1. Trang chủ
  2. » Giáo án - Bài giảng

mathematical model for galvanic corrosion of steel copper couple in petroleum waste water in presence of friendly corrosion inhibitor

7 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Mathematical Model for Galvanic Corrosion of Steel–Copper Couple in Petroleum Waste Water in Presence of Friendly Corrosion Inhibitor
Tác giả Anees A. Khadom, Baker M. Abod
Trường học University of Diyala
Chuyên ngành Chemical Engineering
Thể loại Research article
Năm xuất bản 2017
Thành phố Baquba
Định dạng
Số trang 7
Dung lượng 648,12 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Polarization curves for the corrosion of Fe in 1% wt MgCl2 at temperature 30 ◦Canddifferentrotationspeed.. Galvanic current as a function of speed of rotation at different temperature in

Trang 1

Journal of Applied Research

www.jart.ccadet.unam.mx Journal of Applied Research and Technology xxx (2017) xxx–xxx

Original

Anees A Khadoma,∗, Baker M. Abodb

aChemical Engineering Department, College of Engineering, University of Diyala, Baquba City, Diyala, Iraq

bTechnical Engineering College, Middle Technical University, Baghdad, Iraq

Received 9 May 2016; accepted 5 October 2016

Abstract

Galvaniccorrosionofsteel–coppercoupleinsalinepetroleumwastewaterintheabsenceandpresenceofcurcumaextractascorrosioninhibitor wasstudiedasafunctionoftemperature,velocity,andinhibitorconcentration.Theelectrochemicalpolarizationtechniquewasusedtoevaluate thecorrosionparameters.Corrosioncurrentsdensitiesincreasewithtemperatureandvelocity,whileitdecreaseswithinhibitorconcentrations.In thisinvestigation,atheoreticalmodelequationwasusedtoanalyzetheshapeofpolarizationcurves.MicrosoftExcelprogramwasusedtofindthe galvaniccurrentandgalvanicpotential.Theoreticalresultsagreedwithexperimentalone

©2017UniversidadNacionalAutónomadeMéxico,CentrodeCienciasAplicadasyDesarrolloTecnológico.Thisisanopenaccessarticleunder theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords:Galvanic corrosion; Electrochemical measurements; Numerical solution; Microsoft Excel

1 Introduction

Corrosionisachemicalorelectrochemicalreactionbetween

ametalanditsenvironmentthatproducedegradationofmaterial

There are several kinds of corrosion such as uniform

corro-sion,galvaniccorrosion,crevicecorrosion,pitting,intergranular

corrosion, etc Galvanic corrosion happens when a metal or

alloyiselectricallycoupledtoanothermetalinsamethe

envi-ronment.There are many methods of corrosion control such

as material selection, coatings, inhibitors, and cathodic

pro-tection.Corrosioninhibitorisorganicorinorganiccomponent

thatcanbeaddedinsmallamountstoreducecorrosion

thenaturalmaterialswheretheaimofresearchersthat

concen-tratedonstudyingthe kineticsparameters,such as,activation

parametersandadsorptionbehaviorofthecorrosioninhibition

∗Correspondingauthor.

E-mail address:aneesdr@gmail.com (A.A Khadom).

Peer Review under the responsibility of Universidad Nacional Autónoma de

México.

process(Yaro,Khadom,&Ibraheem,2011a;Yaro,Khadom,&

math-ematicalmodelingwasrarelyused.Mathematicalmodelingisa powerfultoolforincreasingtheavailabilityofelectrochemical dataforanumberofmaterialsandenvironmentalsystemsfor industrialapplicationsthatenablechemicalandmaterials engi-neerstopredictcorrosion potentialsandcorrosionratesusing equationsderivedfromelectrochemicalprinciples(Khadom&

presentworkwasastepinthedirectionofapplicationa mathe-maticalmodelforgalvaniccorrosion–salinewater–inhibitor systematdifferentoperatingconditions

2 Mathematical model

For activation control andto determine the potential of a system, inwhichthereduced andoxidizedspecies are notat unit activity, the familiar Nernest equation can be employed

(1)

http://dx.doi.org/10.1016/j.jart.2016.10.004

1665-6423/© 2017 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico This is an open access article under the

CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

Trang 2

(2) where E is the equilibrium half-cell potential, E o the

standard equilibrium half-cell potential, R is the gas

con-stant (8.314J/Kmol), T is the absolute temperature (K), n is

the number of electrons transferred, F the Faraday constant

(96,487coulomb/equiv.),a redanda oxidareactivitiesor

(concen-trations)ofoxidizedandreducedspecies.Hydrogenionactivity

iscommonlyexpressed,forconvenience,intermsofpH.This

isdefinedas(Uhlig&Revie,1985):

Hence,forthehalf-cellreaction

2H++2e→H2

Tafelslopes (Tafelconstants)aredetermined fromthe

fol-lowingequations(Fontana,1987):

for anode andcathode reaction, respectively, whereα is the

symmetrycoefficient,whichdescribestheshapeoftherate

con-trollingenergybarrier.The relationshipbetweenreactionrate

andovervoltageforactivationpolarizationis:

whereη Aisovervoltage,βasbefore,andiistherateofoxidation

orreductionintermsofcurrentdensity.Thisequationiscalled

the Tafel equation.The reaction rate isgivenby thereaction

currentorcurrentdensity,sothehighfieldapproximationgives





(8) and

|i c| =i o,c exp





(9) Theeffectoftemperatureistochangethevalueoftheexchange

currentdensityi oasfollows(Uhlig&Revie,1985):



R

 1

T



(10) Corrosioncurrentforanodicreactionratecanbeobtainedas





(11)





(12)

andthecathodiconeis:





(13)





(14) For the case of diffusion control, the reaction current is givenbyFick’slaw(Liberati,Nogueira,Leonel,&Chateauneuf,

|I| = z c F D A



∂C

∂x



(15)

oritsequivalent

|I| = z c F D A



δ



(16) Thelimitingcurrent,i.e.themaximumcurrentunder diffu-sioncontrolisobtainedwhenC s=0,so

|I L| =z c F D A



δ



(17) or

wherethemasstransfercoefficientisdefinedas

Thecorrosioncurrentisthen

cathodicreactionistheonelikelytobecontrolledbydiffusion

C bsolubilityofoxygeninwater.Thebulkconcentrationof oxy-genchangeswithpressure,forbarometricpressuresotherthan 101.325kPa(sealevel),thebulkconcentrationofoxygencan

becomputedfromthefollowingequation(Truesdale,Downing,

C b= C 101.325 (P Tp)

whereC bisthebulkconcentrationofoxygen,C101.325isa satu-rationvalueat101.325kPa(testedexperimentally,Table1),P T

istotalpressure(kPa),pisthevaporpressureofwater.Themass transfercoefficient(K)inEq.(19)varieswiththefloworrelative speedbetweenmetalandtheenvironment,thegeometryofthe systemandthephysicalpropertiesoftheliquid.Tocalculatethe variationofKindynamicenvironment,dimensionlessgroupare

Trang 3

Table 1

Solubility of oxygen in 1% MgCl2.

Temperature ( ◦C) Concentrationof

inhibitor (ppm)

Solubility of oxygen (mg/l)

Allareoftenapplied.Forthesmoothrotatingcylinder

elec-trode, the mass transport correlation is given by Eisenberg,

turbulentregime

ThevalueofKfromEqs.(22)–(25)canbeexpressedas:



D

d



This correlation is valid within the following range:

1000<Re<100000 and850<Sc<11490 Theeffectof

tem-peratureandpressureondiffusioncoefficientisshowninthe

followingequation:

P



T

n

(27) where the exponent n varies from 1.75 to 2.0, T o reference

temperature in K, D o diffusion coefficient at the reference

temperatureandpressure,P o referencepressure.Forgalvanic

corrosion under activation control (Hassan, Abdul Kader, &

I corr system=I a system=I system

And



foronemetal





(31)





(32)





(33)



α c n c F



(34) fortwometals

orintermsofcurrentdensitiesandareas

i a,1A1+i a,2A2=i c,1A1 + i c,2A2 (36) Or

i a,1f1+i a,2f2=i c,1f1 + i c,2f2 (37)

ifI a.1I a.2,Eq.(31)reduceto





(39)





(40)



α c F



(41)

fordiffusioncontrol(Hassanetal.,2011):



foronemetal

fortwometals



wheref1andf2aretheanodicandcathodicelectrodearea frac-tions

Eq.(47)became

Forbinarygalvanicsystemunderactivationcontrol(acidic medium)andmasstransfer(diffusion)control(neutralmedium), foronemetal:





(50)

Trang 4

i c=i o,c f c exp



α c n c F



(51)

whentwometalsat(E g):

3 Experimental work

FreshCurcuma longa(turmeric)werewashedunderrunning

water,slicedintosmallpiecesbeforedryinginahotairovenat

50◦Cforabout6h.Dryslicewascollectedandgroundintofine

powder using a high-speedblender.The dry, Curcumalonga

waspacked inaplasticbag, sealed,andkeptuntil used.The

slice(25g)wasblendedwithdistilledwater(250ml)inareflux

heaterwithconicalflax(500ml)for3hat70◦C.Theconicalflax

wassuppliedwithmixerforhomogenoussolutionanduniform

temperaturedistribution.Thesolutionisthencooled,followed

byfiltrationtoextractsolidparticlesfreeinhibitorsolution.Each

1cm3ofextractyieldapowder0.0045gofsolidmaterial

Atotalof 90testrunswascarried outinthe presenceand

absenceofinhibitoratdifferentexperimentalconditionsusing

potentiodynamicpolarizationtechnique.Testswerecarriedout

using a beaker of 500ml The cell containing working

elec-trode, luggingcapillary probe,thermometer,counter graphite

electrode.Allpotentialvaluesweremeasuredinreferencetoa

saturatedcalomelelectrode(SCE).Theluggingcapillaryprob

wasadjustedsuchthatitwasatadistancenotmorethan1mm

fromtheworkingelectrode.Theworkingelectrodewere2

sam-plesfromcarbonsteeltype(ASTMA106/A)andcoppertype

(ASTMB-111-443).Theworkingelectrodewas(2.4cmoutside

diameterx 1.35cm long)carbonsteel(typeASTMA106/A)

and copper (type ASTM B-111-443) cylinder; this cylinder

wasfixedon brasszone ontheshaft Graphiteelectrodewas

usedas acounterelectrodehasadimensionof(9.5cm

diam-eter×8cm long),two wires were connectedtoacylindrical

concentric graphiteelectrode.The chemicalcompositions(%

wt)ofworkingelectrodeswereforsteelalloy0.25%C,0.5%Mn,

0.025%P,0.025%S,0.1%Si,0.4%Cr,0.15%Mo,andthebalance

isFe.Thecopperalloycompositionsare70–73%Cu,0.007%Pb,

0.0006%Fe,0.001%Sb,0.0.009%Sn,andthebalanceisZn.Mild

steelandcopperspecimenswerecleanedusingemerypaperof

gradenumber220,320,400,and600,thenwashedwithrunning

tapwater followedbydistilledwater, thendriedwithaclean

tissue,degreasedwithbenzene,dried,degreasedwithacetone,

dried,andfinallyleftindesiccatoroversilicagel.Theelectrode

wasmounteddirectlytotheworkingelectrode.(SCE)wasused

asareferenceelectrode.ToensurethatKClsolutionwas

satu-rated,asmallamountofKCl(solid)waskeptinthesolutionof

(SCE)aslongasthetest.Thecathodicpolarizationiscarriedout beginningfromthehighestnegativepotentialof−900mVuntil reachingthecorrosionpotential.Thepotentialwaschangedin scanrate of10–15mV/min,thenthecurrent isrecorded.The anodic polarizationreadingsstartof apotentialresulting ina zerocurrentdensityandisincreasedinastepof10–15mVwith recording of the current at each step for oneminute interval untilapotentialofabout−100mV.Thegalvaniccorrosionrate

ofsteel–coppercoupleintheabsenceandpresenceofinhibitor concentrationof0,90,180,270and360ppm,arearatioof cath-odetoanode1:1,atdifferenttemperature30,35,and40◦Cwas

evaluatedinaerated1%(wt)MgCl2andpH6

4 Results and discussion

The corrosion behaviorof Feand Cu in1% MgCl2 solu-tionwithandwithoutinhibitorwasstudiedusingpolarization techniques.Theinhibitorwastestedindifferentconditions of temperature,velocityandinhibitorconcentration.Atotalof90 test runs is carried out.Electrochemical parametersfor each metal individually were calculated using polarization curves similartoFigures1and2that obtainedforFeandCuin1% MgCl2solution.Whilegalvanicparameterswerecalculatedby superimposingtheanodicbranchofthelessnoblematerial(mild

–800 –700 –600 –500 –400 –300

1 0

–1 –2

–3 –4

log(I) (mA /cm 2 )

200 rpm

50 rpm

0 rp m

Fig 1 Polarization curves for the corrosion of Fe in 1% wt MgCl2 at temperature

30 ◦Canddifferentrotationspeed.

