6 which presents the BSE images ofthe boron modified Cu–Zn–Al alloy, is generally characterised by large grain size and a change in grain edge morphol-ogy from sharp to round/rod-like tha
Trang 1w w w j m r t c o m b r Availableonlineatwww.sciencedirect.com
Original Article
Phase characterisation and mechanical behaviour
of Fe–B modified Cu–Zn–Al shape memory alloys
Kenneth Kanayo Alanemea, ∗, Eloho Anita Okotetea, Nthabiseng Maledib
a r t i c l e i n f o
Received18June2016
Accepted13October2016
Availableonlinexxx
Keywords:
Cu–Zn–Alalloy
Shapememoryeffect
Lathmartensite
Micro-alloying
Mechanicalbehaviour
Phaseanalysis
a b s t r a c t
Themicrostructures,phasecharacteristicsandmechanicalbehaviourofCu–Zn–Alalloys modified with Fe, B, and Fe–B mixed micro-alloying additions has been investigated Cu–Zn–Alalloyswereproducedbycastingwithandwithouttheadditionofthe microele-ments(Fe,BandFe–B).The alloysweresubjectedtoahomogenisation–coldrolling– annealingtreatmentschedule,beforethealloysweremachinedtospecificationsfortensile test,fracturetoughness,andhardnessmeasurement.Optical,scanningelectronmicroscopy andX-raydiffractionanalysiswereutilisedformicrostructuralandphasecharacterisation
ofthealloys.Adistinctdifferenceingrainmorphologywasobservedinthealloysproduced –theunmodifiedalloyhadpredominantlyneedle-likelathmartensitestructurewithsharp grainedgeswhilesignificantlylargertransversegrainsizeandcurveedged/nearelliptical grainshapewasobservedforthemodifiedCu–Zn–Alalloys.Cu–Znwithfccstructurewas thepredominantphaseidentifiedinthealloyswhileCu–Alwithbccstructurewasthe sec-ondaryphaseobserved.ThehardnessoftheunmodifiedCu–Zn–Alalloywashigherthan thatofthemodifiedalloyswithreductionsinhardnessrangingbetween32.4and51.5% However,thetensilestrengthwassignificantlylowerthanthatofthemodifiedalloygrades (28.37–52.74%increaseintensilestrengthwasachievedwiththeadditionofmicro-alloying elements).Similarly,thepercentelongationandfracturetoughness(10–23%increase)of themodifiedalloywashigherthanthatoftheunmodifiedalloygrade.Themodifiedalloy compositionsmostlyexhibitedfracturefeaturesindicativeofafibrousmicro-mechanism
tocrackinitiationandpropagation,characterisedbytheprevalenceofdimpledrupture
©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevier EditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://
creativecommons.org/licenses/by-nc-nd/4.0/)
Theattractivepropertiesofshapememoryalloys(SMAs)have
been explored fora wide range of applicationssuch as in
E-mail:kalanemek@yahoo.co.uk(K.K.Alaneme)
sensing, medical,commercial and other industrial applica-tions [1–3] The current limitation to the of SMAs is that commerciallyavailableSMAsareprincipallymadeoutof
Ni-Tialloyswhichareexpensiveandalsohaveahugeprocessing costandfacilityburden[4].Thishasmadethesearchformore
http://dx.doi.org/10.1016/j.jmrt.2016.10.003
2238-7854/©2016BrazilianMetallurgical,MaterialsandMiningAssociation.PublishedbyElsevierEditoraLtda.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Trang 2cost-effectiveSMAsanongoing pursuitbyresearchers
Cu-basedandFe-basedSMAshavebeenidentifiedasthemost
promising low cost alternatives to Ni-Ti alloys The lower
strainrecoveriesofCu(∼5%)andFe(<5%)comparedtothatof
NiTialloy(8%)iscompensatedforbylowerprocessingcostand
amenabilitytofabricationroutesandfacilitiesutilisedfor
con-ventionalmetalprocessing[5–7].Cu-basedSMAsareofspecial
interestbecauseofitsmodestrecoverablestrain(∼5%)which
isclosesttothatofNiTialloy,cheaperproductioncost,and
easeoffabrication,andhighthermalandelectrical
conduc-tivity[8–10].Regrettably,theseCu-basedalloysareassociated
withbrittlenessinducedbycoarsegrainstructure,highelastic
anisotropyandhighdegreeoforderwhichreducesthecold
workabilityofthe alloys[10].Furthermore,Cu-basedalloys
aresusceptibletoageingwhichcouldleadtophase
(martens-ite)stabilisationandchangeintransformationtemperatures
whichaffectsitsshapememorycapacity[3,11,12]
Cu–Zn–AlalloysarethemoststudiedCu-basedalloysand
havebeen exploredforuse inapplications suchas
fasten-ers,springs,couplingsandthermalactuatorswheretheuse
