b r /Cheng Jianga, Jinzhu Songa, Junzheng Zhangb, Qian Yanga, ∗ Q1 aHarbin Institute of Technology, School of Life Sciences and Technology, Harbin, Heilongjiang, People’s Republic of Chi
Trang 1h tt p : / / w w w b j m i c r o b i o l c o m b r /
Cheng Jianga, Jinzhu Songa, Junzheng Zhangb, Qian Yanga, ∗
Q1
aHarbin Institute of Technology, School of Life Sciences and Technology, Harbin, Heilongjiang, People’s Republic of China
bHarbin Institute of Technology, School of Chemical Engineering and Technology, Harbin, Heilongjiang, People’s Republic of China
Article history:
Received8January2016
Accepted28November2016
Availableonlinexxx
AssociateEditor:MiguelJ
Beltran-Garcia
Keywords:
ChaetoglobosinA
Cornstalk
Purification
Stability
Chaetomium globosum
ChaetoglobosinAisanantibacterialcompoundproducedbyChaetomium globosum,with potentialapplicationasabiopesticideandcancertreatmentdrug.Theaimofthisstudywas
toevaluatethefeasibilityofutilizingcornstalkstoproducechaetoglobosinAbyC globosum
W7insolid-batchfermentationandtodetermineanoptimalmethodforpurificationofthe products.TheoutputofchaetoglobosinAfromthecornstalkswas0.34mg/g,anditscontent
inthecrudeextractwas4.80%.Purificationconditionswereoptimizedtoincreasethe con-tentofchaetoglobosinAinthecrudeextract,includingtheextractsolvent,temperature,and
pHvalue.Theoptimumprocessconditionswerefoundtobeacetoneastheextractant,under roomtemperature,andatapHvalueof13.Undertheseconditions,aproductionprocessof theantifungalchaetoglobosinAwasestablished,andthecontentreached19.17%.Through furtherverification,cornstalkscouldreplacecropsfortheproductionofchaetoglobosinA usingthisnewproductionprocess.Moreover,thepurifiedproductsshowedgreatinhibition againstRhizoctonia solani,withchaetoglobosinAconfirmedasthemaineffectiveconstituent (IC50=3.88g/mL).Collectively,theseresultsdemonstratethefeasibilityofusingcornstalks
tosynthesizechaetoglobosinAandthattheproductionprocessestablishedinthisstudy waseffective
©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis
anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/
licenses/by-nc-nd/4.0/)
Introduction
strongcytotoxicitytovariouskindsofcells,includinganimal,
∗ Corresponding author.
E-mails:microbio207@gmail.com,yangq@hit.edu.cn(Q.Yang)
such as Setosphaeria turcica, Rhizopus stolonifer, and Conio-thyrium diplodiella.7–9Despitethesebroadeffects,development
http://dx.doi.org/10.1016/j.bjm.2016.11.008
1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 28 29 30 31 32 33 34
Trang 2Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.
antagonistthatiswidelyusedforbiologicalcontrol,16andhas
isgenerallyleftinthefieldsafterharvestorisevenburnt18;
thus,thevastavailabilityofthisresourceshowsitspotential
Alternatively,useofacomplexculturesystemislikelyto
Finally,thecostofthecrudeextractusingcornstalksasa
effectiveantibacterialactivity
Microorganisms and culture conditions
C globosumW7wasobtainedfromtheMicrobialGenetic
perinch)usingaplantpulverizer(Beijinglightmedical equip-mentCo.Ltd.,Beijing,China).Thecornstalksusedinthisstudy
(nitrogencontent26.17%)witharatioof20/1(w/w),sothatthe
20/1
Extraction effects of different solvents
temper-ature(20–25◦C)for24hwith50mLoforganicsolventperflask,
dif-ferentsolventsweremethanolat50◦C,ethanolat60◦C,ethyl acetateat50◦C,acetoneat40◦C,dichloromethaneat40◦C,
Determination of optimal operating temperature
wereplacedatdifferenttemperatures(−20◦C,0◦C,room tem-perature, 40◦C,50◦C, 60◦C, 80◦C, 100◦C,150◦C) foreither
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136
137 138 139 140 141 142 143 144
Trang 3performedintriplicate,and thenthe remainingamount of
The influence of pH value on the crude extract
triplicate
Preliminary purification of the crude extract
Basedontheresultsoftheextractioneffecttests,the
asthecontrol
Owingtoitsnegligibleeffectforextractingchaetoglobosin
Chaetoglobosin A detection
Gas chromatography–mass spectrometry (GC–MS) analysis of the crude extract
to280◦Catarateof3◦C/minandheldfor5min,withatotal
5min.Thecharacteristicionsandretentiontimesofthetarget
(http://www.organchem.csdb.cn/scdb/main/mssintroduce
Biocontrol efficiency of the second purified extract against Rhizoctonia solani
R solani(CGMCC3.2888)waschosentotestthebiocontrol
dis-solvedinethanolwasaddedpriortofiltrationforsterilization
0.5,2.5, 5.0,25,and 50g/mL).Aslice (0.8cm)ofR solani
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
217 218
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253
Trang 4Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.
