1. Trang chủ
  2. » Giáo án - Bài giảng

production of al 2 o 3 sic nano composites by spark plasma sintering

9 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Production of Al2 O3 –SiC nano composites by spark plasma sintering
Tác giả Mansour Razavi, A. Faraji, M. Zakeri, M.R. Rahimipour, A.R. Firouzbakht
Trường học Materials and Energy Research Center (MERC)
Chuyên ngành Ceramics
Thể loại Journal article
Năm xuất bản 2017
Thành phố Tehran
Định dạng
Số trang 9
Dung lượng 1,67 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Samples density, open and closed porosity and water absorption were estimated by Archimedes method [19].. 2 – W–H diagram of milled samples for calculation of crystalline sizes and mean

Trang 1

w w w e l s e v i e r e s / b s e c v

Q1

Q2

a r t i c l e i n f o

Accepted24January2017

Availableonlinexxx

Keywords:

Sintering

Hardness

Nano-composite

SPS

Strength

Density

XRD

Wear

a b s t r a c t

Inthispaper,Al2O3–SiCcompositeswereproducedbySPSattemperaturesof1600◦Cfor

weresinteredinaSPSmachine.Aftersinteringprocess,phasestudies,densificationand mechanicalpropertiesofAl2O3–SiCcompositeswereexamined.Resultsshowedthatthe specimenscontainingmicro-sizedSiChaveanimportanteffectonbulkdensity,hardness andstrength.Thehighestrelativedensity,hardnessandstrengthwere99.7%,324.6HVand

2329MPa,respectively,inAl2O3–20wt%SiCmicrocomposite.Duetoshorttimesintering,the growthwaslimitedandgrainsstillremainedinnano-meterscale

©2017SECV.PublishedbyElsevierEspa ˜na,S.L.U.Thisisanopenaccessarticleunderthe

CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Producción de nano-composites – SiC–Al2O3por spark plasma sinterizado

Palabras clave:

Sinterización

Dureza

Nano-composite

SPS

Fuerza

Densidad

DRX

Desgaste

EnestetrabajosemuestrancompuestosdeAl2O3-SiCproducidosporSPS,envacío,a1.600◦C durante10min.Paralapreparacióndemuestras,semolieronpolvosdeAl2O3durante5h conlasegundafasedemicro-y-nanopolvodeSiC.Posteriormente,estospolvosmolidos

sesinterizaronmedianteSPS.Despuésdelprocesodesinterización,serealizaronestudios

defase,densificaciónypropiedadesmecánicasdeloscompuestosdeAl2O3-SiCobtenidos Losresultadosmostraronquemicro-SiCenlasmuestrastieneunefectoimportanteensu densidadaparente,durezayresistencia.Lamayordensidadrelativa,durezayresistencia fueronrespectivamentedel99,7%,324,6HVy2.329MPaparaAl2O3 conun20%enpeso micro-SiC.Debidoalcortotiempodesinterización,elcrecimientolosgranosfuelimitadoy

semantuvieronenescalananométrica

©2017SECV.PublicadoporElsevierEspa ˜na,S.L.U.Esteesunart´ıculoOpenAccessbajola

licenciaCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Corresponding author.

E-mailaddress:m-razavi@merc.ac.ir(M.Razavi)

http://dx.doi.org/10.1016/j.bsecv.2017.01.002

0366-3175/©2017SECV.PublishedbyElsevier Espa ˜na,S.L.U.Thisisanopen accessarticleundertheCCBY-NC-NDlicense (http:// creativecommons.org/licenses/by-nc-nd/4.0/)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Trang 2

Introduction

Thermalandchemicalstability,relativelyhighstrength,

ther-Q3

advan-tages,lowfracturetoughnessofthismaterialleadtolimitation

ofitsapplication.Compositesareoneofthemethodswhich

overcometothislimitation.Inthistechniquealuminamatrix

isreinforcedbyparticlesorfibersassecondaryphase,which

canbemetal,polymerorceramic.Siliconcarbide(SiC)asa

ceramicmaterial canbe one ofthe option which leads to

improvementofaluminamatrix[6–10].Niharaetal.reported

thatsinteringofAl2O3–SiCcompositewasdonesuccessfully

They found out that adding a little amount of SiC to

alu-minamatrixcanimprovemechanicalpropertiesofcomposite

significantly in comparison with non-composite materials

Theyincreasedstrengthandfracturetoughnessfrom350to

1520MPaand3.5to4.8MPam1/2,respectivelybyadding5vol.%

SiC[11]

