (%)
asuitabledistributionofthis phasecannotbeseen [32,35]
ExistenceofhardSiCparticleswithafinestructurecouldbe
improvethemechanicalproperties[36].Furthermore,dueto
residualstressfromthe mismatchofTECbetweenSiCand
Al2O3, matrix isunder thecompressive stress during cool-ing.So,existenceofSiCinthematrixofAl2O3increasesthe strength[37].AddinghardSiCasreinforcementphasetothe
Al2O3 matrix could increasethe hardness numbers signifi-cantly(hardnessofSiCandAl2O3are1175HVand2800HV)
[27].Sinceinsystem2achievementstosampleswithfull den-sitywerenothappening,flexuralstrengthandhardnesswere weakerthanspecimensoffirstsystem.Theporosityeffectson themechanicalpropertiesofceramicmaterialsmeaningfully
[29] Lossofweightinthesampleafterwearresistanceisseenin
Fig.9.DuetohighhardnessinsamplewhichcontainhardSiC, wearresistanceofthemareincreased.Duringdrysliding,the SiCparticlesdonoteasilycomeoutinthedebrisbecauseof theirreasonablygoodbondingwiththematrix.Bydecreasing theparticlesize,bondingtakesplacebetterandthewear resis-tanceincreases.Furthermore,theformationofoxidelayeron
350
300
250
200
150
100
50
0
2500
1500 2000
1000
500
0
Flexural strength (Mpa)
Hardness (HV)
Fig 8 – The changes of flexural strength and hardness of sintered samples.
239
240
241
242
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
Trang 82.95 3 3.05 3.1 3.15 3.2 3.25
0.5 1 1.5 2 2.5 3 3.5
20 15
10 5
0
Weight percent of SiC System 1 System 2
Fig 9 – The changes of weight of sintered samples during wear test.
thewearsurfaceofthecompositereducedwearresistance
Theseoxidesconsistofveryfinewithsizesofabout10–100nm
which havebeen compacted ontothe composite’s surface,
preexistingsurfaceoxidelayers,orcompressedcoarsewear
debris[38].Becauseoflowerdensityofsamplesinthesecond
system,wearpropertiesofthesesamplesarelowerthanthe
firstsystem
Conclusion
Al2O3–SiCcompositeswerepreparedsuccessfullybySPSwith
relativedensityof100%.Thecompositeswithdenser
struc-ture have higher flexuralstrength 293.1MPa and 2329 HV
ofthehighesthardnessandflexuralstrengthwereobtained
fromthesamplesreinforcedby10 and20wt.%SiC,
respec-tively.ByincreasingtheamountofSiC,flexuralstrengthwas
improvedfirstandthendecreasesbecauseofabad
distribu-tionofsecondedphaseinthematrix.Duetolowerdensity
insamplescontainingnano-sizedSiC,mechanicalproperties
wereweakerthanspecimensofthefirstsystem
r e f e r e n c e s
[1] R.Iglesias,M.Rivas,J.C.R.Reis,T.Iglesias,Permittivityand
electricconductivityofaqueousalumina(40nm)nanofluids
atdifferenttemperatures,J.Chem.Thermodyn.89(2015)
189–196
[2] R.H.Castro,Onthethermodynamicstabilityof
nanocrystallineceramics,Mater.Lett.96(2013)45–56
[3] J.Bai,X.Yang,S.Xu,Y.Shi,J.Yang,Fabricationofhighly
denseAl2O3ceramics,ScriptaMater.68(2013)393–395