4 6
4
2
0
2
0
60
70
50
40
30
20
10
0
Extraction solvents
Acetone
Dichloromethane
Chlorof
orm N-he xane
Weight of crude extract Weight of chaetoglobosin A
Purities of chaetoglobosin A
Fig 1 – Effects of different solvents on the extraction of
chaetoglobosin A All extractions were performed on the
fermentation residue of 1 g of cornstalk medium.
inhibitoryconcentration(IC50)value(3.88g/mL)wasverified
proce-dures.Allofthetestswereperformedintriplicate
Extraction of chaetoglobosin A
A.Accordingtopreviousstudies,methanol,21ethylacetate,22
solutionisacidic(pH<4)usingextensivepHindicatorpaper
organicacids,includingaceticacid,butyricacid,succinicacid,
Optimal handling temperature
chaetoglobosinAwereplacedat−20◦C,0◦C,40◦C,50◦C,60◦C,
80◦C,100◦C,and150◦Cfor1hor24h,respectively.Theinitial
thesamplesweretreatedat80◦C,100◦C,and150◦Cfor1h,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
Trang 50.5
0.4
0.3
0.2
0.1
0.0
–20 0 RT 40 50
Temperature (ºC)
60 80 100 150
Heat for 1 h Heat for 24 h
** ** **
**
**
** **
Fig 2 – Thermostability of chaetoglobosin A placed at
various temperatures for 1 h or 24 h The initial amount of
chaetoglobosin A in every sample was 0.5 mg Asterisks
indicate a statistically significant difference(*p< 0.05) in the
amount of chaetoglobosin A remaining between the control
temperature (room temperature, 20–25 ◦ C) and the others.
Two asterisks indicate a highly significant difference
(**p< 0.01).
The effect of acid or alkali treatment on the crude extract
aftereithertreatmentfor1h,whichindicatedthatdirect
inwater
8
6
4
2
0.4
0.2
0.0
0 1 2 3 4 5 7 9
pH value
10 11 12 13 14 Ctrl
Weights Purities
*
*
**
Fig 3 – pH stability of chaetoglobosin A The initial amount
of chaetoglobosin A in each sample was 0.5 mg Asterisks indicate a significant(*p< 0.05) or highly significant
(**p< 0.01) difference between the treatment groups and control.
combina-tionwithethylacetate.Owingtoitsweakstabilityinacidand lye,thetypicalprocessof-lactamantibioticsinadjustingpH
Purification of the crude extract
abilitytoeffectivelyremovetheseimpurities.Fig.4showsthe resultsofthesetests
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
391
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
Trang 6Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.
8
6
4
2
0
Weights of curde extract Weights of chaetoglobosin A
Purities of chaetoglobosin A
Handling compounds
Control
N-he xane
Sodium h ydro xide
Methanol w ater
Sodium h ydro xide
and methanol-w
ater
24
20
16
12
8
4
0
**
*
**
**
**
Fig 4 – Effects of different compounds on the purification of
chaetoglobosin A The initial amount of chaetoglobosin A
in every sample was 0.5 mg Asterisks indicate a significant
difference between the results of the treatment groups and
control(*p< 0.05;**p< 0.01).
Establishment of the complete production process
wholeprocessisshowninFig.5.Afteraseriesofpurification
ofagriculturalantibioticproducts
Cornstalks
Fermentation process Fermentation
products
Acetone extraction Crude extract
Deacidification
Degreasing
1st purified extract
2nd purified extract
Operating temperature
40 ºC
Fig 5 – Production process of chaetoglobosin A products.
Rectangles represent compounds, and ovals represent processes.
increased
C globosumwasculturedonPDAandsubjectedtothenewly
Biological activities of products against R solani
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
460
461 462 463 464 465
Trang 7Table 1 – Chaetoglobosin A production by different strains ofChaetomium.