There are different methods of sinter this composite

Non-pressureandhotpresssinteringarethemostcommon

methodofsintering forthiscomposite, but newtechnique

whichisconsiderabletodayissparkplasmasintering (SPS)

[6,12–15] On the base of spark plasma, which is created

byapulsed directcurrent,SPSleadstoquickincreasingof

mold’sandthepowder’stemperature.Highheatingrate,using

pressure and electricalcurrent is the specifications ofthis

technique which distinguishthis technique in comparison

withothermethod.Inadditiontoreductionofparticle’s

coars-ening,highheatingrateincreasedcondensationthroughthe

eliminationofsurfacediffusionmechanismandcreatingof

extra driving force by high temperature gradient Pressure

applyingduringtheheatingcanincreasethedrivingforceof

processandfacilitatethesinteringprocess.Electricalcurrent

cancondensethepowderinmoldbycreatingofmanysparks

betweenparticlesandcreatingofplasmaenvironment.Effect

ofplasmaonsurface’s cleannessofparticles and

improve-mentofsintering processhasbeen reportedbyresearchers

[16–21]

SynthesisofAl2O3–SiCcompositebySPShasbeen

inves-tigatedbyafewresearchers[16,17],buttheeffectofparticle

sizeonthedensification,mechanicalandwearpropertieshas

notbeenreporteduntilnow.Sointhispapersintering

pro-cessandpropertiesofAl2O3matrixreinforcedbymicroand

nano-sizedSiCwillbeexamined

Experimental

Al2O3andSiCpowdersinmicroandnano-meterscalewith

purity99.8%,99.5%and99.9%andmeanparticlesizeof1.5␮m,

10␮mand 50nm, respectivelywere usedasraw materials

Al2O3 powder withtwo sourcesofSiC(microand nano as

systems1and2,respectively)powderweremilledina

plan-etaryballmill(asahighenergyballmill)for5hindistilled

water.Balltopowderratiowas10to1inalltests.Inthe

fol-lowing,preparedpowdersweresinteredinamoldwith8cmin

diameterunderspecificconditionsaccordingtoTable1bySPS T

◦C)

Soaking time

Al2

O3

∗Systems

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Trang 3

machine.Thesinteringprocesswasdoneunderhighpulsed

directcurrent(1000–3500A)invacuum.Auniaxialpressureof

10MPawasusedduringthereactionandincreasedto20MPa

afterreachingtotheexpectedtemperatureandmaintained

duringholdingtime.Afterholdingtimetheuniaxialpressure

decreasedto10MPaandmaintainedduringcooling

Aftersinteringprocess,thesampleswerepolishedandcut

Inordertodetectofphasesinsample’sstructureand

eval-uateofpropertiesXRD (Siemens,30kV,25mA,CuK␣)was

used.Thecrystallitesizeandstrainwereevaluatedthrough

ScherrerandWilliamson–Hallmethodsapplyingthefollowing

equations[18]:

d= 0.9

bcos Scherrerequation

Bcos= 0.9

d +2sin Williamson-Hallequation

whereB,,,dandarethefullwidthofthepeakathalf

inten-sity(rad.),positionofpeakinthepattern(rad.),thewavelength

ofX-ray(nm),crystallinesize(nm),andmeaninternalstrain,

respectively

Samples density, open and closed porosity and water

absorption were estimated by Archimedes method [19]

Strengthofthesampleswasmeasuredthroughthreepoints

test.Fivesampleswithdimensionof3×4×45mmwere

pre-paredandaverageofstrengthreported[20].Hardnessofthe

samplewasdeterminedthroughVickersmethod.5testswere

doneforeachsampleandaverageofresultswerereported[21]

Microstructuresofmilledandsinteredsampleswerestudied

byscanningelectronmicroscope(Cambridgemodel).Finally,

wearresistanceofsampleswasdoneinordertodetermine

thewearproperties.Inthistestcompositesampleswereused

asapinandaluminawasusedasthedisc.Theforceonthe

pintipwas15.3N.Themachinewasstoppedinthedistances

of1000mandtheweightlossesofthesampleswerewiththe

accuracyof0.0001g[22]

