Pfaffla,∗ a Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany b Institute of Computational Biology, Helmholtz Cent
Trang 1jou rn al h om e p a g e :w w w e l s e v i e r c o m / l o c a t e/ b d q
Research paper
Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by
all-trans retinoic acid: Integrative analysis of transcriptomic and
phenotypic data
Katharina Stoeckera, Steffen Sassb, Fabian J Theisb,c, Hans Haunerd,e, Michael W Pfaffla,∗
a Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
b Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Oberschleißheim, Germany
c Department of Mathematics, Technical University of Munich, Garching, Germany
d Else-Kröner-Fresenius-Centre for Nutritional Medicine, ZIEL Research Center for Nutrition and Food Sciences, Technical University of Munich, Freising,
Germany
e Else Kröner-Fresenius-Centre for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
a r t i c l e i n f o
Article history:
Received 8 September 2016
Received in revised form 8 November 2016
Accepted 15 November 2016
Available online xxx
Handled by Justin O’Grady
Keywords:
All-trans retinoic acid (ATRA)
Adipogenesis
3T3-L1 cells
MicroRNA–mRNA interaction
Regulation of biological pathways
Multiple linear regression models
a b s t r a c t
Theprocessofadipogenesisiscontrolledinahighlyorchestratedmanner,includingtranscriptionaland post-transcriptionalevents.Indeveloping3T3-L1pre-adipocytes,thisprogramcanbeinterruptedby all-transretinoicacid(ATRA).ToexaminethisinhibitingimpactbyATRA,wegeneratedlarge-scale tran-scriptomicdataonthemicroRNAandmRNAlevel.Non-codingRNAssuchasmicroRNAsrepresentafield
inRNAturnover,whichisveryimportantforunderstandingtheregulationofmRNAgeneexpression HighthroughputmRNAandmicroRNAexpressionprofilingwasperformedusingmRNAhybridisation microarraytechnologyandmultiplexedexpressionassayformicroRNAquantification.Afterquantitative measurementswemergedexpressiondatasets,integratedtheresultsandanalysedthemolecular regu-lationofinvitroadipogenesis.Forthispurpose,weappliedlocalenrichmentanalysisontheintegrative microRNA-mRNAnetworkdeterminedbyalinearregressionapproach.Thisapproachincludesthetarget predictionsofTargetScanMouse5.2and23pre-selected,significantlyregulatedmicroRNAsaswellas AffymetrixmicroarraymRNAdata.Wefoundthatthecellularlipidmetabolismisnegativelyaffected
byATRA.Furthermore,wewereabletoshowthatmicroRNA27aand/ormicroRNA96areimportant regulatorsofgapjunctionsignalling,therearrangementoftheactincytoskeletonaswellasthecitric acidcycle,whichrepresentthemostaffectedpathwayswithregardtoinhibitoryeffectsofATRAin 3T3-L1preadipocytes.Inconclusion,theexperimentalworkflowandtheintegrativemicroRNA–mRNAdata analysisshowninthisstudyrepresentapossibilityforillustratinginteractionsinhighlyorchestrated biologicalprocesses.FurthertheappliedglobalmicroRNA–mRNAinteractionnetworkmayalsobeused forthepre-selectionofpotentialnewbiomarkerswithregardtoobesityorfortheidentificationofnew pharmaceuticaltargets
©2016TheAuthor(s).PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY
license(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Dietary behaviour has a strong influence on body energy
metabolism.Whiteadiposetissue(WAT)isthemajorstoragedepot
forexcessenergyandisinvolvedinenergyhomeostasis.WATis
∗ Corresponding author at: Animal Physiology and Immunology, School of Life
Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3,
Freising 85354, Germany.
E-mail address: michael.pfaffl@wzw.tum.de (M.W Pfaffl).