–800 –700 –600 –500 –400 –300 –200 –100 0

0 –1

–2 –3

–4

log(I) (mA /cm 2 )

200 rpm

50 rpm

0 rp m

Fig 2 Polarization curves for the corrosion of Cu in 1% wt MgCl2 at temper-ature 30 ◦Canddifferentrotationspeed.

Trang 5

–800

–700

–600

–500

–400

–300

–200

–100

0

1 0

–1 –2

–3 –4

log(I) (mA /cm2)

Cu Fe

Fig 3 Polarization curves for the corrosion of Fe–Cu coupling at speed of

rotation 50 rpm, temperature 40 ◦Cand180ppminhibitorconcentration.

220 200 180 160 140 120 100 80 60 40 20

0

–20

Rotational speed (rpm)

40

60

80

100

120

140

160

-6 A/cm

2 )

30ºC

35

40

Fig 4 Galvanic current as a function of speed of rotation at different temperature

in absence of inhibitor.

steel)tothecathodicbranchofthemostnoblematerial(copper

alloy)asshowninFigure3.Similarfiguresareobtainedatall

operating conditions From polarization curves, the free

cor-rosioncurrent I corr,corrosion potentialE corr,limiting current

density,i L,andgalvaniccorrosion,I gwereobtained.Aplateau

correspondingtoalimitingcurrentdensity(i l)isobservedinthe

cathodicregionofthe polarizationcurvesbetween−800 and

−600mV SCE Therefore,the cathodicreaction seemstobe

controlledbydiffusion.ItwasshownthatthevaluesofI corrand

I gincreasedwithtemperature andvelocity,whileitdecreased

withinhibitorconcentration.Maximuminhibitorefficiencywas

around 90% at 360ppm and 30◦C. The average values of

inhibitor efficiency were approximately 55, 72,76, and83%

atinhibitorconcentrationof90,180,270,and360ppm

respec-tively.Theincreasingincorrosionprotectionwithadditionof

inhibitormaybeattributedtoincreaseinmetalsurfacecoverage

Increasinginhibitor concentrationbeyond380ppmmayyield

furtherreduction in galvaniccorrosion current,but

economi-calconsiderationshavetobetakenintoaccount.Figures4and5

showthevariationofgalvaniccorrosionasafunctionofdifferent

operatingconditions

28 30 32 34 36 38 40 42

Temperature (ºC)

0 10 20 30 40 50 60 70 80 90

-6 A/cm

2 ) C = 0 ppm

90 180 270 360

Fig 5 Galvanic current as a function of temperature at different inhibitor con-centration.

ordinarygalvaniccorrosionmodelandfluiddynamicsanalysis model.Thecalculationisdividedintotwotypes.Activation con-trolandmasstransfercontrol.Simplificationsleadingtoanalytic solutionsofthemodelequationsaresocomplex,sonumerical solutionsmustbeattempted.Asanexample,anumericalmethod

algorithmareasfollows:

1 Estimateequilibriumpotentialsformetalsandforhydrogen fromEq.(1)atTof30,35and40◦C.ForpHvaluesuseEq.

(3)tocalculatehydrogenionconcentrations

2 Tafel slopes for anodicandcathodic reactionsare estab-lishedfromEqs.(4)and(5)atα=0.5andTof30,35and

40◦C.

3 Theexchangecurrent densityiscalculatedfromEq (10) forthreevaluesoftemperatures(30,35and40◦C).

4 Bulkconcentrationofoxygeninwateriscalculatedfrom

Eq.(21)atdifferenttemperatures30,35and40◦C,byusing,

5 ThevalueofoxygendiffusivityisestimatedfromEq.(27)at differenttemperatures30,35and40◦C.Themasstransfer

coefficientKiscalculatedbyusingEq.(26)

6 ThelimitingcurrentisestimatedfromEq.(20)atdifferent temperatures30,35and40◦C.

7 Itisnecessarytorealizethatthegalvaniccorrosion poten-tials(E g)ofthereactionsinvolvedarechosenbetweenthe morenegative(orlesspositive)equilibriumpotentialofthe metalsandtheequilibriumpotentialofhydrogenevolution

8 ThevaluesofE eq,β,i o,E g (=E a=E c)aresubstitutedinEqs (11)and(13)todetermineanodicandcathodiccurrents

9 Foractivationcontrol:

10 The summationsof the anodicandcathodic currents are comparedtodeterminetheabsolute valueof their differ-ence

Trang 6

Table 2

Galvanic corrosion of Cu/Fe couple versus temperature under the following conditions: [Fe 2+ ] = [Zn 2+ ] = 10 −6M,fFe=0.5,fZn=0.5,alphaofH2=0.5,alphaof

Cu = Fe = 0.5.