Result and discussion

PatternsofX-raydiffractionofmilledpowdersareillustrated

inFig.1.Asitisseeninthesepatterns,millinghasnotled

tophasetransferinrawmaterials,andidentifiedphasesare

Al2O3 and SiC with1125-071-01 and 00-002-1048reference

code,respectively.Asit stands,byincreasingofSiCphase,

intensityoftheirpeakshasbeenincreased.Crystallinesize

(d)andmeanstrain()ofmilledpowderweremeasured.The

changesofB·costo2sinareseeninFig.2.Calculationresults

arebroughtinTable2, asit isseeninthistablecrystalline

sizeofmilledpowderinallcompoundsforbothphasesare

innano-meterscale.Thecrystallinesizesofmilledsamples

(whichallofthemhavebeentreatedinasimilarway)havea

rangebetween36and40nmand17and36nmforAl2O3and

SiCphases,respectivelyandnosignificantdifferencebetween

sizes.Asitstands,sizeofphasesinthesecondsystemisfiner

thanfirstsystem,thatcanbeattributedtotworeasons:the

firstoneisusingofSiCwithnanoscaleinthesecondsystem

andthenextoneisthepresenceofmorefinerSiCparticlesin

thesecondsystematequalweightfractionwhichcanoperate

asfineballsandfacilitateofmillingprocess.Theseparticles

increasesmillingenergyandleadtocrushofparticles[23]

Counts

10n

5n

20m

15m

5m

Position [º2Theta](copper (cu))

10m

Fig 1 – X-ray patterns of milled samples (*) Al 2 O 3 , (+) SiC.

SEMimageformmilledsamplesarepresentedinFig.3.Asit

isobviousinthisfigure,millingleadtodecreasingthesizeof particlesinbothsystemsandthemeanparticlesizesarein nanometerscale.Thesizeofparticlesinthesystem contain-ingnanoSiCarelowerthanthesystemwithoutthat

X-raypatternofsinteredsampleisbroughtinFig.4,asitis seen,thereisnochangeinphasesofsinteredsamplesandin milledsample(Fig.1 Al2O3andSiCareidentifiedphases.As

itisobviousinFig.5,theonlyconsiderablepointin compar-isonofthispatternwithmilledsamplepatternisincreasing

ofpeak’sintensityanddecreasingofpeak’swidthinsintered sample.Increasingoftemperatureduringthesintering can leadtogrowthofcrystalsandreducingofmeanlatticestrain

[24,25] Thechanges ofB·cos to 2sin insintered samplesare showninFig.6.Theresultsofthesecalculationsarebrought

in Table 2 As these calculations show, although the crys-tallinesizesareinnanometerscalewiththerangeof59–66nm and30–52nmforAl2O3andSiCphases,respectivelybut sin-tering leads togrowth of crystals and decreasing ofmean

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

Trang 4

0.005 0.01 0.015 0.02 0.025

1.4 1.2

1 0.8

0.6 0.4

2 sinθ

5m (Alumina) 10m (Alumina) 10m (Silicon carbide) 15m (Alumina) 15m (Silicon carbide) 20m (Alumina) 20m (Silicon carbide) 5n (Alumina) 10n(Alumina) 10n (Silicon carbide)

Fig 2 – W–H diagram of milled samples for calculation of crystalline sizes and mean strains of phases.

latticestrainslightly.Unlikecommonmethodsofsintering,

whichfollowextremegrowth,sinteringthoughSPShasalittle

growth,sothatthecrystalsareinnanoscaleyet.Whenthe

sintering(includingheatingandkeepingprocesses)is

com-pletedinafewminutes,thecrystalscouldbesmall[26]

The changes of sample’s thickness to time for sample

whichcontaindifferentamountofSiCincludethreezones

Atfirst,thetimeoflessthan35min,whichsamplehasbeen

heatedandhasalittleexpansion.Inthefollowingby

increas-ingthetemperature,sinteringprocessoccurredandsamples

werecontractedquicklyduringabout5minandthenchange

ofdisplacementwillbeconstant.Asitstands,thesintering processwascompletedattheendofsecondzoneand sam-plesweredense.Accordingtothechangesofsamplethickness andtemperatureversussinteringtimeplots,beginning tem-peratureofsintering(beginningofsecondzone)isdetermined ThisinformationisbroughtinTable3.Decreaseinthickness

ofthesamplesandthestartingofsecondzoneisduetothe overcomingofcontractionofsinteringonthermalexpansion

ofthesamples

Table 2 – Results of calculations of crystalline sizes and mean strain of milled and sintered samples.