mainlycomposedofmatureadipocytesandpre-adipocytesaswell
asothercelltypes.Anexpansionofadiposetissueisusuallybecause
ofanincreaseinfatcellvolume,butinthecaseofsevereformsof obesity,itisalsocharacterisedbyfatcellhyperplasiacausedby preadipocytedifferentiation.Thisprocessisregulatedinahighly complexmannerandincludesmanyregulatorycomponents[1] However,theenlargementofbodyfatmassandanincreaseinbody massindex(BMI)dependsonachronicpositiveenergybalance[2] Adipogenesis, the process of fat cell differentiation can be affectedbyvariousendogenousand/orexogenousfactors Accord-ingly,nutrientsorothercompoundsaffectingadipogenesisexert
http://dx.doi.org/10.1016/j.bdq.2016.11.001
2214-7535/© 2016 The Author(s) Published by Elsevier GmbH This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Trang 2sizeandnumber,andthesecretionofhormonesregulatinghunger,
satietyor energyexpenditure [3].Fructose,nicotine,pesticides,
industrial chemicals or pharmaceuticals like estradiol are able
tomediatepro-adipogenicfunctionsinmammalsandarecalled
obesogeniccompounds[3,4].Ontheotherhand,anti-adipogenic
compoundsalsoexistinnature.All-transretinoicacid(ATRA),a
vitaminAderivate,iscapableofmodulatingdifferentiation[5–7]
Thereby,thedifferentiationofosteoblasts[8]andmyoblasts [9]
isinduced,whereas thedevelopmentof adipocytesis inhibited
[10–12].Theeffects of ATRAstrongly dependonits
concentra-tion, duration of action and target cell type [13] Retinol and
carotenoids,the precursorsof retinoic acid, are foundin many
foods,e.g.meat,milkandvegetables,andinhighconcentrations
incarrots.Afterabsorptionfromthediet, retinoicacidis
trans-portedtovarioustissuesincluding,WAT,andismetabolisedinside
thecells[5,7].TheeffectsofATRAonadipogenesishavebe
exam-inedincellculturemodelse.g.themouse3T3-L1pre-adipocyte
cellline[14].Inconfluentgrowth-arrested3T3-L1pre-adipocytes,
anadipogenicstimulusinitiatesalimitedclonalexpansionbefore
the cells enter the phase of terminal differentiation, including
lipidaccumulation[15–17].Forthis,thesequentialinductionof
thetranscriptionfactorsCebp˛,Cebpˇ[18]andPpar [19–21]is
necessary.Thereafter, adipocytespecificgenesandenzymesare
induced[22],andcellmorphologyischangedbyreorganisation
ofthecytoskeletonfroma fibroblast-likeappearancetowardsa
spherical shape [22,23] Recent data suggest that the
develop-mentofmatureadipocytesisinitiatedbytranscriptionalaswellas
post-transcriptionalchangesconveyedbysmallnon-codingRNAs
MicroRNAs(miRs)aresmallnon-codingRNAspecies,and
regula-tiontakesplacethroughboth,mRNAdegradationorsuppression
oftranslation[24,25].Thismechanismwasinitiallydiscoveredin
plantsandCaenorhabditiselegansbyLeeetal.andwasreportedto
beassociatedwiththeregulationofgeneexpressionandcell
differ-entiationandwithguardingorganismsagainstexternalnucleotide
sequencessuchasviruses,transposonsorparasites[26]
Thepresentstudyaimedtofurtherstudythemolecular
mech-anismsinducedbyATRA in3T3-L1mousepreadipocytesatthe
transcriptome and phenotypic levels in a high-resolution time
frame.Therefore,we usedthe methodofoil-red-Ostaining for
phenotyping and microarray technology, reverse-transcription
quantitativepolymerase chain reaction(RT-qPCR) and a
multi-plexedassayforexpressionprofilingatboththemRNAandmiR
levels.Pre-adipocytesweretreatedwithATRAinatimeframefrom
0hto288h(12days)post-treatment.In addition,togenerate a
comprehensivepictureofregulatorynetworksofthe
physiologi-calprocesses,wecombinedthesehigh-throughputtranscriptional
datasetstocreateatwo-levelregulatorymRNA-miRnetworkof
transcriptomicdata
2 Materials and methods
2.1 Cellcultureformaintenance
For all experiments, the mouse preadipocyte cell line
3T3-L1 (ATCC®/LGC Standards GmbH, Wesel, Germany) was used,
and cells werecultured as described by thesupplier Thecells
weremaintainedinT175flasks(NalgeneNuncInternational/Fisher
Scientific, Schwerte, Germany) withfibroblastmedium
consist-ingof500mlDulbecco’smodifiedEagle´ısmedium(DMEM)(LGC
Standards GmbH, Wesel, Germany), 10% new born calf serum
(PAN Biotech GmbH, Aidenbach, Germany) and 1%
penicillin-streptomycin (InvitrogenTM, Darmstadt, Germany) Cells were
subculturedevery3days.Followingthis, thecells werewashed
withphosphate-bufferedsaline (PBS) (PAA LaboratoriesGmbH,
Cölbe, Germany), and the cell layer was detached with 0.25% Trypsin–EDTA(LifeTechnologiesGmbH,Darmstadt,Germany).Cell culturewasperformedat37◦Cinahumidified5%CO2incubator 2.2 Experimentalcellculture
Initially, cells were resuspended in fibroblast medium and 1.8×105cellswereseededpersixwells(NalgeneNunc Interna-tional/Fisher Scientific, Schwerte, Germany) After5days, when pre-confluencewasreached,thefibroblastmediumwasrenewed and the cells were cultured for another 2days The fibroblast medium was replaced by differentiation medium (DMI), con-taining 10% foetal bovine serum (FBS) (PAN Biotech GmbH, Aidenbach, Germany), 1% penicillin–streptomycin, 0.5mM 3-Isobutyl-1-methylxanthin (IBMX) (Sigma Aldrich, Taufkirchen, Germany), 1M dexamethasone (DEX) (Sigma Aldrich) and
1g/ml insulin (Sigma Aldrich) in 500ml DMEM The 3T3-L1 preadipocytes were cultivated with DMI in the presence and absenceof3MATRA(SigmaAldrich,Taufkirchen,Germany).After
96h, DMIwasreplacedbygrowthmedium(±3MATRA) con-taining10%FBS,1%penicillin–streptomycinand1g/mlinsulin
in500mlDMEM.Themediumwasrenewedevery2days ATRA-treatedandưuntreated3T3-L1cellswereharvestedafter0,2,4,7,
10,24,48and96handagainafter288h(12days)
2.3 EvaluationofRNAquality Cellular RNA of ATRA-treated and untreated 3T3-L1 preadipocytes was extracted using the RNeasy Kit (Qiagen, Hilden,Germany),asdescribedbythesupplier.RNAwaseluted
in RNase-free water The RNA concentration and purity were determinedusingtheSpectrophotometerNanoDrop1000 (Nano-Dropproducts,Wilmington,USA)andBioanalyzer2100(Agilent Technologies,Mannheim,Germany)
2.4 cDNAsynthesis Forgeneexpressionprofiling,500ngoftotalRNApersample wasreversetranscribedintofirst-strandcDNA.ForcDNAsynthesis, theMoloneymurineleukaemiavirusreversetranscriptaseH- (M-MLVRTH-)(Promega,Mannheim,Germany),10mMdNTPsand
50Mhexamerprimerswereutilisedinatotalvolumeof31l Thereactionmixwasincubatedfor20minat21◦C,followingwhich thecDNAsynthesisstepwasperformedfor120minat48◦C.The reactionwasstoppedby2-minincubationat90◦C
ForthereversetranscriptionofmaturemiRs,weusedthe miS-criptRTKit(Qiagen),asdescribedbythesupplier.Thetotalvolume
ofeachreactionwas20l.Weused300ngtotalRNA.TheRT reac-tionswereperformedbyincubationfor1hat37◦C,andthecDNA reactionwasstoppedbyincubationat95◦Cfor5min.Thereafter, cDNAwasdiluted1:4withRNase-freewaterandstoredatư20◦C.
