1. Trang chủ
  2. » Giáo án - Bài giảng

new solitary wave solutions of 3 1 dimensional nonlinear extended zakharov kuznetsov and modified kdv zakharov kuznetsov equations and their applications

11 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề New solitary wave solutions of (3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications
Tác giả Dianchen Lu, A.R. Seadawy, M. Arshad, Jun Wang
Trường học Jiangsu University
Chuyên ngành Mathematics
Thể loại Research article
Năm xuất bản 2016-2017
Định dạng
Số trang 11
Dung lượng 3,14 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Arshada, Jun Wanga Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China Mathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia Mathema

Trang 1

6

7

8 Dianchen Lua, A.R Seadawyb,c,⇑ , M Arshada, Jun Wanga

Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China

Mathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia

Mathematics Department, Faculty of Science, Beni-Suef University, Egypt

12

15 Article history:

16 Received 21 November 2016

17 Received in revised form 21 January 2017

18 Accepted 5 February 2017

19 Available online xxxx

20 Keywords:

21 Modified extended direct algebraic method

22 Solitons

23 Solitary wave solutions

24 Jacobi and Weierstrass elliptic function

25 solutions

26 Three dimensional extended

Zakharov-27 Kuznetsov dynamical equation

28 (3 + 1)-Dim modified

KdV-Zakharov-29 Kuznetsov equation

30

3 1

a b s t r a c t

32

In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various

33 forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by

34 utilizing modified extended direct algebraic method Soliton solutions in different forms such as bell

35 and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc

36 are obtained, which have large applications in different branches of physics and other areas of applied

37 sciences The obtained solutions are also presented graphically Furthermore, many other nonlinear

evo-38 lution equations arising in mathematical physics and engineering can also be solved by this powerful,

39 reliable and capable method The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica

40 equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the

41 reliability and effectiveness of the current method

42

Ó 2017 The Author Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license

43 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

44 45

46 Introduction

47 Nonlinear PDEs involve nonlinear complex physical phenomena,

48 which plays a vital role in plasma physics and many other aeras of

49 applied sciences The generalized KdV-Zakharov-Kuznetsov

equa-50 tions are an important models for numerous physical phenomena

51 as well as waves in nonlinear LC circuit by way of mutual

induc-52 tance among neighboring inductors, shallow and stratified internal

53 waves, ion-acoustic waves in plasma physics, applications in space

54 environments and astrophysical, nonlinear optic, hydrodynamic

55 and many more [1–5] Moreover, the electrostatic solitary waves

56 have been determined in many areas such as solar, wind, earths

57 magnetotail and polar magnetosphere [2] etc The KdV equations

58 have several two dimensional weak variations Solitons and solitary

59 waves represent one of the famous and motivating features of

non-60 linear phenomena spacially in extended equations, which have

61 many important properties The Zakharov-Kuznetsov equation is

62 one of the two well studied canonical two dimensional extensions

63

of KdV equation [6] Nonlinear extended Z-K equations are utilized

64

to discuss the nonlinear dust ion-acoustic waves in magnetized two

65 ion-temperature dusty plasmas, propagations of the low frequency

66 ion-acoustic wave in a thick Quantum magneto-plasmas etc [7–9]

67 Recently, the authors in [10] derived nonlinear three dimensional

68 extended zakharov-Kuznetsov dynamical equation in a magnetized

69 two ion-temperature dusty plasma by using the theory of reductive

70 perturbation.

71 The modified KdV model can be drived for the elaboration of

72 ion-acoustic perturbation in plasma with components of two

neg-73 ative ions of different temperature [11] In the case of weakly two

74 dimensional variations of the modified KdV equation [11] , the

75 modified KdV-ZK model occurs [12–14] , which is an important

76 model arises in different branches of physics such as plasma

phy-77 sics, nonlinear optics fluid dynamics, theoretical physics quantum

78 mechanics and mathematical physics to analize the main

proper-79 ties of non-linear propagation of various physical phenomena.

80 Recently, many researchers have been giving much attention on

81 the study of constructing the solitons and solitary wave solutions

82

of nonlinear PDEs [15–18] , which occur in mathematical physics.

http://dx.doi.org/10.1016/j.rinp.2017.02.002

2211-3797/Ó 2017 The Author Published by Elsevier B.V

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

⇑ Corresponding author at: Mathematics Department, Faculty of Science, Taibah

University, Al-Ula, Saudi Arabia

E-mail address:Aly742001@yahoo.com(A.R Seadawy)

Results in Physics xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Results in Physics

j o u r n a l h o m e p a g e : w w w j o u r n a l s e l s e v i e r c o m / r e s u l t s - i n - p h y s i c s

Please cite this article in press as: Lu D et al New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified

Trang 2

83 So, Many powerful methods have been discovered to construct the

84 solitons and solitary wave solutions such as inverse scattering

85 scheme [3] , direct algebraic method [18] , Bcklund transform

86 method [19] , the Hirota’s bilinear scheme [20] , exp( /ð g

Þ)-87 expension method [21] , extended tanh method [22] , auxiliary

88 equation method [23] , the mapping method and extended

map-89 ping method [24] , rational expansion method [25] , elliptic function

90 method [26] and many more [27,28] Many numerical schemes

91 also have been developed such as Adomian decomposition method

92 [29] , homotopy analysis method [29,30] , homotopy perturbation

93 method [31] , differential transform and reduced differential

trans-94 form method [32–35] etc to obtain the numerical solutions in

dif-95 ferent form of non-linear evaluation equations The study about

96 solutions, structures, interaction and further properties of soliton

97 gained much attention and various meaningful results are

success-98 fully derived [36–39]