Codeofsample Phase Crystallinesize(nm) Meanstrain(%) Usedmethod

Milled

samples

Sintered

samples

158

159

160

161

162

163

164

165

166

167

168 169 170 171 172 173 174 175 176 177

Trang 5

Fig 3 – Microstructure of milled samples for 300 min (a) 10m sample and (b) 10n sample.

Asit isseen in Table 3, inthe first system by

increas-ingofSiCto10wt.%,beginningtemperatureofsinteringhas

beenincreasedandthendecreased.SiCwithhighermelting

pointthanAl2O3,increasethesinteringtemperatureofAl2O3

Counts

10n

5n

20m

15m

5m

Position [º2Theta](copper (cu))

10m

Fig 4 – X-ray patterns of sintered samples (*) Al 2 O 3 , (+) SiC.

But increasing ofSiC which has lower thermal expansion (TEC)coefficientincomparisonwithAl2O3leadsto decreas-ing ofthermal expansioncoefficientofcomposite (melting point and thermal expansionofAl2O3 and SiC are 2072◦C and8.1×10−6/Cand2730◦Cand4.0×10−6/C,respectively)

[27].Hencetheearlyexpansionhasbeendecreasedduringthe heatingandasaresultbeginningtemperatureofcontraction

isdecreasedtoo.So,after10msample,decreaseofsintering temperatureisseen.Thistreatmentissimilarlyseenin sec-ondsystemtoo.Onlyinthissystem,overcomingofthesecond phenomenontofirstoneisquickerthanandishappenedin lessamountofSiC

The changes ofrelativedensity ofsintered samplesfor the twosystemsare presentedinTable3.As itisobvious,

in system 1, addition ofdifferent amount of SiC to Al2O3

matrixleadstocompletingofsinteringandachievementto samples withnearlyfull density.Lower sintering tempera-ture, short temperature and holdingtimes have prepare it possibletoproducenano-compositeofSiC–Al2O3tonear the-oreticaldensitywithlittlecrystalgrowth[28].Toattainment fulldensitybycommonsinteringtechnique,higher tempera-tureandsoakingtimeisneeded.Shietal.succeededtosinter

Al2O3–SiC composite with relativedensity of100% via hot presstechniqueattemperature over1700◦C.Theyreported sintering byhot pressleaded toabnormalgrowth insome samples[29]

Against,presenceofnano-sizedSiCinsystem2couldnot obtainasamplewithhighdensity.Agreatdifferencebetween particle sizeofmatrix and the reinforcementphasein the second systemdecreased packingand leadstodecreaseof finaldensity.ThereisevidencewhenaSiCasfinecomponent are addedtotheAl2O3particles,itadheretothe large par-ticlesstronglyanddelaythepenetrationoffinecomponents

tothemixtures[30].Widedistributionofparticlesinsystem

2confirmsthis point(Fig.3b).Furthermore,asitisobvious

inTable3,byincreasingtheweightpercentofSiC,densityis decreased.Thiscouldbeduetothepoorsintering property

ofSiCatexaminedtemperaturesinthispaper.Similarresult wasreportedbyotherresearchers[29,31,32]

Fig.7showstheSEMimagesforthemicrostructureofthe sintered compacts There are twodifferent phases inboth

178

179

180

181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

Trang 6

10n 5n

20m 15m 10m 5m

Intensity after milling (cts) 647.10 616.10 575.31 534.81 638.86 612.33 Intensity after sintering (cts) 659.99 622.22 582.11 561.88 648.64 622.74 FWHM after milling (2θ) 0.6085 0.6240 0.6331 0.6341 0.5384 0.5451 FWHM after sintering (2θ) 0.5112 0.5324 0.5347 0.5552 0.5434 0.5153

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Fig 5 – The changes of intensity and full width at half maximum (FWHM) of alumina peak for milled and sintered samples (2 Â = 40–45 ◦ ).