2.5 RT-qPCRformRNAquantification RT-qPCR was performed using a CFX384 Touch real-time detection cycler (Bio-Rad Laboratories, Munich, Germany), and theSsoFastEvaGreenSupermix(Bio-RadLaboratories)wasused for gene expression profiling Gene primers (200nM) and 1l
of first-strand cDNA were added to the master mix From the entire set of all quantified genes the most stable mRNAs were selected for data normalisation We appliedthe geomet-rical average of the following four stably expressed reference genes:Glyceraldehyde-3-phosphatedehydrogenase(Gapdh); Non-POU-domain-containing Octamer-binding protein (Nono); Beta Actin (Actb) [27]; and Importin 8 (Ipo8) We quantified the
Trang 3proliferator-activated receptor gamma (Ppar); CCAAT/enhancer-binding
protein(C/EBP),alpha(Cebp˛);CCAAT/enhancer-bindingprotein
(C/EBP),beta(Cebpˇ);sterolregulatoryelementbinding
transcrip-tionfactor 1 (Srebf1)and retinoidX receptor andalpha (Rxr˛)
All primers were synthesized by Integrated DNA Technologies
(Leuven,Belgium)andprimersequencesaresummarisedinthe
SupportinginformationTableS1
Thefollowing cyclingconditionswereusedinCFX384Touch
real-timeDetectionCycler(Bio-Rad):afterinitialactivationfor30s
at98◦C,thecyclestepsofdenaturationfor5sat95◦Cand
anneal-ing/elongationfor20sat60◦Cwererepeatedfor39cycles.Melting
curveanalysiswasappliedtoconfirmtheintegrityofgenerated
RT-qPCRproductsbyasingleampliconpeak.Themeltingcurvewas
generatedfrom65◦Cto95◦Cwithanincrementof5◦C/5min
2.6 RT-qPCRformiRquantification
FormiRexpressionprofiling,weusedthemiScriptSYBRGreen
PCRKit(Qiagen,Hilden,Germany),asdescribedbythesupplier
Thetotalvolumeofeachreactionwas10l,including1l
tem-platecDNA,1l10×miScriptUniversalPrimeraswellas1lof
thespecific10×miScriptPrimerAssay.Thefollowingconditions
wereused:initialactivation15minat95◦C,denaturation15sat
94◦C,annealing30sat55◦Candextension30sat70◦C.Afterdata
collectionattheextensionstep,meltingcurveanalysiswas
per-formedinthesamemannerasthatmentionedforgeneexpression
profiling.Fornormalisation,wecalculatedthegeometricalaverage
ofallmeasuredmiRs,includingmiR-26b,miR-29a-5p,miR-29b-5p,
miR-93,miR-96,miR-103,miR–miR-146,miR-221andmiR-365,as
wellasthemiScriptPCRControlsRNU5a,RNU6b,RNU1a,SNORD25
andSNORA73a [28].Quantified miRsequencesarelistedinthe
SupportinginformationTableS2
2.7 Expressiondatanormalisation
AllinternalreferencegenesatthemRNAandmiRlevelwere
evaluatedwithgeNorm [29] and NormFinder [30] both partof
the gene expression analysis software suite GenEx 5.4.2
(Mul-tiD, Gothenburg, Sweden) All relative expression changes are
representedasfoldchangesaccordingtothefollowingformula:
FC=2−Ct[31]
2.8 MIQEcompliance
QuantitativePCRassayswerevalidatedaccordingtotheMIQE
guidelines[32](fordetailsseetheMIQEchecklistintheappendix)
In brief;sample andRNA integrity wereevaluated; exon
span-ningprimerdesign wasdoneusingPrimer 3web version;PCR
assayefficiency(96.2±5.6%)wasevaluatedusingdilutionseries;
relativegeneexpressiondatawereanalysedwithMIQEapproved
algorithmsusingGenEx5.4.2softwarepackage
2.9 MicroarraymRNAgeneexpressionprofiling
Using theGeneChip® MouseGene 1.0 ST Array(Affymetrix,
Santa Clara, United States), 28,853 well annotated genes are
detectable.UsingtheGeneChipArray,thegeneexpression
pro-filesinthepresenceandabsenceof3MATRAwereanalysedin
3T3-L1cellsateight differenttime points(0,2,4,7,10,24, 48
and96h).Therefore,threeindependentcellcultureexperiments
wereconducted,andRNAwasextractedasmentionedabove.In
total,100ngtotal RNAofeachsamplewasusedasthestarting
materialformicroarrayhybridisation[33].AnAffymetrix
process-ingprotocolwasutilised[34],and45arrayswereperformedby
theGenomicCoreFacilityoftheEuropeanMolecularBiology Lab-oratory(EMBL,Heidelberg,Germany).Fordatanormalisation,the GeneSpringGXSoftware(AgilentTechnologies,SantaClara,United States) [35] wasusedand therobust multichipanalysis (RMA) algorithmwasapplied.Thedatawereanalysedwithregardtothe qualityandquantityofthedata.Themicroarray datawere ver-ified byRT-qPCR, and thePearsoncorrelation coefficients were calculated.DatawereanalysedwiththeMultiexperimentViewer (Dana-Faber-Cancer-Institute,Boston,USA)[36].Datawere gener-atedaswellasanalysedfollowingtheMIAMEguidance[37] 2.10 MiRexpressionanalysis
