1. Trang chủ
  2. » Giáo án - Bài giảng

new production process of the antifungal chaetoglobosin a using cornstalks

9 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề New Production Process of the Antifungal Chaetoglobosin A Using Cornstalks
Tác giả Cheng Jiang, Jinzhu Song, Junzheng Zhang, Qian Yang
Trường học Harbin Institute of Technology
Chuyên ngành Biotechnology and Industrial Microbiology
Thể loại nghiên cứu sản xuất mới
Năm xuất bản 2017
Thành phố Harbin
Định dạng
Số trang 9
Dung lượng 1,33 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b r /Cheng Jianga, Jinzhu Songa, Junzheng Zhangb, Qian Yanga, ∗ Q1 aHarbin Institute of Technology, School of Life Sciences and Technology, Harbin, Heilongjiang, People’s Republic of Chi

Trang 1

h tt p : / / w w w b j m i c r o b i o l c o m b r /

Cheng Jianga, Jinzhu Songa, Junzheng Zhangb, Qian Yanga, ∗

Q1

aHarbin Institute of Technology, School of Life Sciences and Technology, Harbin, Heilongjiang, People’s Republic of China

bHarbin Institute of Technology, School of Chemical Engineering and Technology, Harbin, Heilongjiang, People’s Republic of China

Article history:

Received8January2016

Accepted28November2016

Availableonlinexxx

AssociateEditor:MiguelJ

Beltran-Garcia

Keywords:

ChaetoglobosinA

Cornstalk

Purification

Stability

Chaetomium globosum

ChaetoglobosinAisanantibacterialcompoundproducedbyChaetomium globosum,with potentialapplicationasabiopesticideandcancertreatmentdrug.Theaimofthisstudywas

toevaluatethefeasibilityofutilizingcornstalkstoproducechaetoglobosinAbyC globosum

W7insolid-batchfermentationandtodetermineanoptimalmethodforpurificationofthe products.TheoutputofchaetoglobosinAfromthecornstalkswas0.34mg/g,anditscontent

inthecrudeextractwas4.80%.Purificationconditionswereoptimizedtoincreasethe con-tentofchaetoglobosinAinthecrudeextract,includingtheextractsolvent,temperature,and

pHvalue.Theoptimumprocessconditionswerefoundtobeacetoneastheextractant,under roomtemperature,andatapHvalueof13.Undertheseconditions,aproductionprocessof theantifungalchaetoglobosinAwasestablished,andthecontentreached19.17%.Through furtherverification,cornstalkscouldreplacecropsfortheproductionofchaetoglobosinA usingthisnewproductionprocess.Moreover,thepurifiedproductsshowedgreatinhibition againstRhizoctonia solani,withchaetoglobosinAconfirmedasthemaineffectiveconstituent (IC50=3.88␮g/mL).Collectively,theseresultsdemonstratethefeasibilityofusingcornstalks

tosynthesizechaetoglobosinAandthattheproductionprocessestablishedinthisstudy waseffective

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/)

Introduction

strongcytotoxicitytovariouskindsofcells,includinganimal,

Corresponding author.

E-mails:microbio207@gmail.com,yangq@hit.edu.cn(Q.Yang)

such as Setosphaeria turcica, Rhizopus stolonifer, and Conio-thyrium diplodiella.7–9Despitethesebroadeffects,development

http://dx.doi.org/10.1016/j.bjm.2016.11.008

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28 29 30 31 32 33 34

Trang 2

Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.

antagonistthatiswidelyusedforbiologicalcontrol,16andhas

isgenerallyleftinthefieldsafterharvestorisevenburnt18;

thus,thevastavailabilityofthisresourceshowsitspotential

Alternatively,useofacomplexculturesystemislikelyto

Finally,thecostofthecrudeextractusingcornstalksasa

effectiveantibacterialactivity

Microorganisms and culture conditions

C globosumW7wasobtainedfromtheMicrobialGenetic

perinch)usingaplantpulverizer(Beijinglightmedical equip-mentCo.Ltd.,Beijing,China).Thecornstalksusedinthisstudy

(nitrogencontent26.17%)witharatioof20/1(w/w),sothatthe

20/1

Extraction effects of different solvents

temper-ature(20–25◦C)for24hwith50mLoforganicsolventperflask,

dif-ferentsolventsweremethanolat50◦C,ethanolat60◦C,ethyl acetateat50◦C,acetoneat40◦C,dichloromethaneat40◦C,

Determination of optimal operating temperature

wereplacedatdifferenttemperatures(−20◦C,0◦C,room tem-perature, 40◦C,50◦C, 60◦C, 80◦C, 100◦C,150◦C) foreither