99 In this work, the ansatz equation is further extended in the

100 modified extended direct algebraic method to construct soliton

101 and solitary wave solutions of three-dimensional EZK equation

102 and modified KdV-ZK equation Consequently, more general and

103 new exact solutions in soliton and solitary wave form are

con-104 structed [40–52]

105 This article is ordered as follows An introduction is given in

106 Section ‘Introduction’ The main steps of the modified extended

107 direct algebraic method are specified in Section ‘Description of

108 modified extended direct algebraic method’ We obtain general

109 new exact solutions in soliton, solitary wave and elliptic solutions

110 in different form of three-dimensional EZK equation and (3 +

1)-111 dimensional modified KdV-ZK equation in Section ‘Application of

112 the modified extended direct algebraic method’ Lastly, the

conclu-113 sion is given in Section ‘Conclusion’.

114 Description of modified extended direct algebraic method:

115 Let us assume a general non-linear evolution equation in x ; y; z

116 and t as

117

F u; u  t; ux; uy; uz; uxx; uyy; uzz; uxy; uxz; uyz; uxxx;  ¼ 0; ð1Þ

119

120 where the function u ðx; y; z; tÞ is unknown and F is a polynomial

121 function with respect to some functions OR specified variables,

122 which have non-linear and terms and highest order derivatives of

123 the unknown functions and can be reduced to a polynomial

func-124 tion by utilizing transformations in which the real variables x ; y; z

125 and t can be merge in a complex variable The key steps of this

126 method are as:

127 Step 1: Consider that Eq (1) has the following solution as:

128

uðx; y; z; tÞ ¼ uðnÞ ¼ Xm

j¼m

130

132

/0ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X6

i¼0

ci/i

v u

; and n ¼ k1x þ k2y þ k3z þ x t; ð3Þ

134

135 where aj; cii from 1 to 6 are arbitrary constants and k1; k2; k3

136 are wave lengths and x is frequency.

137 Step 2: By balancing the highest order non-linear term with the

138 highest order derivative term of Eq (1 ), and the series of

140 am; amþ1; ; a1; a0; a1; am; c0; c1; ; c6; k1; k2; k3; x

142 Step 3: Substituting Eqs (2) and (3) into Eq (1) and setting the

143 coefficients of powers of /j/ðjÞ to zero, yields a systems

144 of algebraic equations in parameters am; amþ1; ;

145

a1; a0; a1; am; c0; c1; c2 ; c6; k1; k2; k3; x The systems

146

of algebraic equations are solved by Marhematica, then

147 the values of parameters can be obtained.

148 Step 4: By substituting the values of parameters and / ðnÞ obtained

149

in previous step into Eq (2) , then the solutions of Eq (1)

150 can be constructed.

151 152 Application of the modified extended direct algebraic method:

153 The extended Zakharov-Kuznetsov (EZK) equation:

154 First, we consider the (3 + 1)-dimensional extended

Zakharov-155 Kuznetsov (EZK) equation is as:

156

utþ Auuxþ Buxxxþ C uxyyþ uxzz

159 where A ; B and C are arbitrary constants.

160 Consider the traveling wave solutions and transformation in

161 Eqs (2) and (3) , then Eq (4) reduces into ODE as

162

x u0ðnÞ þ Ak1uu0ðnÞ þ Bk3

1þ Ck1ðk2

2þ k2

u000ðnÞ ¼ 0; ð5Þ 164

165

By using balance principle on Eq (5) gives m ¼ 2, we consider

166 the solution of Eq (5) is as:

167

uðnÞ ¼ a2 /2þ a1 / þ a0þ a1/ þ þa1/2: ð6Þ

169 170 Substituting Eq (6) into Eq (5) and setting the coefficients of

171 coefficient of /j/ðjÞto zero, yields a systems of algebraic equations

172

in a2; a1; a0; a1; a2; A; B; C; k1; k2; k3and x The systems of algebraic

173 equations are solved by Mathematica, which have possesses the

174 following solutions cases:

175 Case 1: c1¼ c3¼ c5¼ 0; c0¼ 8c 2

27c 4; c6¼ c 2

4c 2,

176

a2¼  32c

2 Bk21þ Ck2

2þ Ck2 3

9Ac4 ; a1¼ a1¼ a2¼ 0;

x ¼ k1 a0A þ 4Bc2k21þ 4c2Ck22þ 4c2Ck23

179 Substituting Eq (7) into Eq (6) along with the solutions of Eq.

180

(3) , the following solutions of Eq (4) are obtained:

181

u11ðnÞ ¼ a0þ 4c2 Bk

2

1þ Ck2

2þ Ck2 3

3 þ tanh2  ffiffiffiffiffiffiffiffi c2

3

q n

3Atanh2  ffiffiffiffiffiffiffiffi c2

3

q n

184

u12ðnÞ ¼ a0 4c2 Bk

2

1þ Ck2

2þ Ck2 3

3  tan2  ffiffiffiffiffiffiffiffi c2

3

q n

3A tan2  ffiffiffiffic2

3

q n

187

u13ðnÞ ¼ a0þ 4c2 Bk

2

1þ Ck2

2þ Ck2 3

3 þ coth2  ffiffiffiffic2

3

q n

3Acoth2  ffiffiffiffiffiffiffiffi c2

3

q n

190

u14ðnÞ ¼ a0 4c2 Bk

2

1þ Ck2

2þ Ck2 3

3  cot2  ffiffiffiffic2

3

q n

3Acot2 ffiffiffiffi

c2

3

q

n 

193 where ; n ¼ k1x þ k2y þ k3z þ x t ; x ¼ k1 a0A þ 4Bc2k2þ 4c2Ck2

194 þ4c2Ck23Þ:

Trang 3

195 Figs 1 (a) and (c) signify the evolution of the dark and periodic

196 bright solitary waves solutions of Eqs (8) and (9) of the EZK Eq (4)

197 at c2¼ 1:25; c4¼ 2; k1¼ 0:75; k2¼ 1:5; k3¼ 1;  ¼ 1; A ¼ 2; B ¼ 1;

198 C ¼ 0:5; a0¼ 1:5; y ¼ 1; z ¼ 1 and c2¼ 1; c4¼ 2; k1¼ 0:5; k2¼ 1:5;

199 k3¼ 1:5;  ¼ 1; A ¼ 2; B ¼ 1; C ¼ 1; a0¼ 1; y ¼ 1; z ¼ 1 respectively A

200 contour plots Figs 1 (b) and (d) are a collection of level curves

201 drawn on same set of intervals The command of Contour Plot on

202 mathematica draws ContourPlot of two variable functions The

203 points on contours join at same height on the surface The

204 sequence of equally spaced values of the functions is to have

cor-205 responding contours by default.

206 Case 2: c0¼ c1¼ c3¼ c5¼ c6¼ 0,

207

a2¼ a1¼ a1¼ 0;

a0¼  4c2k1 Bk

2

1þ C k2

2þ k2 3

þ x

a2¼  12c4 Bk

2

1þ C k2

2þ k2 3

209

210 The following solitary wave and soliton solutions of Eq (4) are

211 constructed by substituting Eq (12) into Eq (6) as:

212

u21ðnÞ ¼  x

Ak1 4c2 Bk

2

1þ C k2

2þ k2 3

A 1  3csc2 ffiffiffiffiffiffiffiffiffi

c2 p n

;

214

215

u22ðnÞ ¼  x

Ak1

 4c2 Bk

2

1þ C k2

2þ k2 3

A 1  3csch2 ffiffiffiffiffiffiffiffiffi

c2

;

217

218

u23ðnÞ ¼  x

Ak1 4c2 Bk

2

1þ C k2

2þ k2 3

A 1  3 sec2 ffiffiffiffiffiffiffiffiffi

c2 p n

;

220

221

u24ðnÞ ¼  x

Ak1 4c2 Bk

2

1þ C k2

2þ k2 3

A

 1  12c2c4exp 2 ffiffiffiffiffi

c2

p n

1  c2c4exp 2 ffiffiffiffiffi

c2

p n

!

; c2> 0; c4– 0; ð16Þ

223 224 where ; n ¼ k1x þ k2y þ k3z þ x t :

225 Case 3: c0¼ c1¼ c4¼ c5¼ c6¼ 0,

226

a2¼ a1¼ 0; a1¼  3c3 Bk

2

1þ C k2

2þ k2 3

A ; a2¼ 0;

x ¼ k1 a0A þ c2 Bk21þ C k2

2þ k2 3

:

ð17Þ

228 229 The following solitary wave soliton solutions of Eq (4) are

con-230 structed by substituting Eq (17) into Eq (6) as:

231

u31ðnÞ ¼ a0þ 3c2 Bk

2

1þ C k2

2þ k2 3

A 1 þ tan2 1

2

ffiffiffiffiffiffiffiffiffi

c2 p x

;

234

u32ðnÞ ¼ a0þ 3c2 Bk

2

1þ C k2

2þ k2 3

A 1  tanh2 1

2

ffiffiffiffiffi

c2 p n

;

237 where; n ¼ k1x þ k2y þ k3z þ x t; x ¼ k1 a0A þ c2 Bk2þ C k2

þ k2

: 238 Case 4: c1¼ c3¼ c5¼ c6¼ 0 and c0¼ c 2

4c 4,

239

a2¼  3c

2 Bk21þ C k2

2þ k2 3

Ac4 ; a1¼ 0;

a0¼  x þ 4c2k1 Bk21þ C k2

2þ k2 3

Ak1 ; a1¼ 0;

a2¼  12c4 Bk

2

1þ Ck2

2þ Ck2 3

Fig 1 Traveling wave solutions of Eq.(8)with different forms are plotted: (a) dark solitary wave and (b) contour plot of u11

Please cite this article in press as: Lu D et al New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified

Trang 4

a2¼  3c

2 Bk21þ C k2

2þ k2 3

Ac4 ; a1¼ a1¼ a2¼ 0;

a0¼  x þ 4c2k1 Bk21þ C k2

2þ k2 3

244

245

a2¼ a1¼ a1¼ 0; a0¼  x þ 4c2k1 Bk21þ C k2

2þ k2 3

a2¼  12c4 Bk

2

1þ Ck2

2þ Ck2 3

247

248 The following soliton-like solutions of Eq (4) are constructed by

249 substituting Eq (20) into Eq (6) as:

250

u41ðnÞ ¼  6c2 Bk

2

1þ C k2

2þ k2 3

2

ffiffiffiffiffi

c2 2

r n

 x þ 4c2k1 Bk21þ C k2

2þ k2 3

Ak1

 6c2 Bk

2

1þ C k2

2þ k2 3

2

ffiffiffiffiffi

c2 2

r n

;

252

253

u42ðnÞ ¼ 6c2 Bk

2

1þ C k2

2þ k2 3

2

ffiffiffiffiffiffiffiffiffi

 c2 2

r n

 x þ 4c2k1 Bk21þ C k2

2þ k2 3

Ak1

þ 6c2 Bk

2

1þ C k2

2þ k2 3

2

ffiffiffiffiffiffiffiffiffi

 c2 2

r n

c2< 0;c4> 0; ð24Þ

255

256 where ; n ¼ k1x þ k2y þ k3z þ x t :

257 Similarly, one can find the soliton-like solutions of Eq (4) from

258 Eqs (21) and (22)

259 Case 5: c2¼ c4¼ c5¼ c6¼ 0,

260

a2¼ 0; a1¼ 0; a0¼  x

Ak1; a1¼  3c3 Bk

2

1þ Ck2

2þ Ck2 3

262

263 From Eq (25) , we construct the following new elliptic function

264 solution [40] of Eq (4) as:

265

u51ðnÞ ¼  x

Ak1 3c3 Bk

2

1þ ck2

2þ ck2 3

ffiffiffiffiffi

c3

p n

2 ; g2; g3

; c3> 0;

ð26Þ

267

268 where ; n ¼ k1x þ k2y þ k3z þ x t ; }isWeierstrassellipticfunctionand

269 g2¼ 4c 1

c 3; g3¼ 4c 0

c 3:

270 Case 6: c4 ¼ c5 ¼ c6 ¼ 0,

271

a2¼ a1¼ a2¼ 0; a1¼  3c3 Bk

2

1þ C k2

2þ k2 3

x ¼ k1 a0A þ c2 Bk21þ C k2

2þ k2 3

ð27Þ

273

274 From Eq (27) , we can also construct the new exact Weierstrass

275 elliptic function solutions [40–42] of Eq (4)

276 Case 7: c1¼ c3¼ c5¼ c6¼ 0,

278 a2¼ a1¼ a1¼ 0;a2¼  12c4 Bk

2þC k  2þk2

x ¼ k1 a0Aþ4c2 Bk2þC k  2þk2  

;

ð28Þ

280

281 (ii):

282

a2¼  12c0 Bk

2þC k  2þk2

A ;a1¼ a1¼ a2¼ 0;

x ¼ k1 a0Aþ4c2 Bk2þC k  2þk2  

;

ð29Þ

284 285 (iii):

286

a2¼  12c0 Bk

2

1þC k2

2þk2 3

A ; a1¼ a1¼ 0;

a2¼  12c4 Bk

2

1þC k2

2þk2 3

x ¼ k1 a0Aþ4c2 Bk21þC k2

2þk2 3

:

ð30Þ

288 289 From Eqs (28)–(30) , one can constructed the new Jacobi elliptic

290 function solutions [45] of Eq (4) by choosing the value of

291

m ð0 6 m 6 1Þ according to the Table 1

292 The (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov

(mKdV-293 ZK) Equation

294 Now, we consider the (3 + 1)-dimensional mkdv-zk equation is

295 as:

296

utþ q u2uxþ uxxxþ uxyyþ uxzz¼ 0; ð31Þ 298

299 where q is a arbitrary constant and can be obtained as a model from

300 modified KdV in case of weakly two dimensional variations of the

301 modified KdV equation [11] naturally.

302 Consider the traveling wave solutions and transformation in

303 Eqs (2) and (3) , the (31) reduces into ODE as

304

x u0þ q k1u2u0þ k3

1þ k1k22þ k1k23

307

By using balancing principle on Eq (32) gets m ¼ 1 and

consid-308 ering the solution of Eq (32) is as:

309

312 Substituting Eq (33) into Eq (32) and setting the coefficients of

313 /i/ðiÞ to zero, yields a systems of algebraic equations in

314

a1; a0; a1; q ; k1; k2; k3and x The system of equations have the

fol-315 lowing solutions cases:

316 Case 1: c0¼ c1¼ c5¼ c6¼ 0,

317

a1¼ 0; a0¼  c3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2þ k2þ k2

2 q c4

v u

; a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2þ k2þ k2

q

v u

;

x ¼ k1 3c

2 8c2c4

k2þ k2þ k2

320 Substituting the values of Eq (34) into Eq (33) along with the

321 solutions of Eq (3) , the following solutions of Eq (31) in

soliton-322 like and solitary wave form are obtained:

323

u11ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

q

v u

 c3 ffiffiffiffiffiffiffiffi 8c4

ffiffiffiffiffiffiffiffi 8c4

p

c2sech ffiffiffiffiffi c

2

p n

ffiffiffiffi

D

p

 c4sech ffiffiffiffiffi

c2

p n

!