FormiRexpressionprofiling,thenCounterMousemiR Expres-sionAssay(NanoString,Seattle,UnitedStates)wasused[38,39] Usingthisanalysissystem,600murineandmurine-associatedviral miRsaredetectable.Adigitalcolour-codedbarcodetechnologywas utilised,andeachbarcodewasattachedtoasingletarget-specific probecorrespondingtomiRofinterest.MiR-specificprobeswere designed againsttheannotations inmirBaseversion18 [40,41] Thesetarget-specificprobesweremixedtogetherwithcontrols; therefore, a multiplexedcodesetwas formed[38,39].ThemiR expressioninthepresenceandabsenceof3MATRAwas ana-lysedintwoindependentcellcultureexperimentsatninedifferent timepoints(0,2,4,7,10,24,48and96hand288h=12days).As
astartingamountfortheassays,100ngtotalRNAwasanalysed persample.Eachassaywasnormalisedonthebasis ofthe geo-metricmeanofthetop100expressedmiRs,andanormalisation factorrelativetothemeanofallsampleswascalculatedforeach assayusingthenSolverAnalysisSoftware(NanoString Technolo-gies).Thenormalisationfactorsforallassaysrangedbetween0.1 and10;thisrangeisalsorecommendedbyNanoStringTechnology itself.HeatmapsweregeneratedusingtheMultiexperimentViewer software[36]
2.11 Genomatixpathwaysystemanalysis(GePS) Foranalysisofenrichedbiologicalprocesses(GOterms)in DMI-treatedandDMI+3MATRA-treatedcells,weutilisedtheGePS Software (Genomatix,Munich,Germany).Based oninformation frompublicandproprietary databasesaswellasco-citationsin theliterature,thissoftwareenablesacomprehensiveanalysisof enrichedGOterms[42]
2.12 Geneontologyanalysis TheGOtermsdeterminedbyGePSwereanalysedbytheopen sourcesoftwareREVIGO (Laboratoryforinformation systemsat theRudjerBoskovicInstitute,Zagreb,Croatia)[43].REVIGO sum-marises lists of GOterms by excluding redundant terms using
aclusteringalgorithm.Onlynon-redundanttermsarevisualised
in clusters(rectangles) Related GOterms were summarisedin superclusterswiththesamecolourcode.Weselectedthe50most enriched GOtermsamong theATRAregulatedgenesover time (0–96h)
2.13 BuildingmiR–mRNAregulatorynetworks ForbuildingupanmiR–mRNAregulatorynetwork,weinitially setupaprediction-basednetworkbycombiningtheconserved tar-getpredictionsofTargetScan[44].We thenfitteda generalised linear model (GLM)onthe scaledexpressionprofiles of mRNA and its predicted miRs for each gene and computed the regu-larisationpathfortheelasticnetpenalty,whichisimplemented
intheGLMnetpackageforR[45].Using10-foldcross-validation,
Trang 4correspond-ingmRNA regulation.Because we wereprimarily interested in
anti-correlativeeffectsofmiR–mRNAinteraction,weintroduced
anegativityconstraintbymodifyingtheimplementationinthe
GLMnetpackage[45].TheweightofthemiR–mRNArelation
cor-respondstotheabsolutecoefficientoftherespectivemiRinthe
GLM
Toidentifypathwaysthatarespecificallyaffectedbythe
net-work structure of the resulting miR–mRNA network, we first
calculatedap-valueofpathwayover-representationforeachgene
inthenetwork.Fromthis,wedefinedasetofneighbourgenesfor
eachgene.Thissetincludesallgenesthataretargetedbythesame
miRsasthegeneitself.WethenappliedFisher’sexacttesttotest
forover-representationofthepathwaygenesetamongthe
neigh-bourgenesetofeachgene.Weobtainedadistributionofp-values
foreverypathway.Thiswasdoneforallpathwaysderivedfromthe
KyotoEncyclopediaofGenesandGenomes(KEGG)[46].Following
this,werandomlypermutedthelabels100timesandtestedeach
timewhetherthep-valuedistributionoftheoriginalnetworkwas
significantlyshiftedtolowerp-valuescomparedwiththe
respec-tiverandom networkusinga two-sampleKolmogorov–Smirnov
test The visualisation of the pathways and the node
colour-ingaccordingtothepathwayover-representationwasperformed
usingCytoscape2.8.3(CytoscapeConsortium,SanDiego,USA)[47]