T( ◦C) rpm E g(mV) ICu(␮A/cm 2 ) IFe ( ␮A/cm 2 ) IH2/Cu (␮A/cm2 ) IH2/Fe (␮A/cm2 ) I Limiting( ␮A/cm 2 )

11 A newvalue of E g isassumed as instep 8 andthe

pro-gramisexecutedagain,showingthedifferencebetweenthe

summationoftheanodicandcathodiccurrentstodecrease

12 Step11isrepeateduntilaminimumdifferencecurrent is

found.Theminimumwillbedetectedwhenthesweeping

proceduregoesbeyondthetruegalvanicpotentialvalueas

thedifferencestartsincreasing.Theprecisionwillbegreater

thesmallerthepotentialstepwhiletheprocessingtimewill

increaseaccordingly

13 Formasstransfercontrol:

currentsandlimitingcurrents,Eq.(42),arecalculatedand

compared todeterminetheabsolutevalue oftheir

differ-ence

15 A newvalue of E g isassumed as instep 8 andthe

pro-gramisexecutedagain,showingthedifferencebetweenthe

summationoftheanodicandlimitingcurrentstodecrease

16 Step11is repeateduntil aminimumdifference isfound

Theminimumwillbedetectedwhenthesweeping

proce-duregoes beyondthe truegalvanicpotential valueasthe

difference startsincreasing.Theprecisionwill begreater

thesmallerthepotentialstepwhiletheprocessingtimewill

increaseaccordingly

17 Forcathodereactionunderactivationcontrolcomplicitwith

masstransfer:

18 The differencebetweenthesummationof theanodicand

cathodiccurrentsandlimitingcurrentsEq.(49),are

calcu-latedandcomparedtodeterminetheabsolutevalueoftheir

difference

19 A newvalue of E g isassumed as instep 8 andthe

pro-gramisexecutedagain,showingthedifferencebetweenthe

summationoftheanodicandcathodiccurrentsandlimiting

currentstodecrease

20 Step11is repeateduntil aminimumdifference isfound

Theminimumwillbedetectedwhenthesweeping

proce-duregoes beyondthe truegalvanicpotential valueasthe

difference startsincreasing.Theprecisionwill begreater

thesmallerthepotentialstepwhiletheprocessingtimewill

increaseaccordingly

AprogramwritteninMicrosoft Excel 2010forfreecorrosion

rateofsinglemetalandbinarygalvanicsystemunderactivation

control (acidicmedium) andmass transfer(diffusion)control

0 20 40 60 80 100 120 140 160 180

250 200

150 100

50 0

2 )

rpm

Theoretical Polarization

Fig 6 Comparison of the galvanic current density obtains from polarization curve and theoretical calculation at temperature 30 ◦Cdifferentrpm.

0 20 40 60 80 100 120 140 160 180

250 200 150 100 50

0

2 )

rpm

Theoretical Polarization

Fig 7 Comparison of the galvanic current density obtains from polarization curve and theoretical calculation at temperature 35 ◦Cdifferentrpm.

(neutral medium)andalsotocalculatethegalvanic corrosion rate whenthesystemisunderbothactivationandmass trans-fercontrol.Table2thatshowstheeffectoftemperatureonthe corrosion currentand corrosion potential of copperandiron, limiting current was calculatedfrom Eq (44),corrosion cur-rent ofmetalswerecalculatedfromEq.(53).Figures6and7 showacomparisonofthegalvaniccurrentdensityobtainfrom polarizationcurveandtheoreticalcalculation.Figures8and9 showacomparisonofthegalvaniccurrentdensityobtainfrom polarizationcurve,weightlossandtheoreticalcalculation

Trang 7

60

40

20

0

30

Temperature ºC Theoretical Polaeization curve

2)

Fig 8 Comparison of the galvanic current density obtains from polarization

curve, weight loss and theoretical calculation at different temperature.