ofother alloyswouldbetechnically andeconomically
inef-fective[13,14].Cu–Zn–Alalloyshaverelativelyhigherstrain
recoverycomparedtootherCu-basedalloys.However,
simi-lartootherCu-basedalloygrades,Cu–Zn–Alalloysareprone
tobrittlefailure,andhavelowfractureandfatiguestrength,
andlowworkability[15].Grainrefinementhasbeenproffered
asatechniquefortheimprovementofmechanicalandshape
memorypropertiesofCu-basedSMAs[3,15].Inthisregard,the
useofmicro-alloyingelements[16],mechanicaland
thermo-mechanicalprocessing[17–19];havebeenexploredtoachieve
grainrefinementinCu-basedSMAs.Theuseofmicro-alloying
elementssuchasB,Ti,V,Ce,Fe,Co,Be,Zrhavebeenthemost
reportedoftheseapproaches;andmanyoftheinvestigations
showthattheirpresencehasinfluenceonthemicrostructure,
transformation and shape memory properties of Cu-based
SMAs[5,16,20].BandFearetheleastexpensiveofthese
micro-alloyingelementsandhavebeenreportedtobeveryefficient
grain modifiers [5,21] However there have been divergent
opinions on the optimum concentrations of these
micro-alloying elements and the mechanisms for effecting grain
modificationinCu-basedSMAsingeneralandCu–Zn–AlSMAs
inparticular.Forinstance,Wangetal.[22]reportedthat0.01%
Bwastheoptimumconcentrationrequiredtoachievegrain
refinementinCu–Zn–AlalloybutFerreiraetal.[23]statedthat
Bconcentrationwithintherangeof0.05–0.08%wassufficient
foreffectivegrainrefinement.Feconcentrationforeffective
grainmodificationandenhancedmechanicalpropertieshas
alsobeensubjectofresearchdiscussrecently[24].Thepresent
work,investigatesthephasecharacteristicsand
microstruc-tureofFe,B,andFe–BmodifiedCu–Zn–AlSMAsindetailsand
itseffectonthemechanicalbehaviour
2.1 Alloy and sample preparation
TheCu–18Zn–6Albasedalloyswereproducedinaccordance
withAlaneme[25].Chargecalculationwasusedtodetermine
theamountofCu,ZnandAlrequiredtoproduceCu–18Zn–6Al
base composition containing two different weight percent each (0.05wt.% and 0.1wt.%) ofFe and B.Two other com-positionscontaining mixturesofFeandB(0.05wt.% Band 0.05wt.% Fe)(0.025wt.% Fe and 0.075wt.% B) were equally produced.TheFeandBweightpercentselectedarewithin the range reported in literature [22–24] The charge for Cu–18Zn–6Alalloywithouttheadditionofmicro-alloying ele-ments was also preparedas the control composition The alloys werepreparedvialiquid metallurgyroute,meltedin
acruciblefurnaceandcastintosandmouldsinsertedwith metallic chills.The chemicalcomposition of the Cu–Zn–Al shape memory alloys determined by EDS analysis is pre-sentedinTable1.Aftercasting,thealloysweresubjectedto homogenisationtreatmentat800◦Cfor4handcooledinairin accordancewithAlaneme[25].Thealloyswerethensubjected
to10% coldrollingusingaminiature coldrolling machine; afterwhichthesampleswereannealedat450◦Cfor1hand cooledinairtoremoveinternalstressesdevelopedinthe sam-ples duringthe colddeformationprocess.Thesamplesfor mechanicaltest,microstructuralandphasecharacterisation weremachinedtoprescribedtestspecifications.Thesamples werefinallyannealedat400◦Cfor2hthenwaterquenchedat roomtemperaturetoeliminatestressesgeneratedduringthe machiningprocess
2.2 Microstructural characterisation
2.2.1 Optical microscopy
AZeissopticalmicroscopewasusedformicrostructural inves-tigationofthealloysproducedtoassessthegrainstructure and phase distribution Thespecimens formicrostructural examination were metallographically prepared following a series ofgrinding and polishing process.Subsequently the specimens were etched in a solution of5gferric chloride,
10mlHCl,and95mlethanol,swabbingfor10–20s;afterwhich microstructuralanalysiswasperformed
2.2.2 Scanning electron microscopy (SEM)
Detailedmicrostructuralcharacterisationandcompositional analysiswas carriedout usingaZeisshigh resolutionfield emission gun scanning electron microscope (Zeiss FESEM)
to complement theoptical microscopy analysis.Back scat-tered electron(BSE) mode,secondary electronimagingand energy dispersive spectroscopy (EDS) were used for micro-structuralandfractographicanalysisoftheCu–Zn–Alalloys produced
Table 1 – Chemical composition of the Cu–Zn–Al alloys.