2.14 Oil-red-O-staining
Lipidaccumulation in ATRA-treated and −untreated 3T3-L1
cellswasdetectedbyoil-red-Ostaining[48].On day12 (288h)
afterstartingdifferentiation,themediumwasdiscardedandthe
cellswereairdriedfor20minandfixedatroomtemperatureby
adding10%formalininPBSfor15min.Afterfixation,thecellswere
airdriedagainandstainedwithafilteredoil-red-Oworking
solu-tionfor1hontheorbitalshaker.Fortheworkingsolution,the0.5%
oil-red-Oisopropanolstocksolutionwasdiluted3:2withwater
Stainedcellswerewashedthree timeswithdistilled water,the
wellswereairdriedandtheresidualcolouronthewellsideswas
removedwithanisopropanol-soakedcottonstick.The
six-well-plateswerescannedandstoredat4◦Cuntildyeextraction.The
dyewasextractedfromcellsbyadding1mlofthedyeextraction
solution.Thecellswereincubatedwiththesolutionfor1honthe
orbitalshaker,andtheabsorptionwasmeasuredat492nmwitha
platereader(TecanDeutschlandGmbH,Crailsheim,Germany)
3 Results
3.1 ATRAinhibitsadipogenesisinatime-dependentmanner
The well-known characteristic time-dependent phenotype
changesweredetectedduringdifferentiationof 3T3-L1cells,as
assessedbyoil-red-Ostaining(Fig.1a).Thecellswereculturedin
triplicatesfor24,48and96hinDMImedium(±3MATRA),and
DMImediumwaschangedtogrowthmedium(±3MATRA)after
theindicatedtimes.Allculturedcellswerestainedafter12days
(288h)ofdifferentiation.Thegrowthmediumwasrenewedevery
2days Cultures exposed only for the first 24h to 3M ATRA
showednosignificantinhibitionofdifferentiation.Lipid
accumu-lationwassimilartocontrolculturesthatwereexposedfor24hto
DMIonly.Theexposureto3MATRAfor48hresultedinthe
sup-pressionoflipidaccumulationby40%.Incubationofthecellswith
ATRAformorethan96hcausedfurtherinhibitionoflipid
accumu-lation.Therefore,incubationof3T3-L1preadipocyteswith3M
ATRAfor288h(12days)washighlyefficient;lipiddropletswere
onlyaccumulatedinafewcells.Thecapabilityfordifferentiation
incellstreatedwithATRAforalongterm(ATRAtreatmentpersists
from0hto288h)wassimilartothephenotypeof undifferenti-atedcells,whichwerecultivatedaftergrowtharrestforafurther
288h(12days)withfibroblastmedium(Fig.1a).Themorphologyof controlandATRA-treatedcellswasalsovisualisedmicroscopically
asshowninFig.1b.InATRA-treatedcultures,onlyafewmature adipocytesweredetectable,whereasthecontrolcultureswerefully differentiated
3.2 High-throughputgeneexpressionprofilinginATRA-treated and-untreatedcells
Usingmicroarraytechnology,geneexpressioninDMI-treated andDMI+3MATRA-treated 3T3-L1cells wasanalysedduring thefirst96h Thesquaredcorrelation coefficientsfor all corre-spondingtriplicates werecalculated (r2>0.95).Only transcripts withsignificantAffymetrixsignalvalues(>30)andwithatwofold up-or down-regulation ata minimum of onetime point were includedintheanalysis.Fig.1cdepictsanoverviewofthe rela-tivegeneexpressiontrend,eitherup-ordown-regulated,inthe control and ATRA-treated cells After 2h, 388 transcriptswere significantlydifferentiallyexpressedin3T3-L1preadipocytes.Of these,298 transcripts(77%) were up-regulatedby DMI and 62 transcripts(16%)weredown-regulatedbyDMI,whereasonly21 transcripts (5%) were induced by 3M ATRA and only seven transcripts(2%) wererepressedby3MATRA.After96h,1314 transcriptsweresignificantlyregulatedin3T3-L1preadipocytes
In total, 455 transcripts (35%) were up-regulated by DMI and
471(36%)weredown-regulatedbyDMI.Finally,148transcripts (11%)wereinducedby3MATRAand240transcripts(18%)were repressedbyATRA
3.3 High-throughputmiRexpressionprofilinginATRA-treated and-untreatedcells
Underthesamecultureconditions,miRexpressionin ATRA-treated and -untreated cells wasanalysed in two independent experiments.First,thequalityofmiRexpressiondatawas eval-uated, including calculation of an average squared correlation coefficientr2=0.88of thecorrespondingduplicatesand usinga two-wayanalysisofvariance(ANOVA)(criticalp-valuefor signif-icance:0.01)toselectsignificantlyregulatedmiRs.Furthermore, onlymiRsexhibitingstableNanoStringsignalvalues(>50)atall timepointsandwithatwofoldup-ordown-regulationinatleast onetimepointwereselectedforfurtheranalysis.Therewere23 miRsthatfulfilledthesecriteria(Fig.1d;theexpressionvaluesare presentedinTables1and2.These23selectedmiRswereusedfor thegenerationofthemiR–mRNAnetwork.Asproofoftheintegrity