systems,i.e.,darkandlightphase.AsitisseenfromFig.4and

asitwasdiscussedearlier,XRDpatternimpliedthattherewas

noreactionbetweentherawmaterials.SoAl2O3andSiCare

onlyphasesinsinteredsamples.Accordingtotheseimages,

SiCwithlowermassabsorptioncoefficientthanAl2O3aslight

anddarkphases,respectivelyweredispersedinthematrix

[33,34].AsitwascalculatedporositybyArchimedesmethod,

porositycanbeseeninmicrostructuralimagesofsamples

Theamountandsizesofporosityinsystem2ishigherthan system1

Flexural strength and hardness ofsintered samples are illustratedinFig.8.Asitstands,insystem1withadensity closetoeachother,theflexuralstrengthofsamplesincreased

by increasing the amount of SiC particles up to 10% and after that adding moreSiC could not increasethe flexural strength.WhentheweightpercentofSiCwasmorethan10,

0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019 0.021 0.023 0.025

1.4 1.2

1 0.8

0.6 0.4

2 sinθ

5m (Alumina) 10m (Alumina) 10m (Silicon Carbide) 15m (Alumina) 15m (Silicon Carbide) 20m (Alumina) 20m (Silicon Carbide) 5n (Alumina) 10n(Alumina) 10n (Silicon Carbide)

Fig 6 – W–H diagram of sintered samples for calculation of crystalline sizes and mean strains of phases.

223

224

225

226

227

228

229

230

231 232 233 234 235 236 237 238

Trang 7

Fig 7 – Microstructure of sintered samples (a) 10m sample and (b) 10n sample.

Table 3 – Temperature of sintering with physical

properties of sintered samples.

Codeof

sample

Temperature

ofsintering (◦C)

Relative density(%)

Amount porosity(%)

Water absorption (%)

asuitabledistributionofthis phasecannotbeseen [32,35]

ExistenceofhardSiCparticleswithafinestructurecouldbe

improvethemechanicalproperties[36].Furthermore,dueto

residualstressfromthe mismatchofTECbetweenSiCand

Al2O3, matrix isunder thecompressive stress during cool-ing.So,existenceofSiCinthematrixofAl2O3increasesthe strength[37].AddinghardSiCasreinforcementphasetothe

Al2O3 matrix could increasethe hardness numbers signifi-cantly(hardnessofSiCandAl2O3are1175HVand2800HV)

[27].Sinceinsystem2achievementstosampleswithfull den-sitywerenothappening,flexuralstrengthandhardnesswere weakerthanspecimensoffirstsystem.Theporosityeffectson themechanicalpropertiesofceramicmaterialsmeaningfully

[29] Lossofweightinthesampleafterwearresistanceisseenin

Fig.9.DuetohighhardnessinsamplewhichcontainhardSiC, wearresistanceofthemareincreased.Duringdrysliding,the SiCparticlesdonoteasilycomeoutinthedebrisbecauseof theirreasonablygoodbondingwiththematrix.Bydecreasing theparticlesize,bondingtakesplacebetterandthewear resis-tanceincreases.Furthermore,theformationofoxidelayeron

350

300

250

200

150

100

50

0

2500

1500 2000

1000

500

0

Flexural strength (Mpa)

Hardness (HV)

Fig 8 – The changes of flexural strength and hardness of sintered samples.

239

240

241

242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

Trang 8

2.95 3 3.05 3.1 3.15 3.2 3.25

0.5 1 1.5 2 2.5 3 3.5

20 15

10 5

0

Weight percent of SiC System 1 System 2

Fig 9 – The changes of weight of sintered samples during wear test.

thewearsurfaceofthecompositereducedwearresistance

Theseoxidesconsistofveryfinewithsizesofabout10–100nm

which havebeen compacted ontothe composite’s surface,

preexistingsurfaceoxidelayers,orcompressedcoarsewear

debris[38].Becauseoflowerdensityofsamplesinthesecond

system,wearpropertiesofthesesamplesarelowerthanthe

firstsystem

Conclusion

Al2O3–SiCcompositeswerepreparedsuccessfullybySPSwith

relativedensityof100%.Thecompositeswithdenser

struc-ture have higher flexuralstrength 293.1MPa and 2329 HV

ofthehighesthardnessandflexuralstrengthwereobtained

fromthesamplesreinforcedby10 and20wt.%SiC,

respec-tively.ByincreasingtheamountofSiC,flexuralstrengthwas

improvedfirstandthendecreasesbecauseofabad

distribu-tionofsecondedphaseinthematrix.Duetolowerdensity

insamplescontainingnano-sizedSiC,mechanicalproperties

wereweakerthanspecimensofthefirstsystem

r e f e r e n c e s

[1] R.Iglesias,M.Rivas,J.C.R.Reis,T.Iglesias,Permittivityand

electricconductivityofaqueousalumina(40nm)nanofluids

atdifferenttemperatures,J.Chem.Thermodyn.89(2015)