Trang 32.3 X-ray diffraction analysis
The analysis of the crystalline phases present and their
intensity was carried out on the Cu–Zn–Al alloys using
X-ray diffractometry (XRD) The samples were prepared for
XRD analysisfollowing standard procedures.APANalytical
EmpyreandiffractometerwithPIXceldetectorandFefiltered
Co-K␣assourceofradiation,wasusedfortheanalysis.The
analysiswasperformedfromangle2spectralrangeof0◦to
120◦.ThephaseswereidentifiedusingX’PertHighscoreplus
software
2.4 Mechanical properties
2.4.1 Hardness measurement
Thehardnessvaluesofthealloyswereevaluatedona
hard-nesstestingmachineusingaDigitalRockwellhardnesstester
adoptinga HRA(60kgf) scale.Thesamplepreparationand
testingprocedurewasperformedinaccordance withASTM
E18-16 standard [26] Five hardnessindentswere madeon
eachspecimenandreadingswithinthemarginof±2%were
takenforthecomputationoftheaveragehardnessvaluesof
thespecimens
2.4.2 Tensile testing
Thetensilepropertiesoftheproducedalloyswereevaluated
bytensile testing usingauniversaltesting machine
Speci-mensforthetestweremachinedtotensiletestspecifications
of5mmdiameterand30mmgaugelength.Thespecimens
weremountedonthetestingplatformandpulled
monoton-icallyatastrainrateof10−3/suntilfracture.Thespecimen
preparationand testingprocedurewere inaccordance with
ASTME8/E8M-15astandard[27].Foreachalloycomposition,
threerepeattensile tests wereperformed toguaranteethe
reliabilityofthedatagenerated.Thetensileproperties
eval-uatedfromthetestare theultimatetensilestrengthand%
elongation
2.4.3 Fracture toughness
Thefracturetoughnessofthealloyswasdeterminedusing
cir-cumferentialnotchtensile(CNT)testinginaccordancewith
Alaneme[28]Thespecimensforthetestweremachinedto
gaugelengthof27mm, gaugediameterof6mm(D),notch
diameterof4.2mm(d),andnotchangleof60◦.Thespecimens
werethensubjectedtotensileloadingtofractureatroom
tem-peratureusinganInstronuniversaltestingmachineoperated
ataquasi-staticstrainrate of10−3/s.Thefractureload(P f)
obtainedfromtheCNTspecimens’load–extensionplotswas
usedtoevaluatethefracturetoughnessusingtheempirical
relation[29]:
K1C= Pf
D3/2
1.72
d
−1.27
(2.1)
whereDanddarethespecimendiameterandthediameterof
thenotchedsectionrespectively.Planestrainconditionsand,
byextension, the validityofthe fracture toughness values
Fig 1 – Optical micrograph of the unmodified Cu–Zn–Al alloy.
obtainedwasdeterminedusingtherelationsinaccordance withNathandDas[30]:
D≥K
1C
y
2
(2.2)
ThreerepeattestswereperformedforeachCu–Zn–Alalloy compositiontoensurerepeatabilityandreliabilityofthedata generated
3.1 Microstructures of the Cu–Zn–Al alloys
3.1.1 Optical microscopy
Opticalmicrographsoftheunmodifiedandmodifiedalloysare presentedinFigs.1–4.Fig.1showstheopticalmicrographof theunmodifiedalloy,characterisedbyneedle-likelath struc-turewhichwasacknowledgedtobelathmartensitestructure ThelathstructureobservedinFig.1issimilartothelath mar-tensitestructuresinCu–Zn–Alalloysreportedintheworksby
Xu[31]andDasgupta[32].ThealloyswithBadditions(Fig.2) wereobservedtohaveundergoneachangeinthe martens-itemorphologyfromsharpedgedneedle-likelathstructureto curveedgedrodlikestructurewiththegrainsrelativelylarger than theunmodifiedCu–Zn–Alalloy(Fig.1 Therealsoisa slightincreaseingrainsizewithincreaseinBcomposition (from0.05to0.1wt.%)ifFig.2(b)iscomparedwithFig.2(a) Thisimpliesthatnucleationandgrowthconditioninthealloy
isinfluenced bytheBconcentration TheadditionofFeto theCu–Zn–Alalloys(Fig.3)showastructurewithnear ellip-ticalphasemorphologyandsignificantlyreducedneedle-like martensiteappearance.Thegrainsizedidnotappeartobe sensitivetoFeconcentration(Fig.3 andb)aswiththecaseof
Baddition(Fig.2 Themixed(Fe–B)composition(Fig.4)was observedtohaveacombinationofnearellipticalgrainshape withcurveedgedneedlelikelathmartensitestructure.The observationsmadeareclearindicatorsthatthemicro-alloying elements(Fe,B,andFe–B)actuallymodifythegrainsizeand morphologyofCu–Zn–Alalloys
Trang 4Fig 2 – Optical micrographs of (a) 0.05B modified Cu–Zn–Al
alloy and (b) 0.1B modified Cu–Zn–Al alloy.