ofourmiRexpressionassaydata,theexpressionlevelsofthree putativeadipogenesis-relevantmiRs(miR-103,miR-146and miR-221)andfivehighlyregulatedmiRs(miR-29a,miR29b,miR-365, miR93andmiR96)wereanalysedbyRT-qPCR(S1andS2Figures; thecorrespondingexpressionvaluesaresummarisedinthe Sup-porting information S3and S4Tables) The Pearsoncorrelation coefficientbetweenthenCountermiRexpressionassaydataand theRT-qPCRwashighlysignificant(r=0.80)(S3aFigure).Forthe calculation,weusedtheexpressionvaluesoftheabovementioned miRsoutofthemiRexpressionassays(Tables1and2)aswellas thecorrespondingexpressionvaluesoftheRT-qPCRevaluation(see theSupportinginformationS3andS4Tables)
3.4 InhibitionoffatcelldifferentiationbyATRAinvolvesthe repressionofadipogenicspecifictranscriptionfactors FormicroarraymRNAdatavalidation,wequantifiedthe expres-sionprofilesofadipogenesis-specifictranscriptionfactorssuchas Cebpˇ,Cebp˛,Ppar,Srebf1andRxr˛(Fig.2a–e).Theexpression
Trang 5Fig 1.ATRA modulates the phenotype as well as the post-transcriptional mechanisms in 3T3-L1 cells (A) Oil-red-O-staining of 3T3-L1 cells: Quantification of lipid accumu-lation in DMI-treated (control) and DMI + 3 M ATRA-treated 3T3-L1 cells After the indicated times, DMI (±3 M ATRA) was replaced by growth medium without ATRA Only
in the labelled 96-h approach, DMI + 3 M ATRA was changed to growth medium with ATRA for 288 h (12 d) (B) 3T3-L1 cell phenotypes: lipid accumulation in ATRA-treated and -untreated cells were visualised by microscopic images (C) Relative gene expression trend, either up- or down-regulated, in the control and ATRA-treated cells in the time frame 2 h to 96 h (compared with 0 h) (D) MicroRNA expression profiling: Expression changes in ATRA-untreated 3T3-L1 cells are presented relative to 0 h, whereas the expression changes in ATRA-treated 3T3-L1 cells are presented relative to the corresponding untreated samples An increase in microRNA expression is represented by accelerating red intensities, whereas decreasing ratios are represented by accelerating green intensities.
changes are presented relative tobaseline Compared withthe
expressionprofileofCebpˇinDMI-treatedcellsATRAhasno
influ-enceonCebpˇexpression after2h(Fig.2a) At288h(12days)
post-induction,Cebp˛(FC=86)(Fig.2b),Ppar (FC=37)(Fig.2c),
Srebf1(FC=7)(Fig.2d)aswellasRxr˛(FC=10)(Fig.2e)wasinduced
byDMIrelativeto0h,whereastheinductioninATRA-treatedcells
wasdownregulated(Cebp˛;FC=17,Ppar;FC=9, Srebf1;FC=2,
Rxr˛;FC=2).Themicroarraygeneexpressiondatawereconfirmed
byRT-qPCR,andwealsocalculatedthePearsoncorrelation
coeffi-cientbetweenthemicroarraydataandtheRT-qPCRdata(r=0.7)
(S3bFigure).ForthecalculationofthePearsoncorrelation
coeffi-cient,weusedtheexpressionvaluesoftheabovementionedgenes
fromthemicroarrayexperimentsaswellastheexpressionvalues
oftheRT-qPCRevaluation(S5–S8Tables)
3.5 RegulationofbiologicalprocessesinATRA-treated3T3-L1 cells
We next examined the effects of treatment and exposure time (0–96h) to 3M ATRA on biological processes in 3T3-L1 preadipocytes.AnoverviewoftheimpactofDMIaswellasofATRA exposureontheregulationofbiologicalprocessesispresentedin Fig.3a.TheeffectsofDMIonbiologicalprocessesduringtheearly stages(2,4and7hpost-induction)andthemidstages(10and24h post-induction)werestrongerthantheregulatoryeffectsofATRA
Inthelatestages(48and96hpost-induction)ofearly differen-tiation,theregulationofGOtermsbyDMIandATRAwasalmost identical.Insummary,at2hpost-induction,949GOtermswere significantlyregulatedbyDMI treatment,whereas only112GO
Trang 6Table 1
Changes in microRNA expression in DMI-treated 3T3-L1 cells.
Fold changes are presented relative to 0 h (log 2 -transformed ratios).