;

326

u12ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

q

v u

 c ffiffiffiffiffiffiffiffi3 8c4

ffiffiffiffiffiffiffiffi 8c4

p

c2sech ffiffiffiffiffi

c2

p n

ffiffiffiffi

D

p

þ c4sech ffiffiffiffiffi c

2

p n

!

;

Trang 5

u13ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

þ k2

þ k2

q

v

u

 c3

ffiffiffiffiffiffiffiffi 8c4

ffiffiffiffiffiffiffiffi 8c4

p

c2csch ffiffiffiffiffi c

2

ffiffiffiffiffiffiffi

D p

 c4csch ffiffiffiffiffi c

2

!

;

331

332

u14ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

q

v

u

 c3 ffiffiffiffiffiffiffiffi 8c4

ffiffiffiffiffiffiffiffi 8c4

p

c2csch ffiffiffiffiffi

c2

p n

ffiffiffiffiffiffiffi

 D

p

þ c4csch ffiffiffiffiffi

c2

p n

!

;

334

335

u15ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

þ k2

þ k2

q

v

u

 c3

ffiffiffiffiffiffiffiffi 8c4

ffiffiffi 2

p

c2

ffiffiffiffiffi

c4

p 1  tanh

ffiffiffiffiffi

c2

p

2 n

;

337

338

u16ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

q

v

u

 c3 ffiffiffiffiffiffiffiffi 8c4

ffiffiffi 2

p

c2 ffiffiffiffiffi

c4

p 1  coth

ffiffiffiffiffi

c2 p

2 n

;

340

341 where ; n ¼ k1x þ k2y þ k3z þ x t ; D ¼ c2 4c2c4;

342 x ¼k 1ð3c 2 8c 2 c 4Þ ðk 2 þk 2 þk 2Þ

343 Case 2: c0¼ c1¼ c3¼ c5¼ c6¼ 0,

344

a1¼ a0¼ 0; a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

;

x ¼ c2k1 k21þ k2

2þ k2 3

346

347 We constructed the following soliton-like solutions of Eq (31)

348 from Eqs (3), (33) and (41) as:

349

u21ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6c2 k21þ k2

2þ k2 3

q

v u

csc ffiffiffiffiffiffiffiffiffi

c2 p n

ð Þ; c2< 0; c4> 0; ð42Þ

351

352

u22ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6c2 k21þ k2

2þ k2 3

q

v u

csch ffiffiffiffiffiffiffiffiffi

c2

ð Þ; c2< 0; c4> 0; ð43Þ

354

355

u23ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6c2 k21þ k2

2þ k2 3

q

v u

sec ffiffiffiffiffiffiffiffiffi

c2 p n

ð Þ; c2< 0; c4> 0; ð44Þ

357

358

u24ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6c4 k21þ k2

2þ k2 3

q

v

2exp ffiffiffiffiffi

c2

p n

1  c2c4exp 2 ffiffiffiffiffi

c2

p n

ð Þ ; 2> 0;

360

361 where ; n ¼ k1x þ k2y þ k3z þ x t ; x ¼ c2k1 k21þ k2

2þ k2 3

:

362 Case 3: c1¼ c3¼ c5¼ c6¼ 0; c4> 0andc0¼ c 2

4c 4

363

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3c

2 k21þ k2

2þ k2 3

2 q c4

v u

; a0¼ 0;

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

; x ¼ 4c2k1 k21þ k2

2þ k2 3

; ð46Þ

365 366

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3c

2 k21þ k2

2þ k2 3

2 q c4

v u

; a0¼ 0;

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

; x ¼ 2c2k1 k21þ k2

2þ k2 3

; ð47Þ

368 369

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3c

2 k21þ k2

2þ k2 3

2 q c4

v u

; a0¼ 0; a1¼ 0;

x ¼ c2k1 k21þ k2

2þ k2 3

372

a1¼ 0; a0¼ 0; a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

;

x ¼ c2k1 k21þ k2

2þ k2 3

375 Substituting Eq (46) into Eq (33) , the following solitary wave

solu-376 tions of Eq (31) are obtained:

377

u31ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3c2 k

2

1þ k2

2þ k2 3

q

v u

 cot

ffiffiffiffiffi

c2 2

r n



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3c2 k

2

1þ k2

2þ k2 3

q

v u

 tan

ffiffiffiffiffi

c2 2

r n

; c2> 0; ð50Þ

379 380

u32ðnÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3c2 k21þ k2

2þ k2 3

q

v u

 coth

ffiffiffiffiffiffiffiffiffi

c2 2

r n



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3c2 k21þ k2

2þ k2 3

q

v u

 tanh

ffiffiffiffiffiffiffiffiffi

c2 2

r n

; c2< 0; ð51Þ

382

383 where ; n ¼ k1x þ k2y þ k3z þ x t ; x ¼ 4c2k1 k21þ k2

2þ k2 3

:

384 From Eqs (47)–(49) , one can also construct the new soliton-like

385 and solitay wave solutions of Eq (31)