3.1.2 SEM observations
The scanning electron microscopy images of the
unmodi-fiedandmodifiedCu–Zn–Alalloys(Figs.5–8)showstructural
featureswhicharecompletelyinconformitywiththe
observa-tionsmadefromthoseoftheopticalmicrographsofthealloys
(Figs.1–4).Itisobservedfrom Fig.5(a)thatthe unmodified
alloymicrostructureconsistsofpredominantlylath
martens-ite structure Fig 6 which presents the BSE images ofthe
boron modified Cu–Zn–Al alloy, is generally characterised
by large grain size and a change in grain edge
morphol-ogy from sharp to round/rod-like (that is compared with
Fig.5 Table2presentsthechange intransverse lath/grain
thicknessfortheunmodifiedandmodifiedCu–Zn–Alalloys
produced.Table2showsthat thegrainsizeincreases with
B addition from 13m for the unmodified composition to
about 28–38mforthe Bmodifiedcomposition Alsograin
sizeisconfirmedto besensitivetothe concentrationofB,
as the averagetransverse grain sizeincreased from 28m
forthe 0.05wt.%BmodifiedCu–Zn–Alalloy compositionto
38mforthe0.1wt.%BmodifiedCu–Zn–Alalloygrade.This
suggeststhat nucleationandgrain growthisinfluenced by
thepresenceandconcentrationofBinthe Cu–Zn–Alalloy
Similar grain morphologies are observed forthe Fe
modi-fied(Fig.7)and the Fe–B modifiedCu–Zn–Al alloys(Fig 8
The change in the grain morphology observed on the Fe
Fig 3 – Optical micrographs of (a) 0.05Fe modified Cu–Zn–Al alloy and (b) 0.1Fe modified Cu–Zn–Al alloy.
modifiedCu–Zn–Alalloy(Fig.7)wasquitesignificant, evolv-ingtowardsanellipticalgrainshape.Thenear-ellipticalgrain morphologyobservedisinagreementwithresultsfrom pre-viousstudies[23,24]onFemodifiedCu–Zn–Alalloys.Also,it can beseenfrom Table2thatalthoughgrainsizeincrease occurswiththeadditionofFeasmicro-alloyingelementin Cu–Zn–Alalloy,thegrainsizeincreasewasinvarianttotheFe concentrationsusedasgrainmodifiers(thatis0.05wt.%Fe and0.1wt.%Fehadsimilargrainsize).Fig.7(c)showsa rep-resentative EDS profilefor the Fe modified Cu–Zn–Al alloy showingpeaksofCuZnandthepresenceofFeinthealloy
Table 2 – Average martensite lath thickness in Cu–Zn–Al alloys.
martensitelath thickness(m)
F(Cu–Zn–Al–0.05B–0.05Fe) 27±1.23
G(Cu–Zn–Al–0.025B–0.075Fe) 26±0.04
Trang 5Fig 4 – Optical micrographs of (a) 0.05Fe–0.05Fe modified
Cu–Zn–Al alloy and (b) −0.025Fe – 0.075B modified
Cu–Zn–Al alloy.
Itwas alsoobserved thatgrain size increaseand
substan-tially modified grain edges (to near elliptical grain shape)
occurredwiththeadditionofFe–Basmicro-alloyingadditions
inCu–Zn–Alalloy.However,similartotheFemicro-alloying
additions,thegrain sizeincreasewas invarianttotheFe–B
concentrationsused
Fig 5 – Back scattered electron images of the unmodified
Cu–Zn–Al alloy.
Fig 6 – Back scattered electron images of (a) 0.05B modified Cu–Zn–Al alloy and (b) 0.1B modified Cu–Zn–Al alloy.