[4]W.D.Callister,D.G.Rethwisch,MaterialsScienceand Engineering:AnIntroduction,Wiley,NewYork,2007
[5]S.Yoshioka,L.Boatemaa,S.vanderZwaag,W.Nakao,W.G Sloof,OntheuseofTiCashigh-temperaturehealing particlesinaluminabasedcomposites,J.Eur.Ceram.Soc.36 (2016)4155–4162
[6]B.Baron,C.Kumar,G.LeGonidec,S.Hampshire,Comparison
ofdifferentaluminapowdersfortheaqueousprocessing andpressurelesssinteringofAl2O3–SiCnanocomposites,J
Eur.Ceram.Soc.22(2002)1543–1552
[7]K.Niihara,A.Nakahira,T.Uchiyama,T.Hirai, High-temperaturemechanicalpropertiesofAl2O3–SiC cmposites,in:FractureMechanicsofCeramics,Springer,
1986,pp.103–116
[8]S.Grasso,T.Saunders,H.Porwal,B.Milsom,A.Tudball,M
Reece,FlashSparkPlasmaSintering(FSPS)of␣andSiC,J
Am.Ceram.Soc.99(2016)1534–1543
[9]C.Gutiérrez-González,M.Suarez,S.Pozhidaev,S.Rivera,P
Peretyagin,W.Solís,L.Díaz,A.Fernandez,R.Torrecillas, EffectofTiCadditiononthemechanicalbehaviourof
Al2O3–SiCwhiskerscompositesobtainedbySPS,J.Eur
Ceram.Soc.36(2016)2149–2152
[10]P.Mohanty,S.Mohapatra,J.Mohapatra,S.Singh,P.Padhi,D Mishra,Utilizationofchemicallysynthesizedfinepowders
ofSiC/Al2O3compositesforsintering,Mater.Manuf.Process
31(2016)1311–1317
[11]K.Niihara,Newdesignconceptofstructural ceramics–ceramicnanocomposites,NipponSeramikkusu KyokaiGakujutsuRonbunshi99(1991)974–982
[12]I.A.Chou,H.M.Chan,M.P.Harmer,Effectofannealing environmentonthecrackhealingandmechanicalbehavior
ofsiliconcarbide-reinforcedaluminananocomposites,J
Am.Ceram.Soc.81(1998)1203–1208
[13]D.Sciti,J.Vicens,A.Bellosi,Microstructureandpropertiesof alumina-SiCnanocompositespreparedfromultrafine powders,J.Mater.Sci.37(2002)3747–3758
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
Trang 9[14]I.Ahmad,M.Islam,T.Subhani,Y.Zhu,Toughness
enhancementingraphenenanoplatelet/SiCreinforcedAl2O3
ceramichybridnanocomposites,Nanotechnology27(2016)
425704
[15]R.Aroshas,I.Rosenthal,A.Stern,Z.Shmul,S.Kalabukhov,
N.Frage,Siliconcarbidediffusionbondingbysparkplasma
sintering,Mater.Manuf.Process.30(2015)122–126
[16]J.H.Chae,K.H.Kim,Y.H.Choa,J.-i.Matsushita,J.-W.Yoon,
K.B.Shim,MicrostructuralevolutionofAl2O3–SiC
nanocompositesduringsparkplasmasintering,J.Alloy
Compd.413(2006)259–264
[17]G.Raju,B.Basu,Sparkplasmasinteringofnanoceramic
composites,Compr.HardMater.2(2014)177–205
[18]M.Razavi,M.R.Rahimipour,R.Mansoori,Synthesisof
TiC–Al2O3nanocompositepowderfromimpureTichips,Al
andcarbonblackbymechanicalalloying,J.AlloyCompd.450
(2008)463–467
[19]ASTM,B962,StandardTestMethodsforDensityof
CompactedorSinteredPowderMetallurgy(PM)Products
UsingArchimedes’Principle,ASTM,International,West
Conshohocken,PA,USA,2011
[20]ASTM,C1161,StandardTestMethodforFlexuralStrengthof
AdvancedCeramicsatAmbientTemperature,ASTM,
International,WestConshohocken,PA,USA,2011
[21]ASTM,E384,StandardTestMethodforKnoopandVickers