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

136

137 138 139 140 141 142 143 144

Trang 3

performedintriplicate,and thenthe remainingamount of

The influence of pH value on the crude extract

triplicate

Preliminary purification of the crude extract

Basedontheresultsoftheextractioneffecttests,the

asthecontrol

Owingtoitsnegligibleeffectforextractingchaetoglobosin

Chaetoglobosin A detection

Gas chromatography–mass spectrometry (GC–MS) analysis of the crude extract

to280◦Catarateof3◦C/minandheldfor5min,withatotal

5min.Thecharacteristicionsandretentiontimesofthetarget

(http://www.organchem.csdb.cn/scdb/main/mssintroduce

Biocontrol efficiency of the second purified extract against Rhizoctonia solani

R solani(CGMCC3.2888)waschosentotestthebiocontrol

dis-solvedinethanolwasaddedpriortofiltrationforsterilization

0.5,2.5, 5.0,25,and 50␮g/mL).Aslice (0.8cm)ofR solani

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

217 218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253

Trang 4

Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.

4 6

4

2

0

2

0

60

70

50

40

30

20

10

0

Extraction solvents

Acetone

Dichloromethane

Chlorof

orm N-he xane

Weight of crude extract Weight of chaetoglobosin A

Purities of chaetoglobosin A

Fig 1 – Effects of different solvents on the extraction of

chaetoglobosin A All extractions were performed on the

fermentation residue of 1 g of cornstalk medium.

inhibitoryconcentration(IC50)value(3.88␮g/mL)wasverified

proce-dures.Allofthetestswereperformedintriplicate

Extraction of chaetoglobosin A

A.Accordingtopreviousstudies,methanol,21ethylacetate,22

solutionisacidic(pH<4)usingextensivepHindicatorpaper

organicacids,includingaceticacid,butyricacid,succinicacid,

Optimal handling temperature

chaetoglobosinAwereplacedat−20◦C,0◦C,40◦C,50◦C,60◦C,

80◦C,100◦C,and150◦Cfor1hor24h,respectively.Theinitial

thesamplesweretreatedat80◦C,100◦C,and150◦Cfor1h,

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

Trang 5

0.5

0.4

0.3

0.2

0.1

0.0

–20 0 RT 40 50

Temperature (ºC)

60 80 100 150

Heat for 1 h Heat for 24 h

** ** **

**

**

** **

Fig 2 – Thermostability of chaetoglobosin A placed at

various temperatures for 1 h or 24 h The initial amount of

chaetoglobosin A in every sample was 0.5 mg Asterisks

indicate a statistically significant difference(*p< 0.05) in the

amount of chaetoglobosin A remaining between the control

temperature (room temperature, 20–25 ◦ C) and the others.

Two asterisks indicate a highly significant difference

(**p< 0.01).

The effect of acid or alkali treatment on the crude extract

aftereithertreatmentfor1h,whichindicatedthatdirect

inwater

8

6

4

2

0.4

0.2

0.0

0 1 2 3 4 5 7 9

pH value

10 11 12 13 14 Ctrl

Weights Purities

*

*

**

Fig 3 – pH stability of chaetoglobosin A The initial amount

of chaetoglobosin A in each sample was 0.5 mg Asterisks indicate a significant(*p< 0.05) or highly significant

(**p< 0.01) difference between the treatment groups and control.

combina-tionwithethylacetate.Owingtoitsweakstabilityinacidand lye,thetypicalprocessof␤-lactamantibioticsinadjustingpH

Purification of the crude extract

abilitytoeffectivelyremovetheseimpurities.Fig.4showsthe resultsofthesetests

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

Trang 6

Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.

8

6

4

2

0

Weights of curde extract Weights of chaetoglobosin A

Purities of chaetoglobosin A

Handling compounds

Control

N-he xane

Sodium h ydro xide

Methanol w ater

Sodium h ydro xide

and methanol-w

ater

24

20

16

12

8

4

0

**

*

**

**

**

Fig 4 – Effects of different compounds on the purification of

chaetoglobosin A The initial amount of chaetoglobosin A

in every sample was 0.5 mg Asterisks indicate a significant

difference between the results of the treatment groups and

control(*p< 0.05;**p< 0.01).

Establishment of the complete production process

wholeprocessisshowninFig.5.Afteraseriesofpurification

ofagriculturalantibioticproducts

Cornstalks

Fermentation process Fermentation

products

Acetone extraction Crude extract

Deacidification

Degreasing

1st purified extract

2nd purified extract

Operating temperature

40 ºC

Fig 5 – Production process of chaetoglobosin A products.