Themicrographssuggestthatalthoughsamecoolingrate wasadoptedforallalloycompositionsproduced,the nuclea-tionandgraingrowthrateswerealteredbythepresenceof themicro-alloyingelements.Theincreaseingrainsize char-acteristic of the Fe, B, and Fe–B modified Cu–Zn–Al alloys investigated differsfrom the observationsmade in similar studies[5,23,24]whereinadditionsofFeandBwereobserved
tocausegrainrefinement.Grainrefinementobservedin Cu-basedalloyshasbeenattributedtochangesinsolidification conditionsofthematerialasaresultofmicro-alloying ele-mentsadditionreducingthecoarsenessofthemicrostructure
[31,33].Thegrainsizeincreaseobservedinthisstudycanbe related toresultsobserved elsewhere.Some micro-alloying elementssuchasTi-Bhavebeenreportedtodelaynucleation
of certain phases while enhancing grain growth simulta-neously [34] The formation of martensite in the forward transformationhasbeenreportedtobeasaresultof nuclea-tionandgraingrowthintheparentphase;hencetherateof nucleationinfluencesthetypeandmorphologyofmartensite formed[35]
3.2 Analysis of X-ray diffraction
TheX-raydiffractionanalysisofselectedalloycompositions
ispresentedinFig.9.Cu–ZnandCu–Alwereidentifiedasthe crystallinephasespresentinthealloy.TheCu–Znphasewas
Trang 6Fig 7 – Back scattered electron images of (a) 0.05Fe modified Cu–Zn–Al alloy, (b) 0.1Fe modified Cu–Zn–Al alloy, and (c) representative EDS profile of the 0.1Fe modified Cu–Zn–Al alloy.
determined to befcc structurefrom analysingthe pattern
ofthediffractingcrystal planesfortheentire2diffraction
angles [36] TheCu–Al phase was determined to have bcc
structurefollowingsimilarbasis.ThepredominanceofCu–Zn
peaks in the alloys analysed was in agreement with EDS
results(Fig.7c),andXRDpatternsofCu–Zn–Alalloysreported
inliterature[37].Thecrystallinephasesidentifiedaretypical
ofCu–Zn–Alalloyswithshapememorycapacity.Guerioune
etal.[9]reportedthattheCu–ZnphaseinCu–Zn–Alalloyis
ametastablephasewhichexhibitsshapememoryeffectand
theCu–AlformsasaresultoftheaffinityofCuforAl.The
micro-alloyingelementshadnoeffectontheXRDpeaksas
diffractionsbythesamecrystalplanesareobservedtooccur
withthesameintensityanddiffractionangles(2)
3.3 Mechanical behaviour of the Cu–Zn–Al alloys
3.3.1 Hardness
The hardness values of the unmodified and modified
Cu–Zn–AlalloysarepresentedinFig.10.Itisobservedthatthe
hardnessoftheunmodifiedCu–Zn–Alalloyishigherthanthat
ofthemodifiedalloys withreductionsinhardnessranging
between32.4and51.5%.ThemodifiedCu–Zn–Alalloy
compo-sitions,isobservedtohaveasignificantdecreaseinhardness
withincreaseinBconcentration.However,theFemodified
Cu–Zn–Alalloygradehadmarginalincreaseinhardnesswith
increaseinFeconcentration.ItisalsonotedthattheCu–Zn–Al
alloysmodifiedwithFe–Bhadthehighesthardnessvaluesin comparisonwithothermodifiedCu–Zn–Alalloycompositions Thevariationinhardnesscanbeattributedtothevariation
ingrainsizeandmorphologyofthealloysasobservedfrom
Figs 1 to8 Thehardness trendis alsoobserved to corre-latewellwiththetransversegrainsizedeterminedforallthe Cu–Zn–Alalloygradesproduced.Inthisregards,thehardness increasewithdecreaseinthegrainsizedetermined(Table2
Thefinelathmartensitestructureisprincipallyresponsible forthehighhardnessoftheunmodifiedalloysasindentation resistanceimproveswithfinergrainsize[25]
3.3.2 Ultimate tensile strength
Theultimatetensilestrengthresultsoftheunmodifiedand modifiedCu–Zn–AlalloysarepresentedinFig.11.Thetensile strengthoftheunmodifiedalloyisobservedtobesignificantly lowerthanthatofthemodifiedalloygrades.Tensilestrength increasewithintherangeof28.37–52.74%wasobservedwith theuseofFe,BandFe–Basmicro-alloyingelementsforthe Cu–Zn–Al alloy.Thelowtensile strengthoftheunmodified alloyisattributedtothefinelathmartensitestructure.The edgesoftheneedlelikelathstructureserveassitesforstress concentrationandtriaxialstressstateinthemicrostructure Stressconcentrationandtriaxialstressstateconstrains yield-ingofthematerialandfacilitatesmicro-cracknucleationand propagationwhichculminatesinfractureevenwhenthe nom-inalappliedstressonthematerialisrelativelylow[31].The
Trang 7Fig 8 – Back scattered electron images of (a) 0.05Fe–0.05B
modified Cu–Zn–Al alloy, and (b) 0.025Fe–0.075B modified
Cu–Zn–Al alloy.