180

160

140

120

100

80

60

40

20

0

Temperature ºC

2 )

Theoretical at 200 rpm

Polarization at 200 rpm

Theoretical at 50 rpm Polarization at 50 rpm

Fig 9 Comparison of the galvanic current density obtains from polarization

curve and theoretical calculation at different temperature and rpm.

5 Conclusion

Galvaniccurrentandthecorrosioncurrentdensitiesincrease

with increasing temperature and velocity, and decrease with

increasing inhibitor concentrations The addition of inhibitor

reducedthegalvaniccorrosioncurrent.Amathematicalmodel

equationwasveryeffectivetooltoanalyzetheshapeof

polariza-tioncurves.Theoreticalresultsagreedwithexperimentalone

Conflict of interest

Theauthorshavenoconflictsofinteresttodeclare

Acknowledgment

TheauthorswouldlikethanksProf.Dr.AprealS.Yaro (Bagh-dad University – Chemical Engineering Department) for his continuousencouragementandassistance

References

Cifuentes, L (1987) Electrochemical kinetics helps quantify corrosion phenomena.Anti-Corrosion, Methods and Materials, 34(11),4–9 Eisenberg, M., Tobias, C W., & Wilke, C R (1954) Ionic mass transfer and con-centration polarization at rotating electrodes.Journal of the Electrochemical

Fontana, M (1987).Corrosion engineering.New York, USA: McGraw-Hill Hassan, B., Abdul Kader, H., & Abdul-Jabbar, M (2011) Experimental study on carbon steel corrosion and its inhibition using sodium benzoate under differ-ent operating conditions.Journal of Chemical and Petroleum Engineering,

Khadom, A A., & Yaro, A S (2011) Modeling of corrosion inhibition of copper–nickel alloy in hydrochloric acid by benzotriazole.Russian Journal

Khadom, A A., Musa, A Y., Kadhum, A A H., Mohamad, A B., & Takriff,

M S (2010) Adsorption kinetics of 4-amino-5-phenyl-4H-1, 2, 4-triazole-3-thiol on mild steel surface. Portugaliae Electrochimica Acta, 28(4),

221–230.

Khadom, A A., Yaro, A S., AlTaie, A S., & Kadum, A A H (2009) Electro-chemical, activations and adsorption studies for the corrosion inhibition of low carbon steel in acidic media.Portugaliae Electrochimica Acta, 27(6),

699–712.

Khadom, A A., Yaro, A S., Altaie, A S., & Kadhum, A A H (2009) Math-ematical modeling of corrosion inhibition behavior of low carbon steel in HCl acid.Journal of Applied Sciences, 9,2457–2462.

Musa, A Y., Khadom, A A., Kadhum, A A H., Takriff, M S., & Mohamad,

A B (2012) The role of 4-amino-5-phenyl-4H-1, 2, 4-triazole-3-thiol

in the inhibition of nickel–aluminum bronze alloy corrosion: Electro-chemical and DFT studies.Research on Chemical Intermediates, 38(1),

91–103.

Liberati, E A., Nogueira, C G., Leonel, E D., & Chateauneuf, A (2014) Non-linear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion.Engineering Failure Analy-sis, 46,247–268.

Truesdale, G A., Downing, A L., & Lowden, G F (1955) The solubility of oxygen in pure water and sea-water.Journal of Applied Chemistry, 5(2),

53–62.

Uhlig, H., & Revie, W (1985).Corrosion and corrosion control.USA: John Wiley and Sons.

Yaro, A S., Khadom, A A., & Ibraheem, H F (2011) Peach juice as an anti-corrosion inhibitor of mild steel.Anti-Corrosion Methods and Materials,

Yaro, A., Al-Jendeel, H., & Khadom, A (2011) Cathodic protection system of copper–zinc–saline water in presence of bacteria.Desalination, 270(1–3),

193–198.

Yaro, A S., Khadom, A A., & Wael, R K (2013) Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid.Alexandria Engineering

Yaro, A S., Khadom, A A., & Wael, R K (2014) Garlic powder as a safe envi-ronment green corrosion inhibitor for mild steel in acidic media; adsorption and quantum chemical studies.Journal of the Chinese Chemical Society,

Ngày đăng: 04/12/2022, 15:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w