189–196

[2] R.H.Castro,Onthethermodynamicstabilityof

nanocrystallineceramics,Mater.Lett.96(2013)45–56

[3] J.Bai,X.Yang,S.Xu,Y.Shi,J.Yang,Fabricationofhighly

denseAl2O3ceramics,ScriptaMater.68(2013)393–395

[4]W.D.Callister,D.G.Rethwisch,MaterialsScienceand Engineering:AnIntroduction,Wiley,NewYork,2007

[5]S.Yoshioka,L.Boatemaa,S.vanderZwaag,W.Nakao,W.G Sloof,OntheuseofTiCashigh-temperaturehealing particlesinaluminabasedcomposites,J.Eur.Ceram.Soc.36 (2016)4155–4162

[6]B.Baron,C.Kumar,G.LeGonidec,S.Hampshire,Comparison

ofdifferentaluminapowdersfortheaqueousprocessing andpressurelesssinteringofAl2O3–SiCnanocomposites,J

Eur.Ceram.Soc.22(2002)1543–1552

[7]K.Niihara,A.Nakahira,T.Uchiyama,T.Hirai, High-temperaturemechanicalpropertiesofAl2O3–SiC cmposites,in:FractureMechanicsofCeramics,Springer,

1986,pp.103–116

[8]S.Grasso,T.Saunders,H.Porwal,B.Milsom,A.Tudball,M

Reece,FlashSparkPlasmaSintering(FSPS)of␣and␤SiC,J

Am.Ceram.Soc.99(2016)1534–1543

[9]C.Gutiérrez-González,M.Suarez,S.Pozhidaev,S.Rivera,P

Peretyagin,W.Solís,L.Díaz,A.Fernandez,R.Torrecillas, EffectofTiCadditiononthemechanicalbehaviourof

Al2O3–SiCwhiskerscompositesobtainedbySPS,J.Eur

Ceram.Soc.36(2016)2149–2152

[10]P.Mohanty,S.Mohapatra,J.Mohapatra,S.Singh,P.Padhi,D Mishra,Utilizationofchemicallysynthesizedfinepowders

ofSiC/Al2O3compositesforsintering,Mater.Manuf.Process

31(2016)1311–1317

[11]K.Niihara,Newdesignconceptofstructural ceramics–ceramicnanocomposites,NipponSeramikkusu KyokaiGakujutsuRonbunshi99(1991)974–982

[12]I.A.Chou,H.M.Chan,M.P.Harmer,Effectofannealing environmentonthecrackhealingandmechanicalbehavior

ofsiliconcarbide-reinforcedaluminananocomposites,J

Am.Ceram.Soc.81(1998)1203–1208

[13]D.Sciti,J.Vicens,A.Bellosi,Microstructureandpropertiesof alumina-SiCnanocompositespreparedfromultrafine powders,J.Mater.Sci.37(2002)3747–3758

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

Trang 9

[14]I.Ahmad,M.Islam,T.Subhani,Y.Zhu,Toughness

enhancementingraphenenanoplatelet/SiCreinforcedAl2O3

ceramichybridnanocomposites,Nanotechnology27(2016)