improvedtensilestrengthinthemodifiedcompositionsisas
aresultofthechange inthegrainmorphologydespitethe
obviousincreaseingrainsize.Theround/ellipticalgrainedges
reducesthetendencytoactasstressconcentrators,andthus
necessitatetheapplicationofarelativelyhigherstressto
facil-itateyieldingandincreasemaximumstressbearingcapacity
Thisimpliesthatthestressappliedtothemodifiedalloyis
moreuniformlydistributedincontrasttotheunmodifiedalloy
wherehigherstress concentrationoccurs atthe lathedges (tips)
3.3.3 Percent elongation
ThepercentelongationoftheCu–Zn–Alalloyswasobserved
to increase with the addition of the micro-alloying ele-ments (Fig 12).Thisimpliesthat theductilityofthealloys improved with B, Fe, and Fe–B addition The elongation
is also observed to be sensitive to the concentration of the microelement as reduction in percentage elongation occurred with increasein the concentrationofthe respec-tive micro-alloying elements (B, Fe and Fe–B).The Fe and Fe–B modified Cu–Zn–Al alloy compositions were observed
to have higher elongation values The unmodified alloy had the lowest elongation (6.7%) compared to 12.6% and 11.7% for 0.05Fe and 0.05Fe–0.05B modified alloys, respec-tively Improvementinductilitydue toadditionsofFe and
B to Cu–Zn–Al alloys has been reported by Alaneme [25]
andFerreiraetal.[23].Thisimprovementisanindicatorof improvedplasticityandhencetheworkabilityoftheCu–Zn–Al alloy
3.3.4 Fracture toughness
Thefracturetoughnessvaluesofthe unmodifiedand mod-ifiedCu–Zn–AlalloysarepresentedinFig.13.Itisobserved thatthefracturetoughnessoftheCu–Zn–Alalloyincreased withintherangeof10–23%withtheuse ofFe,B,andFe–B
asmicro-alloyingadditions.TheFemodifiedCu–Zn–Alalloy compositionswereobservedtohavethehighestimprovement (∼23%increase)ofallthemodifiedCu–Zn–Alalloysproduced
Inessence,thisimpliesthattheresistanceofCu–Zn–Alalloys
tocrackpropagationisimproved.Thegrainmodificationfrom lath martensite (needle-like)grainedgesto round/elliptical grain edgemorphology forthemodifiedCu–Zn–Al alloysis responsiblefortheimprovedfracturetoughness.The ellipti-calgrainedgemorphologyhelpsreducestressconcentration whichreducestendencyforcracknucleationandpropagation
[38]
3.3.5 Fracture surface observation
Fig 14 shows representative secondary electron imagesof the tensile fracture surfaces ofthe unmodified and modi-fiedCu–Zn–Al alloysinvestigated.Thefracturefeaturesare
Fig 9 – X-ray diffraction analysis of the unmodified alloy (A) and three modified alloy compositions (0.05B modified Cu–Zn–Al alloy) (B), (0.05Fe modified Cu–Zn–Al
alloy) (D) and (0.05Fe–0.05B modified Cu–Zn–Al alloy) (F).
Trang 8Fig 10 – Hardness values of the unmodified and modified Cu–Zn–Al alloys.
Fig 11 – Ultimate tensile strength of unmodified and modified Cu–Zn–Al alloys.
indicativeofafibrous micro-mechanismtocrackinitiation,
propagationandfracturecharacterisedbytheprevalenceof
dimpledruptureparticularlyforthemodifiedalloy
composi-tions(Fig.14(b)and(c)).Acombinationofsphericaldimples
and grain facetswere observed on the fracture surface of
the unmodified Cu–Zn–Al alloy, indicating mixed fracture modes The fractographic features observed are in agree-mentwithfracturesurfacecharacteristicsofCu–Zn–Alalloys modified with micro-alloying elements reported by other authors[24,33]
Fig 12 – Percentage elongation of the unmodified and modified Cu–Zn–Al alloys.