Substrate Strain Extractionsolvent Yielda Contentb Study
Corn-sucrose C globosumDAOM240349 Ethylacetate 33.13mg/L Nodata 22
a YieldreferstotheyieldofchaetoglobosinAintheculturesystem
b ContentreferstothecontentofchaetoglobosinAinthecrudeextract
astheevaluationcriterionforaninhibitioneffect,becausethe
compo-nentinthecrudeextract,8insomecases,theuseofdifferent
againstR solaniisshowninFig.6
Inthistest,waterwassetastheblankcontrol,andethanol
astatisticallysignificant difference (p<0.05)in theaverage
wassetasthesolventcontrolinthecalculationofthemycelial
areaofthetreatmentset,anddiistheinitialcolonyareaofthe
aver-ageareasofR solanimyceliadecreasedsignificantly(p<0.05),
higherconcentrations,theinhibitioneffectoccurredearlier.In
theregressioncurveY=a×log10(X)+b,determinedbyprobit
differenttimepoints(Table2 Atthe48thhour,theIC50value
60
A
40
0
–40
–80
80
60
40
20
0
40
20
0
24 48 72
Culture time (h)
2)
2)
96 120
0 24 48 72
Culture time (h)
96 120
Control
0 µg/mL 0.5 µg/mL 2.5 µg/mL 5.0 µg/mL
25 µg/mL
50 µg/mL
Inhibition ratio of crude extract Inhibition ratio of standard Colony areas of ethanol control Colony areas of crude extract Colony areas of standard
Fig 6 – Inhibitory efficiency of the crude extract (20%
content) againstRhizoctonia solani.(A) Inhibitory efficiency
of chaetoglobosin A at different final concentrations under different culture times (B) Verification of the predicted IC 50
value of chaetoglobosin A using ethanol as the solvent, and comparison of the effect of the ethanol standard under the same concentration (3.88 g/mL).
R solani decreased significantly, and the inhibition ratio
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510 511 512 513 514 515 516
Trang 8Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.
Table 2 – Inhibitory regression curves and predicted IC50 values of chaetoglobosin A againstR solaniat different culture
times.
Culturetime(h) Regressioncurvea R2 IC50(g/mL)
a XrepresentstheconcentrationofchaetoglobosinA,andYindicatestheinhibitionratioagainstR solani.
wasnotstatisticallysignificant(p>0.05),whichindicatedthat
5days)
Conclusion
Acknowledgements
Q2
financialsupportofthisstudyundertheNationalHigh
Tech-nologyResearchandDevelopmentProgram(2011AA10A205)
and“TwelfthFive-YearPlan”NationalScienceandTechnology
ProgramonRuralArea(2014BAL02B00)
1.SekitaS,YoshihiraK,NatoriS,KuwanoH.Structuresof chaetoglobosinAandB,cytotoxicmetabolitesofChaetomium globosum Tetrahedron Lett.1973;14(23):2109–2112
2.XueM,ZhangQ,GaoJM,LiH,TianJM,PescitelliG
ChaetoglobosinVbfromendophyticChaetomium globosum:
absoluteconfigurationofchaetoglobosins.Chirality.
2012;24(8):668–674
3.JiaoW,FengY,BluntJW,ColeAL,MunroMH
ChaetoglobosinsQ,R,andT,threefurthernewmetabolites fromChaetomium globosum J Nat Prod.2004;67(10):1722–1725
4.HuY,ZhangW,ZhangP,RuanW,ZhuX.Nematicidalactivity
ofchaetoglobosinApoducedbyChaetomium globosumNK102 againstMeloidogyne incognita J Agric Food Chem.
2013;61(1):41–46
5.KnudsenPB,HannaB,OhlS,etal.ChaetoglobosinA preferentiallyinducesapoptosisinchroniclymphocytic leukemiacellsbytargetingthecytoskeleton.Leukemia.