386 Case 4: c2¼ c4¼ c5¼ c6¼ 0,

Table 1

Jacobi elliptic functions

dnn

nsn¼ ðsnnÞ1; dcn ¼dnn

cnn

dnn

snn

Please cite this article in press as: Lu D et al New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified

Trang 6

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v

u

; a0¼  c1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2c0q

v u

;

a1¼ 0; x ¼ 3c

2k1 k21þ k2

2þ k2 3

8c0

389

390 From Eq (52) , we construct the following new Weierstrass elliptic

391 function solution [40] of Eq (31) as:

392

u41ðnÞ ¼  c1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2c0q

v u



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v u

} pffiffiffiffic3n

2 ; g2; g3

394 395 where ; n ¼ k1x þ k2y þ k3z þ x t ;

} is Weierstrass elliptic function and g2¼  4c1

c3 ; g3¼  4c0

c3 :

397

Fig 2 Traveling wave solutions of Eq.(9)with different forms are plotted: (a) periodic bright solitary wave and (b) contour plot of u12

Fig 3 Traveling wave solutions of Eq.(13)with different forms are plotted: (a) periodic solitary wave and (b) contour plot of u21at c2¼ 4; c4¼ 3; k1¼ 1; k2¼ 1:5; k3¼ 2;

x¼ 1:5; A ¼ 3; B ¼ 2; C ¼ 0:75; y ¼ 1; z ¼ 1

Trang 7

398 Case 5: c5¼ c6¼ 0,

399

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v

u

; a0¼  c1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2c0q

v u

;

a1¼ 0; x ¼ 3c

2 8c0c2

k1 k21þ k2

2þ k2 3

401

402

a1¼ 0; a0¼  c3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2 q c4

v u

;

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

;

x ¼ 3c

2 8c2c4

k1 k21þ k2

2þ k2 3

Fig 4 Traveling wave solutions of Eq.(19)with different forms are plotted: (a) bright solitary wave and (b) contour plot of u32at c2¼ 1; c3¼ 1; k1¼ 0:5; k2¼ 1:5; k3¼ 1;

A¼ 3; B ¼ 2; C ¼ 2; a0¼ 1; y ¼ 1; z ¼ 1

Fig 5 Traveling wave solutions of Eq.(26)with different forms are plotted: (a) periodic traveling wave and (b) contour plot at c0¼ 0; c1¼ 1; c2¼ 1; k1¼ 0:75;

k2¼ 1:5; k3¼ 0:5;x¼ 1; A ¼ 3; B ¼ 2; C ¼ 2; y ¼ 1; z ¼ 1

Please cite this article in press as: Lu D et al New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified

Trang 8

405 Case 6: c4¼ c5¼ c6¼ 0,

406

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v

u

; a0¼  c1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2 q c0

v u

;

a1¼ 0; x ¼  8c0c2 3c

2

k1 k21þ k2

2þ k2 3

408

409 We can also construct the new Weierstrass elliptic function

410 solutions [40–44] of Eq (31) from Eqs (54)–(56) of Cases 5 and 6.

411 Case 7: c1¼ c3¼ c5¼ c6¼ 0,

412

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v u

; a0¼ 0;

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

;

x ¼  c2þ 6 ffiffiffiffiffiffiffiffiffi c0c4

p

ð Þk1 k21þ k2

2þ k2 3

Fig 6 Traveling wave solutions of Eq.(35)with different forms are plotted: (a) bright soliton and (b) contour plot of u11 at c2¼ 1; c3¼ 2; c4¼ 2; k1¼ 0:5; k2¼ 1:5;

k3¼ 1;q¼ 2; y ¼ 1; z ¼ 1

Fig 7 Traveling wave solutions of Eq.(44)with different forms are drawn: (a) periodic dark soliton and (b) contour plot of u23 at c2¼ 2; c4¼ 1; k1¼ 0:5; k2¼ 1:5;

k3¼ 0:75;q¼ 2; y ¼ 1; z ¼ 1

Trang 9

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2þ k2þ k2

q

v

u

; a0¼ 0; a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2þ k2þ k2

q

v u

;

x ¼ 6 p ffiffiffiffiffiffiffiffiffi c0c4 c

2

ð Þk1 k21þ k2

2þ k2 3

417

418

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c0 k

2

1þ k2

2þ k2 3

q

v

u

; a0¼ 0; a1¼ 0;

x ¼ c2k1 k21þ k2

2þ k2 3

420

421

a1¼ 0; a0¼ 0; a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v u

;

x ¼ c2k1 k21þ k2

2þ k2 3

423 424 From Eqs (57)–(60) , one can obtained the new Jacobi elliptic

425 function solutions [45] of Eq (31) by choosing the value of

426

m ð0 6 m 6 1Þ according to the Table 1

Fig 8 Traveling wave solutions of Eq.(50)with different forms are drawn: (a) periodic dark soliton and (b) contour plot of u23 at c2¼ 0:5; c4¼ 1; k1¼ 0:5; k2¼ 1:5;

k3¼ 0:75;q¼ 2; y ¼ 1; z ¼ 1

Fig 9 Traveling wave solutions of Eq.(53)with different forms are plotted: (a) periodic bright and dark soliton and (b) contour plot at c0¼ 0:1; c1¼ 1; c3¼ 1; k1¼ 0:75;

k2¼ 1:5; k3¼ 0:5;q¼ 2; y ¼ 1; z ¼ 1

Please cite this article in press as: Lu D et al New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified

Trang 10

427 Case 8: c0¼ c1¼ c2¼ c5¼ c6¼ 0,

428

a1¼ 0; a0¼  c3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2 q c4

v u

;

a1¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v

u

; x ¼ 3c

2k1 k21þ k2

2þ k2 3

8c4 : ð61Þ

430

431 We obtained the new solitary wave solution of Eq (31) by

sub-432 stituting Eq (61) into Eq (33) is as.