Trang 9Fig 13 – Fracture toughness of the unmodified and modified Cu–Zn–Al alloys.
Fig 14 – Representative secondary electron images of the tensile fracture surfaces of the Cu–Zn–Alloys (a) unmodified Cu–Zn–Al alloy, (b) 0.05B modified Cu–Zn–Al alloy, and (c) 0.05Fe–0.05B modified Cu–Zn–Al alloy.
The microstructure, phase characteristics and mechanical
behaviour of Cu–18Zn–6Al alloys containing two different
weightpercenteach(0.05wt.%and0.1wt.%)ofFeandB,and
two other compositions which have mixtures ofFe and B
(0.05wt.%Band0.05wt.%Fe)(0.025wt.%Feand0.075wt.%B)
wereinvestigated.Theresultsshowthat:
1 Needle-like lath martensite structure with sharp grain edges observed for the unmodified Cu–Zn–Al alloy was transformed to grains with significantly larger trans-verse grain size and curve edged/near elliptical grain shape for the Fe, B, and Fe–B modified Cu–Zn–Al alloys
2 Cu–Znwithfccstructurewasthepredominantcrystalline phaseidentifiedinthealloyswhileCu–Alwithbcc struc-turewasthesecondphaseobserved
Trang 103 ThecrystallinephasesidentifiedaretypicalofCu–Zn–Al
alloyswithshapememorycapacity
4 ThehardnessoftheunmodifiedCu–Zn–Alalloywashigher
thanthatofthemodifiedalloyswithreductionsin
hard-nessrangingbetween32.4and51.5%
5 ThetensilestrengthoftheunmodifiedCu–Zn–Alalloywas
significantlylowerthanthatofthemodifiedalloygrades
Thepercentelongationandfracturetoughnessofthe
mod-ifiedalloywerehigherthanthatoftheunmodifiedalloy
grade
6 Themodified Cu–Zn–Al alloysmostly exhibited fracture
featuresindicativeofafibrousmicro-mechanismofcrack
initiationandpropagationcharacterisedbytheprevalence
ofdimpledrupture
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest
r e f e r e n c e s
[1] DarjanC[Masterthesis]Shapememoryalloys.Universityof
Ljubljana;2007
[2] BarbarinoS,SaavedraF,AjajRM,DayyaniI,FriswellMI.A
reviewonshapememoryalloyswithapplicationsto
morphingaircraft.SmartMaterStruct2014;23:19
[3] DarRD,YanH,ChenY.Grainboundaryengineeringof
Co–Ni–Al,Cu–Zn–Al,andCu–Al–Nishapememoryalloysby
intergranularprecipitationofaductilesolidsolutionphase
ScrMater2016;115:113–7
[4] AlanemeKK,OkoteteEA.Reconcilingviabilityand
cost-effectiveshapememoryalloyoptions–areviewof
copperandironbasedshapememorymetallicsystems.Eng
SciTechnolIntJ2016,
http://dx.doi.org/10.1016/j.jestch.2016.05.010
[5] DasguptaR,JainAK,KumarP,HussainS,PandeyA.Roleof
alloyingadditionsonthepropertiesofCu–Al–Mnshape
memoryalloys.JAlloysCompd2014,
http://dx.doi.org/10.1016/j.jallcom.2014.09.047
[6] CladeraA,WeberB,LeinenbachC,CzaderskiC,ShahverdiM,
MotavalliM.Ironbasedshapememoryalloysforcivil
engineeringstructures:anoverview.ConstrBuildMater
2014;63:281–93
[7] EvirgenA,MaJ,KaramanI,LuoZP,ChumlyakovYI.Effectof
agingonthesuperelasticresponseofasinglecrystalline
FeNiCoAlTashapememoryalloy.ScrMater2012;67:475–8
[8] GómezdeSalazarJM,SoriaA,BArrenaMI.Corrosion
behaviourofCu-basedshapememoryalloysdiffusion
bonded.JAlloysCompd2005;387:109–14
[9] GueriouneM,AmiourY,BounourW,GuellatiO,BenaldjiaA,
AmaraA,etal.SHSofshapememoryCuZnAlalloys.IntJ
SelfPropagHighTempSynth2008;17(1):41–8
[10]AminiR,MousavizadSM,AbdollahpourH,GhaffariM,
AlizadehM,OkyayAK.Structuralandmicrostructuralphase
evolutionduringmechano-synthesisof
