1.HCLL DEMO equatorial outboard blanket module.verticalstiffeningplates,iskeptthesecondcalledadvanced ver-ticalstiffeningplatesareremovedandthelastcalledadvanced+ withhorizontalstiffenin
Trang 1Fusion Engineering and Design
j ou rn a l h o m epa g e : w w w e l s e v i e r c o m / l o c a t e / f u s e n g d e s
Jean-Charles Jaboulaya,∗, Giacomo Aielloa, Julien Auberta, Alexandro Morina,
Marc Troisneb
a CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France
b INSTN, Internship at CEA, France
h i g h l i g h t s
•AcompletenuclearanalysisoftheDEMOHCLLhasbeencarriedoutatCEAwiththeTRIPOLI-4®MonteCarlocode
•TheTRIPOLI-4®DEMOtokamakmodelwasgeneratedbytheCADimporttoolMcCad
•SeveralHCLLblanketsdesignswereinvestigatedtoimprovethetritiumproduction
•Thereferencedesignwhichisacompromisebetweentritiumproductionandmechanicalrobustnessmetallcriteria(TBR,nuclearheating,DPA,He production)
a r t i c l e i n f o
Article history:
Received 12 September 2016
Received in revised form 24 January 2017
Accepted 27 January 2017
Available online xxx
Keywords:
DEMO
Neutronics
Blanket
HCLL
Tritium breeding
Nuclear heating
TRIPOLI-4 ®
a b s t r a c t
ThispaperpresentsthenuclearanalysisoftheEuropeanDEMObaseline2015withHCLLblanketcarried outwiththeTRIPOLI-4®MonteCarlocodeandtheJEFF-3.2nucleardatalibrary.TheTRIPOLI-4®model wasimportedfromCADusingtheMcCadtool.Aprocedurethatgeneratesthedetailed3Dmodel describ-ingalltheHCLLblanketinternalstructureswasdeveloped.Thisprocedureallowsparametrizationofthe blanketinternalstructuressuchasthenumberofcoolingplates,manifolds,etc.andthethicknessofthe stiffeninggridforinstance.Differentdesignvariantswerestudiedtoimprovethetritiumproduction Fromthispreviousstudyacompletenuclearanalysiswascarriedoutonapromisingdesignwhichisa compromisebetweentritiumproductionandmechanicalrobustness.Allcriteria(TBR,nuclearheating
incoilsanddisplacementdamageinvacuumvessel)aremetusingthisnewreferencedesign
©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
TheEUROfusionConsortium[1]developsaconceptualdesign
ofafusionpowerdemonstrator(DEMO)intheframeworkofthe
European“Horizon2020”innovationandresearchprogramme[2]
KeyissuesforDEMOaretritiumself-sufficiencyandheatremoval
forconversionintoelectricity.Thesefunctionsarefulfilledbythe
breedingblanketssurroundingtheplasmachamber
Within theBreeder Blanket project(WPBB) of EUROfusion’s
PowerPlantPhysicsandTechnology(PPPT)programme[3],CEA
isinchargeofthedesignoftheHeliumCooledLithiumLead(HCLL)
blanket[4]forDEMOincludingthenuclearanalyses.In WPBB’s
frameworkthreeotherblanketconceptsarerespectivelystudiedby
∗ Corresponding author.
E-mail address: jean-charles.jaboulay@cea.fr (J.-C Jaboulay).
KIT,ENEAandCIEMAT:theHeliumCooledPebbleBed(HCPB),the WaterCooledLithiumLead(WCLL)andtheDualCoolantLithium Lead(DCLL)
CEA’s nuclearanalysis approach is based on theTRIPOLI-4® MonteCarlocode[5]andtheJEFF-3.2[6]nucleardatalibrary.This wasvalidatedinpreviousHCLLnuclearanalysis[7].TheTritium BreedingRatio(TBR)evaluatedinthisanalysis,basedontheDEMO
2014baseline,isequalto1.07,whichisbelowthetargetvalueof1.1 [8].Toimprovethetritiumproduction,designmodificationshave beeninvestigated.Thereductionofthesteelamountandthe opti-misationofthemanifoldsscheme,toincreasetheBreedingZone (BZ),werethemainoptions
Tomodelthedifferentbreedingblanketdesignvariantsan auto-matedprocedurewasdevelopedtogeneratetheinternalstructures
in an empty segmentation Threedesigns with TBR≥1.1 (with DEMO2014baseline)havebeenidentified:onecalled optimised-conservative (beer box concept, with internal horizontal and http://dx.doi.org/10.1016/j.fusengdes.2017.01.050
0920-3796/© 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4 0/ ).