Rectangles represent compounds, and ovals represent processes.

increased

C globosumwasculturedonPDAandsubjectedtothenewly

Biological activities of products against R solani

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

460

461 462 463 464 465

Trang 7

Table 1 – Chaetoglobosin A production by different strains ofChaetomium.

Substrate Strain Extractionsolvent Yielda Contentb Study

Corn-sucrose C globosumDAOM240349 Ethylacetate 33.13mg/L Nodata 22

a YieldreferstotheyieldofchaetoglobosinAintheculturesystem

b ContentreferstothecontentofchaetoglobosinAinthecrudeextract

astheevaluationcriterionforaninhibitioneffect,becausethe

compo-nentinthecrudeextract,8insomecases,theuseofdifferent

againstR solaniisshowninFig.6

Inthistest,waterwassetastheblankcontrol,andethanol

astatisticallysignificant difference (p<0.05)in theaverage

wassetasthesolventcontrolinthecalculationofthemycelial

areaofthetreatmentset,anddiistheinitialcolonyareaofthe

aver-ageareasofR solanimyceliadecreasedsignificantly(p<0.05),

higherconcentrations,theinhibitioneffectoccurredearlier.In

theregressioncurveY=a×log10(X)+b,determinedbyprobit

differenttimepoints(Table2 Atthe48thhour,theIC50value

60

A

40

0

–40

–80

80

60

40

20

0

40

20

0

24 48 72

Culture time (h)

2)

2)

96 120

0 24 48 72

Culture time (h)

96 120

Control

0 µg/mL 0.5 µg/mL 2.5 µg/mL 5.0 µg/mL

25 µg/mL

50 µg/mL

Inhibition ratio of crude extract Inhibition ratio of standard Colony areas of ethanol control Colony areas of crude extract Colony areas of standard

Fig 6 – Inhibitory efficiency of the crude extract (20%

content) againstRhizoctonia solani.(A) Inhibitory efficiency

of chaetoglobosin A at different final concentrations under different culture times (B) Verification of the predicted IC 50

value of chaetoglobosin A using ethanol as the solvent, and comparison of the effect of the ethanol standard under the same concentration (3.88 ␮g/mL).

R solani decreased significantly, and the inhibition ratio

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510 511 512 513 514 515 516

Trang 8

Pleasecitethisarticleinpressas:JiangC,etal.NewproductionprocessoftheantifungalchaetoglobosinAusingcornstalks.Braz J Microbiol.

Table 2 – Inhibitory regression curves and predicted IC50 values of chaetoglobosin A againstR solaniat different culture

times.

Culturetime(h) Regressioncurvea R2 IC50(␮g/mL)

a XrepresentstheconcentrationofchaetoglobosinA,andYindicatestheinhibitionratioagainstR solani.

wasnotstatisticallysignificant(p>0.05),whichindicatedthat

5days)

Conclusion

Acknowledgements

Q2

financialsupportofthisstudyundertheNationalHigh

Tech-nologyResearchandDevelopmentProgram(2011AA10A205)

and“TwelfthFive-YearPlan”NationalScienceandTechnology

ProgramonRuralArea(2014BAL02B00)

1.SekitaS,YoshihiraK,NatoriS,KuwanoH.Structuresof chaetoglobosinAandB,cytotoxicmetabolitesofChaetomium globosum Tetrahedron Lett.1973;14(23):2109–2112

2.XueM,ZhangQ,GaoJM,LiH,TianJM,PescitelliG

ChaetoglobosinVbfromendophyticChaetomium globosum:

absoluteconfigurationofchaetoglobosins.Chirality.

2012;24(8):668–674

3.JiaoW,FengY,BluntJW,ColeAL,MunroMH

ChaetoglobosinsQ,R,andT,threefurthernewmetabolites fromChaetomium globosum J Nat Prod.2004;67(10):1722–1725

4.HuY,ZhangW,ZhangP,RuanW,ZhuX.Nematicidalactivity

ofchaetoglobosinApoducedbyChaetomium globosumNK102 againstMeloidogyne incognita J Agric Food Chem.

2013;61(1):41–46

5.KnudsenPB,HannaB,OhlS,etal.ChaetoglobosinA preferentiallyinducesapoptosisinchroniclymphocytic leukemiacellsbytargetingthecytoskeleton.Leukemia.