Table 2
Changes in microRNA expression in 3 M ATRA-treated 3T3-L1 cells.
microRNA 0 h ATRA 2 h ATRA 4 h ATRA 7 h ATRA 10 h ATRA 24 h ATRA 48 h ATRA 96 h ATRA 12d ATRA
Fold changes are presented relative to the corresponding untreated samples (log 2 -transformed ratio).
termswereregulatedbyATRAtreatment.Theregulatoryeffects
mediatedbyATRAgraduallyincreased,andinthelatestageofearly
differentiation(48and96hpost-induction)theregulatoryeffects
ofDMIandATRAweresimilar:451GOtermsweresubjectedto
treatmentwithDMIandeven471GOtermswerecontrolledby
ATRA(Fig.3a)
Themostaffectedsuperclustersin early-stagedifferentiation
werecellproliferation (bluerectangle)and tissue development
(redrectangle)(S4aFigure).Inmid-stagedifferentiation,themost
affectedsuperclustersweremulticellularorganismprocess(dark
purplerectangle),responsetowounding(lightpurplerectangles)
andcellproliferation(yellowrectangles)(S4bFigure).Inthelate
stagesofdifferentiation(48/96hpost-induction),themostaffected
superclusteruponATRAwasfoundtobecellularlipidmetabolism (Fig.3b)
3.6 Themetabolismof3T3-L1cellsisregulatedbyATRA
Inthenextstep,weanalysedmRNAgeneexpressionofkey reg-ulatorswithinenergymetabolism.Thegeneexpressionrelatedto triglyceridesynthesisin3T3-L1cellswasnegativelyinfluencedby ATRA.Indetail, thegenesthatwereinvolved inbeta-oxidation, thetricarboxylic acid cycle(TCA cycle), fatty acidbiosynthesis, fattyacidtransport,triglyceridesynthesis,lipidaccumulationas wellasdegradationoftriacylglycerolforenergyproductionwere down-regulated by ATRA (Table 3; Fig.4).In this context, the mRNAexpressionofacetyl-CoenzymeAdehydrogenase(Acadm), acetyl-CoAacyltransferase2(Acaa2),phosphofructokinase(Pfkp),
Trang 7Fig 2. Quantitative analysis of mRNA expression by RT-qPCR of adipogenetic specific regulators in DMI-treated (red) and DMI + 3 M ATRA-treated (blue) preadipocytes in
a time course study (0–288 h) ATRA has no effect on the gene expression of (A) Cebp, whereas the expression of (B) Cebp␣ (C) Ppar␥ (D) Srebf1 (E) Rxr␣ is inhibited by ATRA Expression changes are presented relative to 0 h.
malatedehydrogenase1(Mdh1)and pyruvatecarboxylase(Pcx)
wasinhibitedbyATRAinthelate stageofdifferentiation
Isoci-tratedehydrogenase2(Idh2)wasdown-regulatedbyATRAafter
24h.Thetranscriptionoffattyacidsynthase(Fasn)aswellasfatty
acid-binding proteins 4 and 5 (Fabp4; Fabp5) wasinhibited by
ATRA.Triglyceridesynthesisaswellaslipidaccumulationinvolves
theexpressionof1-acylglycerol-3-phosphateO-acyltransferase2
(Agpat2),lipin1(Lpin1),diacylglycerolO-acyltransferase2(Dgat2)
andperilipin(Plin)thatwerealsoinhibitedbyATRA.Inaddition,
thegeneexpressionpatternsubjectedtothedegradationof
tri-acylglycerolwasnegativelyregulatedbyATRA;theexpressionof
hormone-sensitivelipase(Lipe)andlipoproteinlipase(Lpl)wasalso
suppressedafter96h
3.7 TheregulationofbiologicalpathwaysinATRA-treated3T3-L1 preadipocytesrelativetotheobservedmiR-mRNAinteractions Usingamultiplelinearregressionmodel[49]combinedwith thederivedmiRandmRNAexpressiondataandthetarget predic-tionsofTargetScanMouse5.2[44,50],aninsilicobasedmiR–mRNA networkwasgenerated(Fig.5).Fig.6summarisesthemiR–mRNA interactions with specific pathway annotations and the corre-sponding expression profiles detected by our high-throughput transcriptomic data screening (Tables 1–4).The comprehensive miR–mRNAnetworksare visualisedin theSupporting informa-tionS5–S7Figures.Usingourinsilicobasedpathway-expression analysistools,wewereabletoshowthefollowing:1)Themost affectedpathwayssubjectedtoourdatasetsweregapjunction
Trang 8sig-Fig 3. Regulation of biological processes in DMI-treated and DMI + 3 M ATRA-treated 3T3-L1 cells (A) Regulated GO terms in DMI and ATRA treated 3T3-L1 cells in early stages (2, 4 and 7 h post-induction) and mid stages of differentiation (10 and 24 h), ATRA (blue) only has small effects on biological processes compared with DMI treatment (red) (B) Cluster of ATRA regulated GO terms in the late stages of early differentiation (48/96 h post-induction) GO terms were analysed by the Genomatix Software and the top 50 regulated GO terms per time were selected and visualised with Revigo The late regulation (48 and 96 h) of GO terms is visualised The cellular lipid metabolism
is most affected by ATRA, shown in the left yellow supercluster The size of the rectangles represents the level of significance, whereby the log10 p-values of the GO term enrichments are given at the bottom.