Trang 2Fig 1.HCLL DEMO equatorial outboard blanket module.
verticalstiffeningplates,iskept)thesecondcalledadvanced
(ver-ticalstiffeningplatesareremoved)andthelastcalledadvanced+
(withhorizontalstiffeningplatesonlyandnocoolingplates)
Finally,thesethreedesignvariantshavebeenimplementedin
thenewDEMObaselinecalled“EUDEMO12015”[9].Thispaper
presentsthenuclearanalysisperformedtoevaluatethedifferent
HCLLdesignoption
2 HCLL blanket design
TheHCLLbreedingblanketlayoutisamulti-modulesegment
design.Modulesareweldedinastiffpoloidalbackplateinorder
toformabanana-shapedsegmentationthatcanberemovedfrom
theupperportoftheDEMOreactor.TheBackSupportingStructure
(BSS)alsoworksasamanifold,collectinganddistributing
lithium-leadandheliumindifferentblanketmodules
Thedesign ofoutboard equatorialHCLL moduleisshown in
Fig.1[10].EachHCLLblanketmoduleconsistsofaEurofer [11]
steelboxformedbyaU-shapedplatecomposingthefirstandside
walls(coatedwitha2mmtungstenlayer)closedbytwocapson
thetopandbottomandonthebackbyasetofBackPlates(BP)and
tierodsTR(forBSSattachments)
Theblanketmodulestructureisreinforcedbyaninnergridof
verticalandhorizontalStiffeningPlates(vSP,hSP).Thestiffening
platesdefineanarrayofinternal cellswhere theBreederUnits
(BU)arelocated.TheeutecticPb-Li(enrichedto90%in6Li)flows
aroundparallelhorizontalCoolingPlates(CP).Aninletandanoutlet
chamberonthebreederunitbackplateensurethehelium
distribu-tionandcollectionfortheCoolingPlates(bottompartofFig.1).All
theplates,exceptthebackplatesconstitutingthemanifolds,have
internalcoolingchannelswitharectangularsection
Thereferencedesignusedinthepreviousanalysis[7](calledref
2014)hasthreecoolingplatesperbreederunitandthreehelium
manifolds:onefortheFirstWall(FW),oneforthestiffeningplates
andoneforthecoolingplates;theobtainedTBRis1.08(thishigher
valuecomparedtoresultsof[7],1.07,isduetogeometricalerror
corrections).ThreedesignvariantstoimprovetheTBRhavebeen
defined.Firstly,theoptimised-conservativethatkeepsthebeerbox
Table 1
Main parameters of the DEMO reactor baselines.
(lossofstiffness incapsarea)andpressure dropsincrease Fur-therdesigndevelopmentsareneededtosolvetheseproblems.The optimised-conservativedesignoffersarobustsolutiontomeetall thecriteriaanditisconsideredasthereferencedesign2016(ref 2016)
3 HCLL DEMO model
TheTRIPOLI-4® EUDEMO12015 HCLL model is basedon a genericCADmodelwithemptyblanketdevelopedatKIT[12].The parametersofthestudiedtokamakarepresentedinTable1 Com-paredtothepreviousbaselinebreedingblanketcoverageisnow biggerbecausethedivertorissmallerinthe2015DEMObaseline ThesegmentationCADmodeldeveloped bytheHCLL design team has been implemented in the generic model using the SALOME platform [13] The TRIPOLI-4® model was generated usingtheCADimporttoolMcCad[14].ToeaseCADimportonly emptymodulesareconsidered.Anautomatedprocedure,written
inpython,fillstheemptyblanketcellswiththeinternalstructures (FW,Caps,BPs,CPs,hSP,vSP,manifolds).Thisautomatedprocedure allowsparametrizationoftheBUtostudydifferentdesigns.Fig.2 showsaradial-poloidalcutofthetokamakwithHCLLblanket.Fig.3 showstheinternalstructure:stiffeninggrids,coolingplates,back platesandmanifoldsofthe2014referenceHCLLdesign
4 Results
In this section the obtained neutron wall loading, tritium breedingratio,nuclearheatingandneutronfluxdistributionare presented
4.1 Neutronwallloading Firstofall,theNeutronWallLoading(NWL)wascalculated.It
isdefinedbytheneutroncurrent(normalisedtothefusionpower) crossingthefirstwallsurfacedividedbythefirstwallarea;NWL
isexpressedinMW/m2.Toavoidbackscatteringofneutronsin thecurrenttallying(duetoreflectivesurface),neutronsmustbe discardedafterpassingthroughthefirstwall.Leakageconditions
atfirstwallsurfacesareusedinTRIPOLI-4® Fig.4showstheobtainedpoloidalNWL.Itwasestimatedoneach BreedingBlanketModule(BBM)firstwallsurfacesnumbered1–15 (seeFig.2).Themaximumvalueof1.4MW/m2isobtainedinthe outboardequatorialmodule,whileNWLintheinboardequatorial moduleisaround1.2MW/m2.AveragedBBMNWLis1.01MW/m2
Trang 3Table 2
TBR for different design options (TBR contribution of manifolds and BSS is taken into account).
* In these cases BZ thickness was reduced by 31 mm to increase BSS thickness, MF thickness is divided by 2 and stiffening plates thickness are increased from 11 mm to
14 mm.
Fig 2. TRIPOLI-4 ®
plot of the EU DEMO1 2015 HCLL model.
Fig 3.Poloidal-radial cut of a breeding unit design ref 2014 with 3 CP and 3 helium
manifolds.
4.2 Tritiumbreedingratio
TheTBRwasevaluatedforthedifferentHCLLdesignvariants
anddifferentDEMObaselines;resultsarepresentedinTable2.The
newbaselinehasastrongimpactonTBR,usingthesameBUdesign
with3CPsand3manifolds(MF)theTBRincreaseby+0.07thanks
toahigherbreedingblanketcoverageduetoasmallerdivertor
NeverthelessthisTBRmarginwillbeconsumedconsideringfuture
probablemodifications(highheatfluxpanel,seconddivertor,etc.)
HCLLref.design2014and2016arenotdirectlycomparable(see*
belowTable2).AdvanceddesignshavegoodTBRperformancebut
thickercapsmustbetakenintoaccountinneutronicmodeltodraw
aconclusion
CFDanalysisoftheBSSshowedtoohighpressuredropinthe
inboardpart.AstudywascarriedouttoincreaseinboardBSS
thick-nesswiththeobjectivetokeepthesameTBRvalue.Thestrategy
employedistoreducetheinboardBZandcounterbalancetheTBR
Fig 4.NWL poloidal distribution.
lossbyoutboardBZthicknessincrease(outboardBSSdecrease).It hasbeenshownthatTBRcanbekeptreducinginboardBZ thick-nessbyXmmandincreasingoutboardBZthicknessbyXmmwith
X<60mm
4.3 Nuclearheating CalculatedvaluesofNuclearHeating(NH)inEUDEMO12015 HCLLcomponentsarereportedinTable3.Theenergy multiplica-tionfactor(ME)is1.2.Onlyresultsobtainedwiththeref.2016HCLL designarereported;thereareonlyveryslightdifferenceswiththe otherdesigns
ThepoloidalNHdistributionwithineachBBMisintherange from0.8MWto3.5MW(themaximumvalueisobtainedinthe outboardequatorialmodule)
4.4 Inboardshieldinganalysis
InthispartonlytheHCLLref.2016designwasstudied(no sig-nificantimpactintherearpartofthemachineoftheHCLLblanket designisexpectedsincetheneutronfluxintheBSSisquite simi-lar).Theneutronflux(Fig.6 nuclearheating(Fig.5 displacement damagerate(Fig.7)andheliumproduction(Fig.8)havebeen cal-culatedalongtheinboardmid-plane.Forapropercalculationmesh tallyfunctionwasnotused(toavoidquantityaveragingover dif-ferentmaterialsinamesh),thegeometricalcellswerediscretised (5cmthickness).Thenuclearquantityisaveragedonapoloidal heightof50cm(fromz=10toz=60mm).Variancereduction tech-niqueswereusedinTRIPOLI-4®simulationtoobtainresultswith reasonablylowstatisticalerrorsuptothetoroidalfieldcoilregion (lowerthan5%).Functionalitypresentedin[15],addressedto cou-pledneutronphotontransportbiasing,wasveryusefultosetthe
Trang 4Table 3
Nuclear heating breakdown.
Fig 5. Nuclear power density radial profile across inboard mid-plane (NH in BZ
is given for the W armour, FW and then the LiPb in MF NH in the back plates is
around 0.3 W/cm 3 and 1 W/cm3 for the LiPb manifold, MF includes BSS region; the
horizontal black line represent the NH limit in TF coils: 5 × 10 −5 W/cm 3 ).
Fig 6.Inboard radial neutron flux profile (MF includes the BSS region; horizontal
black line represent the NH limit in TF coils: 10 9 n/cm 2 s).
Table4showsthemainquantityobtainedthroughtheinboard
mid-plane.TheHCLLref.2016designmetallthecriteria[8]:fast
Fig 7. Inboard radial displacement damage rate profile are given in steel, FW includes first wall (facing the plasma) and side wall.
Fig 8.Inboard radial helium production profile in steel, FW includes first wall (facing the plasma) and side wall.
neutronfluxinTFCisbelow109n/(cm2s),nuclearheatinginTFC
isbelow50W/m3,displacementsperatom(dpa)inVacuum Ves-sel(VV)for6fullpoweryear(fpy)isbelow2.75(1.6)andhelium productionfor1.57fpyintherearpartofthemanifoldisbelow1 atomicpartspermillion(appm),0.8appm
AsimulationwasdonewithathickerBSS(+35mmofhelium
toreducepressuredropintheinboardBSScf.4.2)toevaluatethe impactonNHincoils.ThisthickerBSScausesanincreaseoftheNH
incoilsby+0.6×10−5W/cm3,i.e.2.2×10−5W/cm3intotal,which
isstillbelowthelimit.Theothercriteriaarealsometwiththis geometry
Trang 5Table 4
Main quantities in the first 5 cm of the main components along the inboard mid-plane.
a In the tungsten armour.
InthisstudyBSScellsarehomogeneous.Futureworkswillfocus
onabettermodellingoftheBSStoverifytheshieldingrequirement
intheinboardmid-plane
5 Conclusions
ThispaperpresentsthenuclearanalysisoftheHCLLblanketwith
thenewDEMObaseline.Severalbreedingblanketdesignvariants
werestudiedtoimprovethetritiumproduction.Areferencedesign
whichisacompromisebetweenTBRperformanceand
mechan-icalrobustnesswascompletelyanalysed.Thisdesignmetallthe
neutronicrequirements.Futureworkwillfocusontheadvanced
designs,inparticularontheimpactofthickercaps(thatwithstand
LOCAloading)onTBR.AbettermodellingoftheBSSisunderway
toverifyitsimpactoninboardshielding
Acknowledgments
This work has been carried out within the framework of
theEUROfusionConsortium and hasreceivedfundingfromthe
Euratomresearchandtrainingprogramme2014–2018undergrant
agreementno.633053.Theviewsandopinionsexpressedherein
donotnecessarilyreflectthoseoftheEuropeanCommission.The
authorswarmlythankYuefengQiuand LeiLufortheirhelp on
McCad
References
[1] https://www.euro-fusion.org/ [2] http://ec.europa.eu/programmes/horizon2020/ [3] L.V Boccaccini, et al., Objectives and status of EUROfusion DEMO blanket studies, ISFNT-12, 2015.
[4] G Aiello, J Aubert, et al., Development of the helium cooled lithium lead blanket for DEMO, Fus Eng Des 89 (October (7–8)) (2014) 1444–1450 [5] TRIPOLI-4 Project Team, TRIPOLI-4 version 8 User Guide, CEA-R-6316, 2013, February http://www.oecd-nea.org/tools/abstract/detail/nea-1716/ [6] JEFF-3.2 evaluated data library https://www.oecd-nea.org/dbforms/data/eva/ evatapes/jeff 32/
[7] J.-C Jaboulay, et al., Comparison over the nuclear analysis of the HCLL blanket for the European DEMO, Fus Eng Des (2016) 365–370.
[8] U Fischer, et al., Neutronics requirements for DEMO fusion power plant, Fus Eng Des (2015) 2134–2137.
[9] W Ronald, DEMO1 Reference Design – 2015 April (“EU DEMO1 2015”) – PROCESS One Page Output, Internal EUROfusion data.
[10] P Arena, et al., Thermal optimization of the helium-cooled lithium lead breeding zone layout design regarding TBR enhancement, 2017 (in this conference).
[11] B Van der Schaaf, et al., The development of Eurofer reduced activation steel, Fus Eng Des 69 (2003) 197–203.
[12] P Pereslavtsev, L Lu, 2015 generic DEMO CAD model for neutronic simulations, Internal EUROfusion data.
[13] SALOME platform www.salome-platform.org [14] McCad https://github.com/inr-kit/McCad-Salome-Docs [15] O Petit, et al., Variance reduction adjustment in Monte Carlo TRIPOLI-4 ®
neutron gamma coupled calculations, Prog Sci Technol 4 (2014) 408–412.