2014;28(6):1289–1298

6.IchiharaA,KatayamaK,TeshimaH,OikawaH,SakamuraS ChaetoglobosinOandotherphytotoxicmetabolitesfrom

Cylindrocladium floridanum,acausalfungusofalfalfablackrot disease.Biosci Biotechnol Biochem.1996;60(2):360–361

7.SekitaS,YoshihiraK,NatoriS,etal.Chaetoglobosins, cytotoxic10-(indol-3-yl)-[13]cytochalasansfromChaetomium

spp.I.Production,isolationandsomecytologicaleffectsof chaetoglobosinsA-J.Chem Pharm Bull.1982;30(5):1609–1617

8.ZhangG,WangF,QinJ,etal.Efficacyassessmentof antifungalmetabolitesfromChaetomium globosumNo.05,a newbiocontrolagent,againstSetosphaeria turcica Biol Control.

2013;64(1):90–98

9.ZhangG,ZhangY,QinJ,etal.Antifungalmetabolites producedbyChaetomium globosumNo.04,anendophytic fungusisolatedfromGinkgo biloba Indian J Microbiol.

2013;53(2):175–180

10.FogleMR,DouglasDR,JumperCA,StrausDC.Heatstabilityof chaetoglobosinsAandC.Can J Microbiol.2008;54(5):423–425

11.SelimKA,El-BeihAA,Abdel-RahmanTM,El-DiwanyAI

Biologicalevaluationofendophyticfungus,Chaetomium globosumJN711454,aspotentialcandidateforimproving drugdiscovery.Cell Biochem Biophys.2014;68(1):67–82

12.IshiuchiK,NakazawaT,YagishitaF,etal.Combinatorial generationofcomplexitybyredoxenzymesinthe chaetoglobosinAbiosynthesis.J Am Chem Soc.

2013;135(19):7371–7377

13.FogleMR,DouglasDR,JumperCA,StrausDC.Growthand mycotoxinproductionbyChaetomium globosum.

Mycopathologia.2007;164(1):49–56

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

Trang 9

2010;76(16):1910–1914

15.BurlotL,ChertonJ-C,ConvertO,CorreiaI,DennetiereB.New

leptostromiformisfungi.Production,identification,and

semi-synthesis.J Spectrosc.2003;17(4):725–734

G,PrabakarK,RaguchanderT.UseofChaetomium globosum

forbiocontrolofpotatolateblightdisease.Crop Prot.

2013;52:33–38

17.UmikalsomM,AriffA,ZulkifliH,TongC,HassanM,Karim

M.Thetreatmentofoilpalmemptyfruitbunchfibrefor

subsequentuseassubstrateforcellulaseproductionby

Chaetomium globosumKunze.Bioresource Technol.

1997;62(1):1–9

cellulose-hydrogenproductionfromcornstalkbylesser

pandamanure.Int J Hydrogen Energy.2008;33(21):6058–6065

19.HuY,HaoX,LouJ,ZhangP,PanJ,ZhuX.APKSgene,pks-1,

isinvolvedinchaetoglobosinbiosynthesis,pigmentation

andsporulationinChaetomium globosum Sci China Life Sci.

2012;55(12):1100–1108

20.ZhangX,ZhangD,ZhangH,LuoZ,YanC.Occurrence,

distribution,andseasonalvariationofestrogenic

compoundsandantibioticresiduesinJiulongjiangRiver,

SouthChina.Environ Sci Pollut Res.2012;19(5):1392–1404

21.NielsenKF,GravesenS,NielsenP,AndersenB,ThraneU, FrisvadJC.Productionofmycotoxinsonartificiallyand naturallyinfestedbuildingmaterials.Mycopathologia.

1999;145(1):43–56

globosumisolatedfromtheindoorenvironment.Mycotoxin Res.2013;29(1):47–54

23.UdagawaS,MuroiT,KurataH,etal.Theproductionof chaetoglobosins,sterigmatocystin,

spp.andrelatedfungi.Can J Microbiol.1979;25(2):170–177

24.KumarS,KaushikN,ProkschP.Identificationofantifungal principleinthesolventextractofanendophyticfungus

Chaetomium globosumfromWithania somnifera SpringerPlus.

2013;2(1):37

25.ChangT,OhtaS,IkegamiN,MiyataH,KashimotoT,Kondo

M.Antibioticsubstancesproducedbyamarinegreenalga,

Dunaliella primolecta Bioresource Technol.1993;44(2):

149–153

26.ElanderR.Industrialproductionof␤-lactamantibiotics.Appl Microbiol Biot.2003;61(5–6):385–392

27.LerouxP,ChapelandF,DesbrossesD,GredtM.Patternsof cross-resistancetofungicidesinBotryotinia fuckeliana (Botrytis

cinerea)isolatesfromFrenchvineyards.Crop Prot.

1999;18(10):687–697

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

Ngày đăng: 04/12/2022, 15:45

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w