nanocrystalline/amorphousCuAlMnalloypowders.Adv
PowderTechnol2013;24:1048–53
[11]DiánezMJ,DonosoE,CriadoJM,SayaguésMJ,DíazG,Olivares
L.StudybyDSCandHRTEMoftheagingstrengtheningof
Cu–Ni–Zn–Alalloys.MaterDes2016;92:184–8
[12]ZenginR,KayalN.Structuralandmorphological
investigationsonshape,memoryCuZnAlalloys.ActaPhys
PolA2010;118(4):619–22
[13]AsanovicV,DelijicK,JaukovicN.Astudyoftransformations
of-phaseinCu–Zn–Alshapememoryalloys.ScrMater 2008;58:599–601
[14]BujoreanuLG,LohanNM,PricopB,CimpoesuN.Thermal memorydegradationinaCu–Zn–Alshapememoryalloy duringthermalcyclingwithfreeaircooling.JMaterEng Perform2011;20(3):468–75
[15]LiuJ,HuangH,XieJ.Therolesofgrainorientationandgrain boundarycharacteristicsintheenhancedsuperelasticityof Cu71.8Al17.8Mn10.4shapememoryalloys.MaterDes 2014;64:427–33
[16]KumarP,JainaK,HussainS,PandeyA,DasguptaR.Changes
inthepropertiesofCu–Al–Mnshapememoryalloydueto quaternaryadditionofdifferentelements.RevMatér 2015;20(1):284–92
[17]WeiW,WangSL,WeiKX,AlexandrovIV,DuQB,HuJ MicrostructureandtensilepropertiesofCu–Alalloys processedbyECAPandrollingatcryogenictemperature.J AlloysCompd2016;678(5):506–10
[18]ZhouS,LvW,LiP,GongY,TaoJ,ChengL,etal.Mechanical propertiesanddeformationkineticsofbulkCu–Al–Znalloy subjectedtorollingandannealing.MaterSciEngA 2014;609(15):217–21
[19]GongYL,RenSY,ZengSD,ZhuXK.Unusualhardening behaviourinheavilycryo-rolledCu–Al–Znalloysduring annealingtreatment.MaterSciEngA2016;659(April):165–71
[20]LanziniF,RomeroR.Thermodynamicsofatomicorderingin Cu–Zn–Al:aMonteCarlostudy.ComputMaterSci
2015;96(PartA):20–7
[21]RochaLimaEP,BotelhodeAraújoPC,deQuadrosNF, SanguinettiFerreiraRA.Proceedingsof5thnorth-northeast congressofmechanicalengineering.Fortaleza-CE;1998
[22]WangFT,ChenFX,WeiZG,YangDZ.Theeffectof microelementsonthegrainrefiningandgraingrowth behaviourofCuZnAlshapememoryalloys.ScrMetallMater 1991;25:2565–70
[23]FerreiraSR,RochaLE,QuinoFA,QuadrosNF,OlimpioAO, YadavaYP.MicrostructuralevolutioninaCuZnAlshape memoryalloy:kineticsandmorphologicalaspects.Mater Res2000;3(4):119–23
[24]AlanemeKK,SulaimonAA,OlubambiPA.Mechanicaland corrosionbehaviourofironmodifiedCu–Zn–Alalloys.Acta MetallSlov2013;19(4):292–301
[25]AlanemeKK.Indentationresistanceandcorrosionbehaviour
ofFe–MnmodifiedCu–Alalloysinselectedindustrialand biologicalfluids.ActaMetallSlov2014;20(4):366–74
[26]ASTME18-16.StandardtestmethodsforRockwellhardness
ofmetallicmaterials.WestConshohocken,PA:ASTM International;2016.http://www.astm.org
[27]ASTME8/E8M-15a.Standardtestmethodsfortensiontesting
ofmetallicmaterials.WestConshohocken,PA:ASTM International;2015.http://www.astm.org
[28]AlanemeKK.Fracturetoughness(K1C)evaluationfordual phasemediumcarbonlowalloysteelsusingcircumferential notchedtensile(CNT)specimens.MaterRes
2011;14(2):155–60,
http://dx.doi.org/10.1590/S1516-14392011005000028 [29]DieterGE.Mechanicalmetallurgy.Singapore:McGraw-Hill; 1988
[30]NathSK,DasUK.Effectofmicrostructureandnotcheson thefracturetoughnessofmediumcarbonsteel’.JNavalArch MarEng2006;3:15–22
[31]XuJW.EffectsofGdadditiononmicrostructureandshape memoryeffectofCu–Zn–Alalloy.JAlloysCompds 2008;448:331–5
[32]DasguptaR.AlookintoCu-basedshapememoryalloys: presentscenarioandfutureprospects.JMaterRes 2014;29(16)