425704

[15]R.Aroshas,I.Rosenthal,A.Stern,Z.Shmul,S.Kalabukhov,

N.Frage,Siliconcarbidediffusionbondingbysparkplasma

sintering,Mater.Manuf.Process.30(2015)122–126

[16]J.H.Chae,K.H.Kim,Y.H.Choa,J.-i.Matsushita,J.-W.Yoon,

K.B.Shim,MicrostructuralevolutionofAl2O3–SiC

nanocompositesduringsparkplasmasintering,J.Alloy

Compd.413(2006)259–264

[17]G.Raju,B.Basu,Sparkplasmasinteringofnanoceramic

composites,Compr.HardMater.2(2014)177–205

[18]M.Razavi,M.R.Rahimipour,R.Mansoori,Synthesisof

TiC–Al2O3nanocompositepowderfromimpureTichips,Al

andcarbonblackbymechanicalalloying,J.AlloyCompd.450

(2008)463–467

[19]ASTM,B962,StandardTestMethodsforDensityof

CompactedorSinteredPowderMetallurgy(PM)Products

UsingArchimedes’Principle,ASTM,International,West

Conshohocken,PA,USA,2011

[20]ASTM,C1161,StandardTestMethodforFlexuralStrengthof

AdvancedCeramicsatAmbientTemperature,ASTM,

International,WestConshohocken,PA,USA,2011

[21]ASTM,E384,StandardTestMethodforKnoopandVickers

HardnessofMaterials,ASTM,International,West

Conshohocken,PA,USA,2011

[22]ASTM,G99,StandardTestMethodforWearTestingwitha

Pin-on-DiskApparatus,ASTM,International,West

Conshohocken,PA,USA,2008

[23]M.Razavi,M.R.Rahimipour,R.Yazdani-Rad,Anovel

techniqueforproductionofnano-crystallinemonotungsten

carbidesinglephaseviamechanicalalloying,J.AlloyCompd

509(2011)6683–6688

[24]M.Razavi,A.H.Rajabi-Zamani,M.R.Rahimipour,R.Kaboli,

M.O.Shabani,R.Yazdani-Rad,SynthesisofFe–TiC–Al2O3

hybridnanocompositeviacarbothermalreductionenhanced

bymechanicalactivation,Ceram.Int.37(2011)443–

449

[25]M.Razavi,M.R.Rahimipour,Effectofmechanicalactivation

onsynthesestemperatureofTiCreinforcediron-based

nano-compositefromilmeniteconcentrate,Ceram.Int.35

(2009)3529–3532

[26]M.Omori,Sintering,consolidation,reactionandcrystal growthbythesparkplasmasystem(SPS),Mater.Sci.Eng.A

287(2000)183–188

[27]W.G.Fahrenholtz,E.J.Wuchina,W.E.Lee,Y.Zhou,Ultra-high TemperatureCeramics:MaterialsforExtremeEnvironment Applications,JohnWiley&Sons,2014

[28]Z.Munir,U.Anselmi-Tamburini,M.Ohyanagi,Theeffectof electricfieldandpressureonthesynthesisand

consolidationofmaterials:areviewofthesparkplasma sinteringmethod,J.Mater.Sci.41(2006)763–777

[29]X.Shi,F.Xu,Z.Zhang,Y.Dong,Y.Tan,L.Wang,J.Yang, Mechanicalpropertiesofhot-pressedAl2O3/SiCcomposites, Mater.Sci.Eng.A527(2010)4646–4649

[30]E.Abdullah,D.Geldart,Theuseofbulkdensity measurementsasflowabilityindicators,PowderTechnol.102 (1999)151–165

[31]A.R.Moradkhani,H.R.Baharvandi,A.Vafaeesefat,M.Tajdari, MicrostructureandmechanicalpropertiesofAl2O3–SiC nanocompositeswith0.05%MgOanddifferentSiCvolume fraction,Int.J.Adv.DesignManuf.Technol.5(2012)99

[32]A.R.Yazdi,H.Baharvandi,H.Abdizadeh,J.Purasad,A.Fathi,

H.Ahmadi,Effectofsinteringtemperatureand siliconcarbidefractionondensity,mechanicalproperties andfracturemodeofalumina–siliconcarbide

micro/nanocomposites,Mater.Design37(2012)251–255

[33]J.Goldstein,D.E.Newbury,P.Echlin,D.C.Joy,A.D.RomigJr., C.E.Lyman,C.Fiori,E.Lifshin,ScanningElectronMicroscopy andX-rayMicroanalysis:ATextforBiologists,Materials Scientists,andGeologists,SpringerScience&Business Media,2012

[34]D.C.Joy,A.D.RomigJr.,PrinciplesofAnalyticalElectron Microscopy,SpringerScience&BusinessMedia,1986

[35]S.Meguid,Y.Sun,Onthetensileandshearstrengthof nano-reinforcedcompositeinterfaces,Mater.Design25 (2004)289–296

[36]D.W.Bäuerle,LaserProcessingandChemistry,Springer Science&BusinessMedia,2013

[37]J.Luo,R.Stevens,Theroleofresidualstressonthe mechanicalpropertiesofAl2O3–5vol%SiCnano-composites,

J.Eur.Ceram.Soc.17(1997)1565–1572

[38]M.Farrokhzad,T.Khan,Slidingwearperformanceof nickel-basedcermetcoatingscomposedofWCandAl2O3

nanosizedparticles,Surf.Coat.Technol.304(2016)401–412

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

Ngày đăng: 04/12/2022, 16:09

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w