2014;28(6):1289–1298
6.IchiharaA,KatayamaK,TeshimaH,OikawaH,SakamuraS ChaetoglobosinOandotherphytotoxicmetabolitesfrom
Cylindrocladium floridanum,acausalfungusofalfalfablackrot disease.Biosci Biotechnol Biochem.1996;60(2):360–361
7.SekitaS,YoshihiraK,NatoriS,etal.Chaetoglobosins, cytotoxic10-(indol-3-yl)-[13]cytochalasansfromChaetomium
spp.I.Production,isolationandsomecytologicaleffectsof chaetoglobosinsA-J.Chem Pharm Bull.1982;30(5):1609–1617
8.ZhangG,WangF,QinJ,etal.Efficacyassessmentof antifungalmetabolitesfromChaetomium globosumNo.05,a newbiocontrolagent,againstSetosphaeria turcica Biol Control.
2013;64(1):90–98
9.ZhangG,ZhangY,QinJ,etal.Antifungalmetabolites producedbyChaetomium globosumNo.04,anendophytic fungusisolatedfromGinkgo biloba Indian J Microbiol.
2013;53(2):175–180
10.FogleMR,DouglasDR,JumperCA,StrausDC.Heatstabilityof chaetoglobosinsAandC.Can J Microbiol.2008;54(5):423–425
11.SelimKA,El-BeihAA,Abdel-RahmanTM,El-DiwanyAI
Biologicalevaluationofendophyticfungus,Chaetomium globosumJN711454,aspotentialcandidateforimproving drugdiscovery.Cell Biochem Biophys.2014;68(1):67–82
12.IshiuchiK,NakazawaT,YagishitaF,etal.Combinatorial generationofcomplexitybyredoxenzymesinthe chaetoglobosinAbiosynthesis.J Am Chem Soc.
2013;135(19):7371–7377
13.FogleMR,DouglasDR,JumperCA,StrausDC.Growthand mycotoxinproductionbyChaetomium globosum.
Mycopathologia.2007;164(1):49–56
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
Trang 92010;76(16):1910–1914
15.BurlotL,ChertonJ-C,ConvertO,CorreiaI,DennetiereB.New
leptostromiformisfungi.Production,identification,and
semi-synthesis.J Spectrosc.2003;17(4):725–734
G,PrabakarK,RaguchanderT.UseofChaetomium globosum
forbiocontrolofpotatolateblightdisease.Crop Prot.
2013;52:33–38
17.UmikalsomM,AriffA,ZulkifliH,TongC,HassanM,Karim
M.Thetreatmentofoilpalmemptyfruitbunchfibrefor
subsequentuseassubstrateforcellulaseproductionby
Chaetomium globosumKunze.Bioresource Technol.
1997;62(1):1–9
cellulose-hydrogenproductionfromcornstalkbylesser
pandamanure.Int J Hydrogen Energy.2008;33(21):6058–6065
19.HuY,HaoX,LouJ,ZhangP,PanJ,ZhuX.APKSgene,pks-1,
isinvolvedinchaetoglobosinbiosynthesis,pigmentation
andsporulationinChaetomium globosum Sci China Life Sci.
2012;55(12):1100–1108
20.ZhangX,ZhangD,ZhangH,LuoZ,YanC.Occurrence,
distribution,andseasonalvariationofestrogenic
compoundsandantibioticresiduesinJiulongjiangRiver,
SouthChina.Environ Sci Pollut Res.2012;19(5):1392–1404
21.NielsenKF,GravesenS,NielsenP,AndersenB,ThraneU, FrisvadJC.Productionofmycotoxinsonartificiallyand naturallyinfestedbuildingmaterials.Mycopathologia.
1999;145(1):43–56
globosumisolatedfromtheindoorenvironment.Mycotoxin Res.2013;29(1):47–54
23.UdagawaS,MuroiT,KurataH,etal.Theproductionof chaetoglobosins,sterigmatocystin,
spp.andrelatedfungi.Can J Microbiol.1979;25(2):170–177
24.KumarS,KaushikN,ProkschP.Identificationofantifungal principleinthesolventextractofanendophyticfungus
Chaetomium globosumfromWithania somnifera SpringerPlus.
2013;2(1):37
25.ChangT,OhtaS,IkegamiN,MiyataH,KashimotoT,Kondo
M.Antibioticsubstancesproducedbyamarinegreenalga,
Dunaliella primolecta Bioresource Technol.1993;44(2):
149–153
26.ElanderR.Industrialproductionof-lactamantibiotics.Appl Microbiol Biot.2003;61(5–6):385–392
27.LerouxP,ChapelandF,DesbrossesD,GredtM.Patternsof cross-resistancetofungicidesinBotryotinia fuckeliana (Botrytis
cinerea)isolatesfromFrenchvineyards.Crop Prot.
1999;18(10):687–697
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648