HardnessofMaterials,ASTM,International,West
Conshohocken,PA,USA,2011
[22]ASTM,G99,StandardTestMethodforWearTestingwitha
Pin-on-DiskApparatus,ASTM,International,West
Conshohocken,PA,USA,2008
[23]M.Razavi,M.R.Rahimipour,R.Yazdani-Rad,Anovel
techniqueforproductionofnano-crystallinemonotungsten
carbidesinglephaseviamechanicalalloying,J.AlloyCompd
509(2011)6683–6688
[24]M.Razavi,A.H.Rajabi-Zamani,M.R.Rahimipour,R.Kaboli,
M.O.Shabani,R.Yazdani-Rad,SynthesisofFe–TiC–Al2O3
hybridnanocompositeviacarbothermalreductionenhanced
bymechanicalactivation,Ceram.Int.37(2011)443–
449
[25]M.Razavi,M.R.Rahimipour,Effectofmechanicalactivation
onsynthesestemperatureofTiCreinforcediron-based
nano-compositefromilmeniteconcentrate,Ceram.Int.35
(2009)3529–3532
[26]M.Omori,Sintering,consolidation,reactionandcrystal growthbythesparkplasmasystem(SPS),Mater.Sci.Eng.A
287(2000)183–188
[27]W.G.Fahrenholtz,E.J.Wuchina,W.E.Lee,Y.Zhou,Ultra-high TemperatureCeramics:MaterialsforExtremeEnvironment Applications,JohnWiley&Sons,2014
[28]Z.Munir,U.Anselmi-Tamburini,M.Ohyanagi,Theeffectof electricfieldandpressureonthesynthesisand
consolidationofmaterials:areviewofthesparkplasma sinteringmethod,J.Mater.Sci.41(2006)763–777
[29]X.Shi,F.Xu,Z.Zhang,Y.Dong,Y.Tan,L.Wang,J.Yang, Mechanicalpropertiesofhot-pressedAl2O3/SiCcomposites, Mater.Sci.Eng.A527(2010)4646–4649
[30]E.Abdullah,D.Geldart,Theuseofbulkdensity measurementsasflowabilityindicators,PowderTechnol.102 (1999)151–165
[31]A.R.Moradkhani,H.R.Baharvandi,A.Vafaeesefat,M.Tajdari, MicrostructureandmechanicalpropertiesofAl2O3–SiC nanocompositeswith0.05%MgOanddifferentSiCvolume fraction,Int.J.Adv.DesignManuf.Technol.5(2012)99
[32]A.R.Yazdi,H.Baharvandi,H.Abdizadeh,J.Purasad,A.Fathi,
H.Ahmadi,Effectofsinteringtemperatureand siliconcarbidefractionondensity,mechanicalproperties andfracturemodeofalumina–siliconcarbide
micro/nanocomposites,Mater.Design37(2012)251–255
[33]J.Goldstein,D.E.Newbury,P.Echlin,D.C.Joy,A.D.RomigJr., C.E.Lyman,C.Fiori,E.Lifshin,ScanningElectronMicroscopy andX-rayMicroanalysis:ATextforBiologists,Materials Scientists,andGeologists,SpringerScience&Business Media,2012
[34]D.C.Joy,A.D.RomigJr.,PrinciplesofAnalyticalElectron Microscopy,SpringerScience&BusinessMedia,1986
[35]S.Meguid,Y.Sun,Onthetensileandshearstrengthof nano-reinforcedcompositeinterfaces,Mater.Design25 (2004)289–296
[36]D.W.Bäuerle,LaserProcessingandChemistry,Springer Science&BusinessMedia,2013
[37]J.Luo,R.Stevens,Theroleofresidualstressonthe mechanicalpropertiesofAl2O3–5vol%SiCnano-composites,
J.Eur.Ceram.Soc.17(1997)1565–1572
[38]M.Farrokhzad,T.Khan,Slidingwearperformanceof nickel-basedcermetcoatingscomposedofWCandAl2O3
nanosizedparticles,Surf.Coat.Technol.304(2016)401–412
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407