433

u81ðnÞ ¼  c3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 3 k

2

1þ k2

2þ k2 3

2 q c4

v u



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 6c4 k

2

1þ k2

2þ k2 3

q

v

3

c2n2 4c4

!

; c4> 0; ð62Þ

435

436 where ; n ¼ k1x þ k2y þ k3z þ x t ; x ¼3c 2 k 1ðk 2 þk 2 þk 2Þ

438 In this paper, some general new exact solutions in the form of

439 soliton, solitary wave, elliptic function and Weiertrass elliptic

func-440 tion solutions of three-dimensional EZK and (3 + 1)-dimensional

441 modified KdV-ZK equations are constructed by utilizing modified

442 extended Direct algebraic method These solitions and other

443 solutions in which many are new and derived in explicit form, have

444 many applications and useful in different areas of physics,

engi-445 neering and other fields of applied sciences These general

solu-446 tions can provide a useful help for researchers to study and

447 understand the physical interpretation of system This method

448 has several advantages such as the calculations are simple and

449 straightforward, gives more general solutions then other existing

450 methods, the reduction in the size of computational work and

con-451 sistency gives its wider applicability ( Figs 2–9 ).

453 [1] Ablowitz MJ, Clarkson PA Solitons, nonlinear evolution equations and inverse

454 scattering New York: Cambridge Univ Press; 1991.

455 [2] Shukla PK, Mamun AA Introduction to dusty plasma physics Bristol, U

456 K.: Institute of Physics Publishing; 2002

457 [3] Korteweg DJ, de Vries G On the change of form of long waves advancing in a

458 rectangular canal and on a new type of long stationary waves Philos Mag

459 1895;39:422–43

460 [4] Kochanov MB, Kudryashov NA, Sinel’shchikov DI Non-linear waves on shallow

461 water under an ice cover Higher order expansions J Appl Math Mech

463 [5] El-Tantawy SA, Moslem WM Nonlinear structures of the Korteweg-de Vries

464 and modified Korteweg-de Vries equations in non-maxwellian

electron-465 positron-ion plasma: solitons collision and rouge waves Phys Plasmas

466 2014;21:052112.

467 [6] Kadomtsev BB, Petviashvili VI On the stability of solitary waves in weakly

468 dispersing media Sov Phys Dokl 1970;15:539–41.

469 [7] Liu ZM, Duan WS, He GJ Efeects of dust size distribution on dust acoustic

470 waves in magnetized two-ion-temperature dusty plasmas Phys Plasmas

471 2008;15:083702.

472 [8] Seadawy AR Stability analysis for two-dimensional ion-acoustic waves in

473 quantum plasmas Phys Plasmas 2014;21:052107.

474 [9] Seadawy AR Nonlinear wave solutions of the three-dimensional

Zakharov-475 Kuznetsov-Burgers equation in dusty plasma Physica A 2015;439:124–31.

476 [10] Seadawy AR, Lu Dianchen Ion acoustic solitary wave solutions of

three-477 dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a

478 magnetized two-ion-temperature dusty plasma Result Phys 2016;6:560–93

479 [11] Demontis F Exact solutions of the modified Korteweg-de Vries equation

480 Theoret Math Phys 2011;168(1):886–97

481 [12] Islam MH, Khan K, Akbar MA, Salam MA Exact traveling wave solutions of

482 modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation

483 Springer Plus 2014;3(105):1–9

484 [13] Naher H, Abdullah FA, Akbar MA Generalized and improved (G’/G)-expansion

485 method for (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation

486 Plos One 2013;8(5):1–7

487 [14] Naher H, Abdullah FA, Akbar MA New traveling wave solution of higher

488 dimensional nonlinear partial differential equation by the Exp-function

489 method J Appl Math 2012;2012:1–14 Article ID 575387

490 [15] Zhang BG, Liu ZR, Xiao Q New exact solitay wave and multiple soliton

491 solutions of quantum Zakharov-Kuznetsov equation Appl Math Comput

492 2010;217:392–402

493 [16] Wang GW, Xu TZ, Johnson S, Biswas A Solitons and Lie group analysis to an

494 extended quantum Zakharov-Kuznetsov equation Asterophys Space Sci

495 2014;349:317–27

496 [17] Pakzad HR Soliton energy of the Kadomtsev-Petviashvili equation in warm

497 dusty plusma with variable dust charge, two-temperature ions, and

498 nonthermal electrons Asterophys Space Sci 2010;326:69–75

499 [18] Seadawy AR, El-Rashidy K Travelling wave solutions for some coupled

500 nonlinear evolution equations by using the direct algebraic method Math

501 Comput Modelling 2013;57:1371–9

502 [19] Yu X, Gao YT, Sun ZY, Liu Y N-soliton solutions, bucklund transformation and