nalling(functionallocalityscore=2.86E-06),therearrangementof
theactincytoskeleton(functionallocalityscore=1.06E-10)andthe
regulationoftheTCAcycle(functionallocalityscore=5.84E-26).2)
MiR-27aandmiR-96areprobablythemostimportantco-actorsin
thesepathways,inwhichmiR-27aisinhibitedbyATRAand
miR-96isinducedbyATRA.3)Usinginsilico-basedtools,wewerealso
abletovisualisetheinteractionsofmiRswithmRNAswith
spe-cificpathwayannotation(mRNAsarevisualisedasrectanglesin
theSupportinginformationS5–S7Figures)subjectedtoourown
expressiondatasets.Therefore,insilico,wecouldvisualisethe
pre-dictedinteractionsofmiR-27aandthecorrespondingtranscripts
suchastheplatelet-derivedgrowthfactorreceptor,alpha
polypep-tide(Pdgfra),sonofsevenless1(Sos1),vav3oncogene(Vav3)and
LIMkinase 2(Limk2) Allmentioned genes are associated with gapjunctionsignalling onthebasisoftheinformationof KEGG pathways(KEGG:mmu04540)(Fig.6a)aswellasthe rearrange-mentofthecytoskeleton(Fig.6b)(KEGG-Pathway:mmu04810) Furthermore,wevisualisedtheinteractionofmiR-96withthe pre-dictedtranscriptsoftheWASproteinfamily,member2(Wasf2), theactinrelatedprotein2/3complex(Arp2/3)[51]andthe mus-cle and microspike RAS (Mras) All these mentioned genes are alsodirectlyinvolvedincytoskeletonregulation(KEGG-Pathway: mmu04810).Inadditiontothepotentialregulatoryeffectsof
miR-96insidetheactincytoskeleton(Fig.6b),Pcxanddihydrolipoamide S-acetyltransferase,theE2componentofthepyruvate dehydro-genasecomplex(Dlat),whicharekeyregulatorsoftheTCAcycle
Trang 9Table 3
Changes in mRNA expression in ATRA-treated 3T3-L1 cells.
Dlat dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex) 0 0 0 0,1 0,1 −0,3 −0,9
Fold changes are presented relative to the corresponding untreated samples (log 2 -transformed ratios).
Table 4
Changes in mRNA expression in DMI-treated 3T3-L1 cells.
Dlat dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex) 0 0 0 −0,1 0,4 0,7 1,5 Pdgfra platelet derived growth factor receptor, alpha polypeptide −1,5 −2,8 −2,7 −2,1 −2,1 −2,4 −2,8
Fold changes are presented relative to 0 h (log 2 -transformed ratios).
(KEGG-Pathway:mmu00020)[52]areforecastedastargetsof
miR-96byTargetScanMouse(Fig.6c)
4 Discussion
ThereisincreasingevidencethatmiRsplayaveryimportantrole
inmetabolismandenergyhomeostasis.Therefore,thisregulatory
smallRNAspeciesmaybeinvolvedinthepathogenesisofdisorders
suchasthemetabolicsyndromeortype2diabetes.Inthisstudy,
weusedlarge-scaletranscriptomicmethodstoprofiletheglobal
expressionofmiRsandmRNAsin3T3-L1preadipocytesina
high-resolutiontimeframe.Wecombinedthesedatatogenerateglobal
molecularnetworksinordertoexplainthephenotypeof
ATRA-treated3T3-L1cells(Fig.1b)
Itisknownfromtheliterature[5,10,11]that3T3-L1cellsare
verysensitivetoATRAexposureduringtheearlystagesof
differen-tiation;however,simultaneously,theATRA-dependentinhibition
is reversible within the first 48h [11] This may imply that thelongertheincubationtime withATRA,thestrongerare the inhibitory effects of ATRA onfat cell differentiation.We could confirm this effectonphenotypicdevelopment (Fig 1a and b) Moreover,theseresultsareinaccordancewithourtranscriptomic data(Figs.1candFig.2)
In ourexperiments,a modulationof miRexpressionin DMI
aswellasinATRA-treatedcellswasobservedafter24hbutnot
atearlierstagesofdifferentiation,suggestingthatmiRsmodulate adipocytedifferentiationafterinductionofthisprogram(Fig.1d) Similartime-dependentmiRexpressionpatternsforDMI-induced differentiationof3T3-L1cellshavebeenreportedbyKajimotoetal [53]fortheTPA-induceddifferentiationofHL-60cells[54]aswell
asfortheneuronaldifferentiationofprimaryratcorticalcells[55] Moreover,ourmiRexpressiondata(Fig.1d)confirmthefindingsof
Trang 10Fig 4.Schematic overview of metabolic processes that are affected by ATRA during adipogenesis in 3T3-L1 cells over 96 h The highlighted genes are direct targets of Ppar Gene expression changes in ATRA-treated 3T3-L1 cells are presented relative to the corresponding untreated samples The colour code reflects an up- or down-regulation greater than 1.5.
Xie(2009)[56]andKnelangen[57]thatmiR-221andmiR-125b-5p
aredown-regulatedduringdifferentiationof3T3-L1cells,whereas
miR-103andmiR-146bareup-regulated.Toourknowledge,our
studyisthefirstdetailedreportonthecomplexmodulationofmiR
expressionin3T3-L1preadipocytesbyATRA
SimilartothemRNAandmiRexpressionpattern,no adipocyte-specificGOtermswereenrichedinATRA-treatedcellsduringthe earlyandmidstagesofdifferentiation(seetheSupporting infor-mationS4aandS4bFigs.).Apossibleexplanationforthisfindingis thatononehand,itwasshownthatthemitoticclonalexpansionis