503 lax pair for a generalized variable coefficient fifth-order Korteweg de Vries

504 equation Phys Scr 2010;81:045402

505 [20] Hirota R Exact Solutions of the Korteweg-de Vries equation for multiple

506 collisions of solitons Phys Rev Lett 1971;27:1192–4

507 [21] Alam MN, Hafez MG, Akbar MA, Roshid HO Exact travelling wave solutions to

508 the (3+1)-dimensional mKdV-ZK and the (2+1)-dimensional Burgers equations

509 via exp(/ðgÞ)-expension method Alexa Eng J 2015;54:635–44

510 [22] Abdou MA The extended tanh-method and its applications for solving

511 nonlinear physical models Appl Math Comput 2007;190:988–96

512 [23] Guiqiong Xu, Li Zhibin Exact travelling wave solutions of the

whitham-broer-513 kaup and broer-kaup-kupershmidt equations Chaos Solitons Fractals

514 2005;24:549–66

515 [24] Wen XY Construction of new exact rational form non-travelling wave

516 solutions to the (2+1)-dimensional generalized Broer-Kaup system Appl

517 Math Comput 2010;217:1367–75

518 [25] Zenga Xin, Wang Deng-Shan A generalized extended rational expansion

519 method and its application to (1+1)-dimensional dispersive long wave

520 equation Appl Math Comput 2009;212:296–304

521 [26] Yao Yuqin Abundant families of new traveling wave solutions for the coupled

522 Drinfl’d-sokolov-wilson equation Chaos Solitons Fractals 2005;24:301–7

523 [27] Peng YZ Exact solutions for some nonlinear partial differential equations Phys

524 Lett A 2003;314:401–8

525 [28] Seadawy AR, El-Rashidy K Traveling wave solutions for some coupled

526 nonlinear evolution equations Math Comput Modelling 2013;57:1371–9

527 [29] Ugurlua Yavuz, Kaya Dogan, Inanb Ibrahim E Comparison of three

semi-528 analytical methods for solving (1 + 1)-dimensional dispersive long wave

529 equations Comput Math Appl 2011;61:1278–90

530 [30] Dinarvand S, Khosravi S, Doosthoseini A, Rashidi MM The homotopy analysis

531 method for solving the Sawada-Kotera and Laxs fifth-order KdV equations Adv

532 Theor Appl Mech 2008;1:327–35

533 [31] Biazar J, Badpeima F, Azimi F Application of the homotopy perturbation

534 method to Zakharov-Kuznetsov equations Comput Math Appl

535 2009;58:2391–4

536 [32] Ravi ASV, Kanth K Aruna, Differential transform method for solving linear and

537 non-linear systems of partial differential equations Phys Lett A

538 2008;372:6896–8

539 [33] Rashidi MM, Erfani E Traveling wave solutions of WBK shallow water

540 equations by differential transform method Adv Theor Appl Mech

541 2010;3:263–71

542 [34] Keskin Y, Oturanc G Reduced differential transform method for partial

543 differential equations Int J Nonlinear Sci Numer Simul 2009;10:741–9

544 [35] Abazari R, Abazari M Numerical simulation of generalized HirotaSatsuma

545 coupled KdV equation by RDTM and comparison with DTM Commun

546 Nonlinear Sci Numer Simul 2012;17:619–29

547 [36] Helal MA, Seadawy AR Variational method for the derivative nonlinear

548 Schrodinger equation with computational applications Phys Scr 2009;80

549 Article ID 035004

550 [37] Helal MA, Seadawy AR Exact soliton solutions of a D-dimensional nonlinear

551 Schrodinger equation with damping and diffusive terms Z Angew Math Phys

552 2011;62:839–47

553 [38] Seadawy AR New exact solutions for the KdV equation with higher order

554 nonlinearity by using the variational method Comput Math Appl

555 2011;62:3741–55

556 [39] Helal MA, Seadawy AR Benjamin-Feir instability in nonlinear dispersive

557 waves Comput Math Appl 2012;64:3557–68

558 [40] Nickel J, Serov VS, Schurmann HW Some elliptic travelling wave solution to

559 the Novikkov-Veselov equation Proc Prog Electromagnet Res Symp

560 2006;61:323–31

561 [41] Schurmann HW Travelling-wave solutions of the cubic-quintic nonlinear

562 schrodinger equation Phys Rev E 1996;54:4312–20

563 [42] Nickel J Elliptic solutions to a generalized BBM equation Phys Lett A

564 2007;364:221–6

565 [43] Schurmann HW, Serov VS, Nickel J Superposition in nonlinear wave and

566 evolution equations Int J Theor Phys 2006;45:1057–73

567 [44] Nickel J, Schurmann HW Comments on Exact solutions of the derivative

568 nonlinear Schrodinger equation for a nonlinear transmission line Phys Rev E

569 2007;75:038601

570 [45] Yomba E Jacobi elliptic function solutions of the generalized

Zakharov-571 Kuznetsov equation with nonlinear dispersion and t-dependent coefficients

572 Phys Lett A 2010;374:1611–5

Ngày đăng: 04/12/2022, 15:46

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm