1. Trang chủ
  2. » Giáo án - Bài giảng

improvements to the hybrid maize model for simulating maize yields in harsh rainfed environments

11 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Improvements to the Hybrid Maize Model for Simulating Maize Yields in Harsh Rainfed Environments
Tác giả Haishun Yang, Patricio Grassini, Kenneth G. Cassman, Robert M. Aiken, Patrick I. Coyne
Trường học University of Nebraska – Lincoln
Chuyên ngành Crop Modeling / Agronomy
Thể loại Research article
Năm xuất bản 2017
Thành phố Lincoln
Định dạng
Số trang 11
Dung lượng 2,14 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Input setting page of the HM2016 model with new features for estimating soil water at sowing and soil water balance as influenced by surface runoff and soil evaporation, which in turn are

Trang 1

j o ur na l h o me pa g e :w w w e l s e v i e r c o m / l o c a t e / f c r

Haishun Yanga,∗, Patricio Grassinia, Kenneth G Cassmana, Robert M Aikenb,

Patrick I Coynec

a Department of Agronomy and Horticulture, University of Nebraska – Lincoln, P.O Box 830915, Lincoln, NE 68583-0915, USA

b Kansas State University Northwest Research-Extension Center, Colby, KS, USA

c Kansas State University Agricultural Research Center, Hays, KS, USA

a r t i c l e i n f o

Article history:

Received 5 August 2016

Received in revised form 26 January 2017

Accepted 27 January 2017

Keywords:

Maize

Crop model

Water-limited yield

Water deficit

Drought

Simulation

a b s t r a c t

ThispaperreportsrevisionsinformulationandnewfeaturesoftheHybrid-Maizemodel(releasedas HM2016),tobettersimulateyieldsinharshrainfedenvironments.Revisionsincludeupdated subrou-tinesforrootgrowthanddistributionwithinthesoilprofile,greatersensitivityofcanopyexpansionand senescencetowaterdeficits,anexpandedkernelsettingperiod,andsoilevaporationasinfluencedby surfacecoverwithcropresidues.Theupdatedmodelalsoincludesroutinesforsimulatingsurfacerunoff andestimatingsoilwatercontentatsowingbasedonsimulationofsoilwaterbalanceduringthe pre-cedingfallowperiod.Revisionsofmodelfunctionswerebasedonrecentadvancesinunderstandingand quantificationofmaizeresponsetoenvironmentalfactorsandmanagementpractices,aswellas char-acteristicsofnewmaizehybrids.Morerobustsimulationofmaizeyieldwasobtainedwiththeupdated modelunderrainfedconditions,especiallyinyearsandlocationswithseveredroughtoronsoilswith limitedwaterholdingcapacity.Capabilitytoquantifysoilwatercontentatsowingandtoperformbatch simulationsmakesHM2016moreusefulforpre-seasonyieldprojectionsinyearswithbelow-normal soilwaterrechargeandforin-seasonyieldforecastingacrossawiderangeofenvironments.Revisions

toroutinesgoverningrootdistributionandkernelsettingmakeHM2016amorepowerfultoolfor eval-uatinghybrid-specifictraitsandcropmanagementpracticesforabilitytomitigateyieldlossfromwater deficitsandforidentifyingmanagementoptionsforindividualproductionfields

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

Cropsimulationmodelshavebeenwidelyusedinresearch,

edu-cation,extension,andtoinformpolicymaking(Boumanetal.,1996;

SinclairandSeligman,1996;Booteetal.,2010).Whileperformance

ofcropmodelsisgenerallymorerobustundernon-waterstress

conditionswithgoodmanagementofnutrientsandbioticstresses,

modelperformanceforcropsthatexperiencewaterdeficits(e.g.,in

harshrainfedsystemswithlowandhighlyvariablerainfallorsoils

withlimitedwaterholdingcapacity)hasbeenlesssatisfactory(Ko

etal.,2006;McMasteretal.,2011;Mastrorillietal.,2003).Poor

modelperformancehasbeenattributedtorelativelypoor

under-Abbreviations: LAI, leaf area index; WSI, water stress index; DS, development

stage; RGR, root growth rate (for depth); ET, evapotranspiration; ET0,

grass-referenced evapotranspiration.

∗ Corresponding author.

E-mail address: hyang2@unl.edu (H Yang).

standingandquantificationofseveralkeyphysiologicalprocesses thatgoverncropresponsestolimitedwatersupply(Sinclairand Seligman,1996;Rothetal.,2013)andphenotypicdifferencesin newcultivars,comparedtoolderones,that arenotyetusedin modeldevelopmentandcalibration(Booteetal.,1996).Formaize (ZeamaysL.)simulationmodels,severalprocessesrelatedtocrop growthandyieldformationunderwaterdeficitconditionshave beensuggestedforimprovingsomemodels,includingcroproot distributionandwateruptakefromsoil(Hammeretal.,2009),leaf expansionand senescence(BenNounaetal.,2000;Cakir,2004; Yangetal.,2009),andkernelsetting(Andradeetal.,1999,2002; Lizasoetal.,2007).Inaddition,theeffectsofcropresiduescovering thesoilsurfaceinconservationtillagesystemsonsoilevaporation andsurfacerunoffalsoneedtobeaccommodatedtoimprovemodel simulationofsoilwaterbalancethroughoutthegrowingseason(Bu

etal.,2013)

The Hybrid-Maize model (Yang et al., 2004, 2006; http://hybridmaize.unl.edu/) is a computer simulation model for maize under non-limiting (fully-irrigated) or water-limited

http://dx.doi.org/10.1016/j.fcr.2017.01.019

0378-4290/© 2017 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/

Trang 2

data Specifically, it allows users to: (a) assess yield potential

anditsvariabilityatagivenlocationbasedonhistoricalweather

records, (b) evaluate changes in yield potentialusing different

combinationsofsowingdate,hybridmaturityandplantdensity,

(c)identifyoptimaltimingandamountofirrigationapplications

forhighestyieldandirrigationwateruseefficiency,and(d)make

in-seasonyield forecastsbased onreal-time weather uptothe

current date and a probability distributionof final yield based

onhistoricalweather recordsfortheremainderof thegrowing

season.TheHybrid-Maizemodeldoesnotaccountforyieldlosses

duetosuboptimalnutrientmanagementorfromweeds,insects

andpests,diseases,lodging,andotherstresses

The Hybrid-Maize model combines the strength of two

maizesimulationapproachesrepresentedbyWageningenmodels,

includingWOFOST(VanDiepenetal.,1989)andINTERCOM(Kropff

and van Laar, 1993; Lindquist, 2001), and by the CERES-Maize

model(JonesandKiniry,1986;Kiniryetal.,1997).Theprevious

versionsoftheHybrid-Maizeweredevelopedin2004(Yangetal.,

2004)and2006(Yangetal.,2006).Sincethen,researchhasledto

improvedunderstandingandquantificationofcropgrowth

pro-cessesandresponsestowater deficit,andmaize breedershave

continuedtoimprovedroughttoleranceandothertraitsofmaize

hybrids.Theseadvanceshavenotyetbeenincorporatedintothe

Hybrid-Maizemodeltoimproveitsrobustnessandapplicability

acrossdiverseenvironmentalandmanagementconditions

EarlierversionsofHybrid-Maizehavebeenusedtoassessmaize

yieldpotentialandyieldgaps(VanWartetal.,2013;Farmahaetal.,

2016;van Ittersumet al., 2016), evaluatemanagement options

(Chenetal.,2011;Grassinietal.,2011a;Wittetal.,2006;Meng

etal.,2013),theimpactofclimatechange(Cassmanetal.,2010;

Chenet al.,2013; Lobellet al.,2009; Menget al.,2014), water

productivity(Grassini etal.,2009,2011b),yieldand production

forecasting (Sibleyet al., 2014; Morellet al., 2016), and

nutri-entmanagement(Mengetal.,2012;Setiyonoetal.,2011)across

diverse maize systems and mostly favorable production

envi-ronmentsworldwide.Feedbackaboutperformanceundersevere

waterdeficit,however,indicatedroomformodelimprovement

Likewise,evolutionofcomputeroperatingsystems,softwareand

hardwarecontinuetoprovideopportunitiestoimprove

function-alityofapplicationsoftwarelikeHybrid-Maize.Asdevelopersof

theoriginalHybrid-Maizemodel,wealsoreceivedfeedbackfrom

usersaboutopportunitiesforaddingnewmodelfeaturesand

appli-cations,allofwhichprovidedmotivationforrevisionofthemodel

Specificobjectivesofthispaperareto:(1)documentrevisionsto

theHybrid-MaizemodelasnowincludedinHM2016,ascompared

tothe2006version(HM2006),withregardtorootdistribution,

canopyexpansionandsenescenceinresponsetocropwaterdeficit,

kernelsetting,surfacerunoff,soilevaporationandcrop

transpira-tion,estimationofsoilwatercontentatsowingbasedonsimulation

ofwaterbalanceduringthefallowperiod,andanewbatchrun

func-tion,and(2)evaluatetheabilityoftherevisedmodeltoreproduce

awiderangeofmeasuredmaizeyieldsfromwell-managedfield

studiesunderrainfedandirrigatedconditions.Descriptionofthe

modelandadetaileduser’sguidedescribingallmodelfunctions

andunderpinningequationscanbefoundatwww.hybridmaize

unl.edu

2 Revisions of model functions

2.1 Rootgrowthandsoilprofiledistribution

InHM2006,rootlengthdistributionbysoildepthlargely

fol-lowed the CERES-Maize approach (Jones and Kiniry, 1986) In

essence,rootingdepthprogressesfollowinggrowingdegreedays

Fig 1.Schematic representation of root length distribution in HM2016 and HM2006.

(GDD) accumulation and reaches the user specified maximum depthatdevelopmentstage(DS)1.15.Therootinglength distri-butionisV-shapedwiththetipatthemaximumrootingdepth (Fig.1).However,somestudieshavereportedthatrootsofnew maizehybridscanreach150cmormoreinsoilswithoutconstraints

torootgrowth(Dardanellietal.,1997;DjamanandIrmak,2012; Tolketal.,2016),andtheeffectivelateralrootlengthdistributionis morecylindricalintheupperrootingzone(0–30cm)followedby

aconicalshapeatlowerdepths(Hammeretal.,2009)(Fig.1).This suggeststhat,giventhesamesoildepth,thesoilvolumefromwhich themaizerootsystemacquireswater(andnutrients)isgreaterthan simulatedinHM2006.IntherevisedroutineofHM2016,maximum rootingdepthstilloccursatDS1.15(typically5–7daysafter silk-ing),buttheincreaseofrootingdepth(Depthroot)fromemergence

toDS=1.15issimulatedasafunctionofgrowing-degreedays(GDD,

Tbase=10◦C)asfollows:

ifDepthroot<Depthmax,thenDepthroot=sumGDD10∗RGR else,Depthroot= Depthmax

in which Depthmax is theuser-specified maximum soil rooting depth,sumGDD10isthesumofgrowingdegreedaysfrom ger-minationtoaparticulardate,andRGRistherootgrowthrate(cm perGDD).RGRiscalculatedaspotentialhybridrootingdepth(one

ofthehybrid-specificparametersthatcanbemodifiedbytheuser anddifferentfromDepthmax)dividedbysumGDD10toDS1.15

Ingeneral,rootgrowthofmostcropsdecreasessubstantiallyor ceasesatonsetofrapiddrymatteraccumulationinreproductive structures(BorgandGrimes,1986).Althoughtherearefewdataon genotypicdifferencesinpotentialrootingdepthofmodernhybrids,

weexpectmostcommercialhybridscanextractwaterfrom1.5m depthwhichisthedefaultsettingforthehybrid-specificpotential rootingdepthinHM2016.Wedonotrecommendthatusersmodify thisdefaultvalueunlesstheyhavestrongevidencethatthehybrid theysimulatehasadeeperorshallowerpotentialrootingdepth

Incontrast,Depthmaxrepresentsthedepthofsoilwithout phys-icalorchemicalrestrictionstorootgrowth.Usersshouldreduce thedefaultvalueforsimulationsonsoilswithrestrictionstoroot growthatashallowerdepthduetohardpans,bedrock,caliche, sandlens,soiltoxicity,salinity,oracidity.Forexample,ifthereisa hardpanat75cmdepththatrootsdonotpenetrate,thenDepthmax shouldbesetat75cm

Trang 3

distributionisassumedtoabeVshapedasdescribedasJonesand

Kiniry(1986):

WUweightabsolute=exp[−VDC∗Depthlayer/Depthroot]

WUweightrelative=WUweightabsolute/

WUweightabsolute whereWUweightabsoluteandWUweightrelativearetheabsoluteand

relativewateruptakeweightofthelayer,respectively,Depthlayer

isthedepthofthelayer(toitslowerend),Depthrootisthecurrent

rootingdepth,andVDCistheverticaldistributioncoefficientthat

determinestheshapeoftheexponentialfunction.Thegreaterthe

VDC,thegreatertheWUweightforupperlayers.Thedefaultvalue

ofVDCissetat3

Asrootsgrowdeeper(>30cm),rootsin theuppersoillayer

willlikely cross into spaceoccupied byneighboring roots, and

asaresult,theeffectiveextractionzoneforindividualplantswill

becomeacylindricalontopandaVshapeunderneath,similarto

thesemicircularrootprofilesevaluatedbyHammeretal.(2009)

FieldobservationsbyDwyeretal.(1988)alsosupportthis

proposi-tion.Itisassumedthatthissituationoccurswhenrootsaredeeper

than30cmandtherelativewateruptakeweightofthetopthree

layersbecomesequal:

WUweight1

absolute=WUweight2

absolute=WUweight3

absolute

WUweightrelative=WUweightabsolute/

WUweightabsolute

Inwhichsuperscript1,2and3denotelayers1,2and3withadepth

of10cmforeachlayer

2.2 Impactofwaterdeficitoncanopyexpansionandsenescence

InHybrid-Maize,dailycropwaterstressindex(WSI)isdefined

asWSI=(1–Tranpactual/Transpmax),whereTranpactualistheactual

dailycroptranspirationrate,andTranspmaxisthemaximum

tran-spirationifthecropiswellwatered.InHM2006,cropwaterdeficit

affectscanopyexpansionbyreducingphotosynthesisand,hence,

netassimilationtosustainleafareaexpansion.Keatingetal.(2003)

suggestagreaterreductionincanopyexpansionrateduetothe

direct(i.e.,otherthanmediatedthroughcarbonavailability)impact

of water deficit on leaf area expansionthan currently used in

HM2006.FollowingKeatingetal.(2003),dailyleafareaexpansion

(PLAG)decreaseslinearlyuntilWSI=0.5whenleafareaexpansion

ceases

Canopyexpansionstopsatsilkingandsenescencebegins

there-after,althoughsomeleafareasenescencecanoccurearlierdueto

ageingandlightcompetition(JonesandKiniry,1986;Lizasoetal.,

2003).Inadditiontotheleafsenescencecausedbyleafaging,

shad-ing,andheatstress,whichwerealreadyaccountedforbyHM2006

(Yang etal.,2006),HM2016includesanadditional routinethat

acceleratescanopysenescenceduetowaterdeficit: atWSI of1

(i.e.,fullstress),LAIwilldecreasebyafixedfractionofcurrentLAI

(default=3%perday,butthisvaluecanbemodifiedbyusers)and

alinearinterpolationisusedtoestimatethefractionofsenesced

leafareaforWSIrangingfrom1to0(Saseendranetal.,2008)

2.3 Kernelsetting

Kernelsettingdeterminesthesizeofthesinkformaizegrain

fill-ing(Kiniryetal.,1992;Yangetal.,2004).Howmuchofthis‘sink’is

realizedwilldependondailynetphotosynthesisduringgrain

fill-ing,contributionofcarbohydratereservestokernelswhendailydry

matterproductionandcarbonremobilizationfromstemdoesnot

meetthedemandforgrainfilling,anddurationofthegrainfilling

period.HM2006usedthetotaldrymatterproducedfromsilking

tothestartofeffectivegrainfillingforestimationofkernelsetting (Yangetal.,2004).Morerecentstudiessuggestawiderwindowof timeforkernelsettingdetermination(Oteguietal.,1995;Andrade

etal.,1999;OteguiandAndrade,2000).Therefore,inHM2016,a curvilinearfunctionwasusedtosetthenumberofviablegrainsper plant(GPP)basedontheaverageplantgrowthrate(PSKER)during

acriticalkernelsettingwindowof340GDD8(basetemperatureof

8◦C)centeredonsilkingdate:

PSKER = sumP/(1+GRRG)∗1000/IDURP∗3.4/5

GPP= G2−676/(PSKER/1000)

inwhichsumP(gCH2Oplant−1)isthecumulativenetdry mat-teradjusted for maintenancerespirationof grain(GRRG;0.49g

CH2Og−1),IDURPisthedurationindaysofthe340ofGDD8period, PSKER is the averagedaily dry matter accumulation per plant (mgd−1)duringthisperiod,G2isthepotentialnumberofgrains perplant,andthevalueof676isthemaximumkernelnumberper plantaveragedforcommonhybridsinNorthAmerica(Jonesand Kiniry1986;Yangetal.,2016).ThethresholdvalueofPSKERfor grainsettingis1000mgd−1plant−1,asfoundbyTollenaaretal (1992)andAndradeetal.(1999,2002),whichisslightlygreater thanthethresholdforgrainsettingusedinHM2006(Yangetal.,

2004)

2.4 Surfacerunoff Surfacerunoffoccurswhenrainfallintensityexceedsthewater infiltrationrate.Fieldslope,soildrainageclass,andtheamountof cropresiduesonthesoilsurfacelargelydeterminetheamountof surfacerunoff(Littleboyetal.,1992;Niehoffetal.,2002).Anew rou-tinewasaddedtoHM2016thatestimateswaterlossfromrunoffto betteraccountforwaterinfiltrationtosoil,especiallyinfieldswith steepterrain,soilswithslowinfiltrationratesand/orlittleresidue cover.TheroutinefollowsthesimplifiedapproachofSoltaniand Sinclair(2012):

ifrain+irrigation<= 0.2×S,thenRunoff = 0

else,Runoff =(rain+irrigation−0.2∗S)2/(rain +irrigation+0.8∗S)

inwhichS(incm)istheretentionparameterandisestimatedas:

S=25.4∗(100/CNadj−1)

CNadj= CN−min(soilCoverFrac∗0.25,0.2)

inwhichCNisthecurvenumberforaparticularcombinationof slopeanddrainageclassbasedonRitchie(1998)andCNadjisthe adjustedCNafteraccountingfor thefractionof soilcoveredby cropresidues(soilCoverFrac),andministhefunctionthattakes theminimumoftwovaluesintheparentheses.Thissubroutineis mostrelevantforfieldswithrelativelyuniformslopethatarenot influencedbyrun-onfromneighboringfields.Picturesfor differ-entsoilcoverconditions,andassociatedsoilcoverfractions,canbe accessedthroughabuttonintheHybrid-Maizemodeluser inter-facetoaiddeterminationoftheresiduecoverconditionatthetime

ofsowingorinitiationofthesimulationduringthefallowperiod beforesowing.Seasonalreductionofsoilsurfacecoveragedueto residuedecompositionisnottakenintoaccountbythemodel

Trang 4

2.5 Croptranspirationandsoilevaporation

Dailygrass-referencedevapotranspiration(ET0)isoneofthe

dailyweatherinputsrequiredtorunHybrid-Maize(Allenetal.,

1998).IfET0isnotavailableintheweatherdata,themodelcontains

autilityprogram,calledWeatherAid,tocalculateET0fromsolar

radiation,maximumandminimumtemperature,airhumidity,and

windspeedusingtheFAOPenman-Monteithmethod(Allenetal.,

1998).HM2006usedthemethodofDriessenand Konijn(1992)

forestimationofactualcropET.Therevisedversionadoptedthe

methodofAllenetal.(1998)fortheestimationofcropET,which

islargelybasedonRitchie(1972).ET0fromtheweatherinputdata

mustfirstbeadjustedtoreflectETofawell-wateredmaizefield

withLAI>4,whichtypicallyhasgreaterETthanawell-watered

shortgrassduetodifferencesincanopyheightandaerodynamic

roughness(Connoretal.,2011).BasedonAllenetal.(1998),the

adjustmentis:

ifLAI<= 3.5,thenadjCoef = 1

elseadjCoef =1+(LAI−3.5)∗(1.2−1)/(4.5–3.5)

ifadjCoef>1.2,thenadjCoef = 1.2

adjET0= ET0∗adjCoef

inwhich adjET0istheETOadjusted formaize canopy,andthe

denominator(4.5–3.5)is therangeofLAI whentheadjustment

startsatLAIof3.5totheendofthetransitionwhentheadjustment

becomesthelargestat1.2atLAIof4.5.Maximumtranspiration

(Transpmax)isthenestimatedtoaccountforcanopysize(i.e.,LAI):

Transpmax= adjET0∗(1−exp(−LAI∗k))

inwhichkisthelightextinctioncoefficient(default=0.55)

Poten-tialevaporation(Evappot)isestimatedas:

Evappot=adjET0−Transpmax

Maximumevaporation(Evapmax)isestimatedbyaccountingfor

theeffectofsoilcoveragebycropresidues(Rosenbergetal.,1983):

Evapmax= Evappot∗exp(−soilCoverFrac)

inwhichsoilCoverFracisthefractionofsoilsurfacethatiscovered

bycropresidues

Actualsoilevaporation(Evapact)isestimatedusingthe2-stage

methodinAllenetal.(1998).Soilevaporationisassumedtooccur

inthetop10cmsoildepth,andactualevaporationratewillbeat

maximum(Evapmax)whensoiliswet(i.e.,Stage-1):

Evapact= Evapmax

Actual evaporation rate will begin decreasing, and does so

continuously,when soilwater contentdropsbelow athreshold

(Stage-2).Thisthreshold(stage2EvapWater)isestimatedfollowing

Allenetal.(1998):

EvapWatermax= (soilFCtheta−0.5∗soilPWPtheta)∗10

step2EvapWater= step2threshold∗EvapWatermax

waterForEvap=(soilTheta−0.5∗soilPWPtheta)∗10

Evapact= Evapmax∗waterForEvap/step2EvapWater

inwhichEvapWatermaxisthemaximumamountofwaterthatcan

evaporate,soilTheta,soilFCthetaandsoilPWPthetaarethetopsoil

volumetricwatercontents,topsoilfieldcapacity,andtopsoil per-manentwiltingpoint(allthreeinfraction),respectively,10isthe depth(incm)oftheevaporatingsoildepth,andstage2thresholdis

afractionofEvapWatermaxtypicallyrangingfrom0.5to0.7andis setat0.7asdefaultinHM2016

2.6 Estimationofsoilwaterrechargeduringthefallowperiod Soilwatercontentatsowingisthestartingpointfortrackingsoil waterbalancethroughoutthegrowingseason.InHM2016,users canchoosetostartthewaterbalancesimulationupto11months beforesowingandletthemodelsimulatethesoilwaterbalance andsoilwatercontentduringthefallowperioduptosowingdate (Fig.2).Themodelsimulatesthewaterinputfromprecipitationand lossesfromrunoff,soilevaporation,anddeeppercolationduring thefallowperiodtoestimatesoilwatercontentatsowinginthe seasontobesimulated.Thismethodismorereliablein environ-mentswhereprecipitationduringthefallowperiodmainlyoccurs

asrainfallratherthansnowfallandwheresoilwaterdoesnotfreeze duringwintertime,whichcanlimitinfiltrationofmeltingsnowat thesoilsurface

2.7 Otherrevisions ThenewversionoftheHybrid-Maizehasabatchrunfunction thatusesanExcelspreadsheettemplatetoallowinputsettingsfor

asinglesimulationonindividualrowsinthespreadsheet Instruc-tionsareprovidedonhowtoprovidetheinputdata.Usingthis batchfunction,userscanruninonebatchasmanysimulations

asoneExcelspreadsheetcanhold(i.e.,morethanonemillionin Excel2007) andsimulation resultsare savedtothesameExcel file.Using functionssuchascopyand pastecanmake the pro-cessofsettingupalargenumberofsimulationsverytimeefficient TheentireHM2016softwarepackage,includingitsutilityprogram WeatherAid,hasbeenupgradedtobefullycompatiblewiththe currentwindowsoperationsystem,includingWindows7–8 HM2016alsoincludesanewfunctiontoaccountforcropkilling

byfrostwhendailyminimumtemperaturereaches−2◦Corbelow. Thisfunction,however,doesnotinitiateuntil30daysafter emer-genceasthemaizeplantismoretoleranttofrostdamageduring theearlyvegetativegrowth(Carter,1995;NielsenandChristmas,

2005)

3 Datasets used for validation

TwodatasetswereusedtovalidateHM2016andfor compar-isontothepreviousversionofHybrid-Maize(HM2006).Dataset

1 consisted of 47 year-site combinationsin which maize yield wasmeasuredinfieldstudiesthatexplicitlystrivedforoptimal managementtoavoidyieldlossfromnutrientdeficiencies,weeds, insectsanddisease,andweather,cropmanagement,andsoildata wereavailable(Table1).Thisdatasetincludedirrigatedand rain-fedmaizefieldslocatedinfourmajorUSmaizeproducingstates, includingIllinois(IL),Kansas(KS),Iowa(IA)andNebraska(NE).An additionalthreesite-yeardatasetmeasuredseasonaldynamicsof LAI,totalabovegroundbiomass,aswellasfinalgrainyield.They wereusedtoevaluatethemodel’scapacityfordynamicsimulation

ofLAIandabovegroundbiomass

Inirrigated fields,waterwasappliedtoavoid waterdeficits Weatherdatafor eachsite wascollectedfroma nearbystation

intheHighPlainsRegionalClimateCenter(http://www.hprcc.unl edu/)ortheIllinoisClimatenetwork(http://www.isws.illinois.edu/

).Requiredsoilpropertiesforeachrainfedfield,includingsoil tex-tureandrootingdepth,weremeasuredin-situorobtainedfromthe USDA-NRCS database via http://casoilresource.lawr.ucdavis.edu/ gmap/.Simulationswerebasedoncropmanagementinformation

Trang 5

Fig 2. Input setting page of the HM2016 model with new features for estimating soil water at sowing and soil water balance as influenced by surface runoff and soil evaporation, which in turn are as influenced by crop residue cover, slope, and drainage.

Table 1

Dataset 1 used for evaluation of HM2006 and HM2016 under rainfed and irrigated conditions.

Irrigated

Brunswick, NE 2003 110 d 1 17.4 8.6 Wortmann et al (2009)

Clay Center, NE 2002, 2005, 2006 112–114 3 14.5–16.2 6.9–7.3 Wortmann et al (2009) , Yang

and Irmak (unpublished data)

Lincoln, NE 1999, 2000, 2001, 2002, 2003 113–114 11 14.8–17.9 7.0–11.0 Yang et al (2004) , Yang et al.

(2006) , Wortmann et al (2009)

Mead, NE 2002, 2007 114–116 3 13–15.5 6.8–7.2 Wortmann et al (2009) , Irmak

et al (2012)

North Platte, NE 2005, 2006 112 2 13.3–14.2 7.1 Yang and Irmak (unpublished

data)

Scandia, KS 2003 115 d 2 14–15.7 6.9–10.4 Dobermann and Walters

(2004)

Rainfed

(2004)

Clay Center, NE 2005, 2006, 2012 110–114 4 3.9–11.7 5.6–7.1 Yang and Irmak (unpublished

data), Irmak (unpublished data)

Mead, NE 2001, 2003, 2005, 2009, 2011 111–113 5 7.7–12.0 5.0–6.1 Yang et al (2006) , Suyker and

Verma (2009) , Suyker (unpublished data) Mead, NE 2009, 2011, 2013 111 3 9.4–11.2 5.0–6.0 Arkebauer (2014, unpublished) North Platte, NE 1992, 1993, 1994,1995, 2005, 2006 108–115 6 0.6–13 7.1–7.9 Payero et al., 2006 ; Yang and

Irmak (unpublished data)

a Locations and corresponding USA state (IL: Illinois; IA: Iowa; KS: Kansas; NE: Nebraska).

b Relative maturity.

c Measured yields at standard water content of 15.5%.

d

Trang 6

Table 2

Summary of Dataset 2 of the 33 field-years rainfed maize during 2001–2009 at Colby,

KS (39.38 N, −101.17 W) Hybrid maturity in total GDD to black layer (base

temper-ature = 10◦C) was 1414 for years 2001–2002, 1483 for years 2003–2006, and 1406

for years 2004–2009.

Soil available water in 1.5 m

depth at sowing, mm

Total rainfall from sowing to

silking, mm

Total rainfall from silking to

maturity, mm

Total rainfall from sowing to

maturity, mm

Total water supply 2 , mm 264 390 571 80

Grain yield dry matter, Mg ha −1 0 2.24 8.31 2.5

Total aboveground biomass,

Mg ha −1

0.46 5.72 12.42 3.2

Harvest index 0 0.26 0.72 0.22

1 standard deviation.

2 Sum of soil available water in 1.5 m depth at sowing and the total in-season

rainfall from sowing to maturity.

fromthesourcesinTable1orourbestestimatewheninformation

wasmissing.Amongthe47cases,17wererainfedwhile30were

irrigated.Thisassessmentsubstantiallyexpandstheevaluationof

HM2006performedbyGrassinietal.(2009)

Dataset2consistedof33rotation-yearcombinationsofrainfed

maizeduring2001–2009inColby,KS(Table2).Exceptfor2001,

eachyearhadfourrotationtreatments,eachofthesetreatments

hadadifferentpreviouscrop.Hence,eachtreatmenthaddifferent

soilwatercontentatsowingtime.Cropmanagementfollowedbest

managementrecommendationsforrainfedmaizeinthatregion

Exceptforcropsequence,cropmanagementineachyearwas

con-sistentforthefourtreatmentsrelativetochoiceofhybrid,sowing

date,plantpopulation,nutrientinputs,andcropprotection.The

fieldhaduniformsilt-loamsoiltexturewithoutrestrictionstoroot

growthto1.5mdepth.Thetop30cmsoildepthhadafield

capac-ity(FC)of36%volumetricwatercontent(%v/v)andapermanent

wiltingpoint(PWP)of14%v/v,whilethesubsoilhadFCandPWP

of33%v/vand13%v/v,respectively.Soilwatercontentatsowing

wasmeasuredat30cmincrementsusinganeutronprobe.Daily

weatherdatawereobtainedfromanon-siteweatherstation.Crop

phenologywasbasedonsemi-weeklyobservations,andmaximum

LAIrepresentedLAIaroundsilking.Cropfailure(i.e.,zeroyieldin

2002and2003)andbelownormalrainfallinsomeyears(e.g.,only

199mmin2006)highlightstheseverewaterlimitationsomeof

thesecropsexperienced.Hence,thisdatabaseprovidesarigorous

testoftherevisedmodelinveryharshenvironmentsforrainfed

maizeproduction

4 Sensitivity analysis

Sensitivityanalysiswasperformedtoevaluatehowsimulation

resultschangeasaresultofthefivemajorrevisionsinHM2016

(asdescribedabove)comparedtoHM2006.Weusedgrainyield

andstoverbiomassasthetargetvariablesforthesensitivity

analy-sis.Becauseallfiveofthemajorrevisionswouldhavethegreatest

impactunderdroughtconditions,weusedthe33casesofDataset2

forthesensitivityanalysis,whichincludeanumberofobservations

underseverewaterlimitation.Eachofthefivemajorrevisionswas

incorporatedintoHM2006withoutchangingtherestofthe

rou-tines,andtherevisedprogramwassubsequentlyrunforthe33

casesofDataset2.Thesimulatedgrainyieldsandstoverbiomass

werecomparedwiththecorrespondingresultsofHM2006andthe

magnitudeofthechangesrelative tosimulationswithHM2006

wereusedtoassesshowthemajorrevisionshavecontributedto improvesimulationresults

5 Statistical analysis

Thecomparisonofsimulatedandmeasuredvaluesforyieldand othersimulatedvariableswerebasedontherootmeansquareerror (RMSE)andmeanerror(ME),whichwerecomputedasfollows:

RMSE=



(S−M)2 n

ME=n1

(S−M)

InwhichSisthesimulatedresult,Mthemeasuredresult,nthe numberoftotalpairsofsimulatedandsimulateddata.Inaddition, linearregressionanalysiswasperformedtoassessbiasesinthe relationshipbetweensimulatedandobservedyields

6 Results

6.1 Grainyieldandtotalabovegroundbiomass For thetotal of50 site-yearobservations underrainfed con-ditions,withmoderatetoseverewaterlimitationinmostcases, HM2016simulatedyieldsignificantlybetterthanHM2006(Fig.3) Thecoefficientofdetermination(r2)betweensimulatedand mea-suredyieldsincreasedfrom0.89forHM2006to0.94forHM2016 Relative to measuredyields, RMSE decreased from 2.5Mgha−1 (HM2006) to 1.2Mgha−1 (HM2016), while ME dropped from 1.9Mgha−1 (HM2006)to0.5Mgha−1 (HM2016).Moreover, the slope of the regression equation between simulated and mea-suredyieldsimprovedfrom0.79forHM2006to0.96forHM2016, while the intercept dropped from 2.92Mgha−1 (HM2006) to 0.71Mgha−1 (HM2016) For cases where severe water deficits causeddramaticyieldlosses,e.g.mostcasesatColby,KSandmany

atNorthPlatteNE,simulatedyieldsbyHM2016wereinmuch bet-teragreementwithmeasuredvaluesthanwithHM2006.Forthe

33casesofDataset2for whichmeasurementsofharvestindex (HI)wereavailable,simulatedHIfromHM2016agreedbetterthan HM2006withmeasuredvaluesasindicatedbylargereductionsin RSMEandME(Fig.4).Forirrigatedfields,however,therewasno sig-nificantdifferencebetweenthetwoversionsofthemodel(HM2006 simulationresultsnotshown)andsimulatedyieldsagreedwell withobservedvalues(PanelCofFig.3).Tosummarize,HM2016was considerablymorerobustatreproducingmeasuredyields,across

adiverserangeofenvironmentsandcropmanagementpractices withrespecttosowingdates,hybridmaturity,andplant popula-tionswithoutdetectablebiasacrossarangeofyieldsfromcomplete cropfailureto18Mgha−1

6.2 Dynamicsofbiomassproductionandcanopysenescence SeasonaldynamicsoftotalabovegroundbiomassandLAIwere measured only at Mead, NE in 2011 and 2013 In 2011, both HM2016andHM2006gavesimilarresultsintermsofseasonal pat-ternofabovegroundbiomassproductionandLAI.Afullsoilprofile

intermsofsoilwatercontentatsowing,totalrainfallof556mm duringthegrowingseason,andgoodrainfalldistributionfrom sow-ingtomaturity(insetinFig.5)indicatedthat2011wasarelatively wetyearatthislocationandthereforethecropdidnotsufferwater deficit.In2013,however,HM2016simulatedfasterleafarea senes-cenceduringthelastphaseofgrainfillingduetolackofrainfall andwaterdeficitsduringthisperiod(insetinFig.5).Further evi-denceofwaterdeficitin2013comesfromanirrigatedsimulation

Trang 7

Fig 3. Simulated versus measured maize yields for rainfed fields (a) using HM2006 (left panel) and (b) using HM2016 (central panel), and (c) for both rainfed and irrigated crops using HM2016 (right panel) for Datasets 1 (in Table 1 ) and 2 (in Table 2 Root mean square error (RMSE), mean error (ME), and linear regression analysis parameters are indicated Diagonal dashed line indicates y = x Solid black lines show the fitted linear regression model Encircled data point was excluded from the calculation of RMSE,

ME and linear regression analysis because observed yield was affected by frost damage during grain filling Justification for excluding the site with frost damage from all regressions comes from the fact that frost damage can be very site-specific because it is often associated with small differences in elevation within a relatively flat landscape due to pooling of cold air Therefore, frost damage may be larger or smaller in a given field compared to simulated damage from the closest weather station.

Fig 4. Harvest index based on measured and simulated results using HM2006 and HM2016 Dataset 2, which includes 33 rainfed maize crops grown during 2001–2009 at Colby, KS (see Table 2

scenariofortotalbiomassandLAI(thedashedlinesinthelower

partofFig.5 whichshowedthattotalbiomasswouldcontinueto

increaseandtheLAIwoulddecreasemoreslowlywithoutwater

deficitduringthelaterphaseofgrainfilling

6.3 Kernelsettinganddurationofgrainfilling

Simulatedmaizekernelsettingwasevaluatedforthe33cases

atColby,KS,whichisaharshenvironmentforrainfedmaizecrop

asindicatedbysparsein-seasonrainfallamounts(Table2).When

waterdeficitoccurredduringthekernelsettingwindow

(approxi-matelythreeweeksbracketingsilking),HM2016predictedalarger

impactonkernelsettingthanHM2006(Fig.6).Fortheeightcases

withcropfailure(i.e.,zeroyield),HM2016simulatedzerokernel

settingrate(as%ofmaximumnumberofkernelsof675perplant)

andonly9%and 10%kernelsetting forothertwocases.In

con-trast,HM2006simulatedamuchhigherrateofkernelsetting,and

especiallyinyearswithcompletecropfailure.Acrossthe33cases,

HM2016simulatedanaveragekernelsettingrateof42%whilethe

valuefromHM2006was57%,whichdocumentstheimprovement

ofHM2016intermsofquantifyingtheimpactofdroughtstress

aroundsilkingonmaizekernelsetting

ThedifferencebetweenHM2016andHM2006in responsive-nessofcanopysenescencetowaterdeficitwasalsoshowninthe simulateddrought-inducedterminationofcropgrowthandthus thedurationofthegrainfillingphaseforthe33casesatColby,KS (Fig.7).Onaverage,HM2016simulated4daysshortergrain fill-ingdurationthanHM2006witharangefrom0to15days,withthe magnitudedependinglargelyonthein-seasonrainfallineachyear, especiallyduringreproductivegrowthphases

6.4 Sensitivityanalysis Amongthefivemajorrevisions(i.e.,revisions1–5),rootlength distributionandkernelsettinghadthegreatesteffectsina water-limitedenvironment,butinoppositedirections:therevisedroot length distribution resulted in higher grain yield, whereas the revisedkernelsettingledtolowergrainyield(Fig.8,leftpanel)

Onaverage,theabsoluteeffectfromkernelsetting(59%)ongrain yieldis greater thanthat of rootlengthdistribution(43%), and

asaresult,theneteffectisexpectedtoresultinloweryields.In comparison,theotherrevisions,includingcanopyexpansionand senescence,runoffandcropET,didnothavesignificantimpacts

onsimulatedgrainyield,withanaverageeffectrangingfrom−1%

Trang 8

Fig 5.Simulated and measured seasonal dynamics of total aboveground biomass (left panels) and LAI (right panels) using HM2016 and HM2006 for rainfed maize grown in

2011 and 2013 at Mead, NE The inserts in the right panels show daily rainfall amounts from sowing to physiological maturity Rainfall in 2011 growing season was sufficient

to meet plant water requirements throughout the growing season whereas there was a dry period during part of the grain filling in 2013 Because 2013 was a dry year, simulation of fully irrigated maize crop (the dashed line) was added to show the difference in total biomass and LAI between rainfed and fully irrigated crops The field was

on annual rotation with soybean, with maize sown in odd-numbered years.

Fig 6.Simulated maize kernel setting rate, expressed as% of maximum kernel number (i.e., 675 per plant), by HM2006 and HM2016 for Dataset 2, which includes 33 rainfed maize crops grown during 2001–2009 at Colby, KS (in Table 2 Average kernel setting rate was 57% and 42% for HM2006 and HM2016, respectively.

to−13%.Despitetherelativelysmalleffectsfromtheseother

revi-sionswithinthelimitsofobservationsprovidedbyDataset2,we

canenvisionsituationsinwhichthesefactorsmayhavegreater

influenceonfinalyields.Forexample,thefieldsinwhichthe

exper-imentswereconductedforDataset2hadrelativelylittleslopeand

thustherunoff revisionwouldnot beexpectedtohavea large

influence

Theeffectsofmodelrevisionsonstoverbiomassweresmaller

thantheimpactonyield,ranging,onaverage, from8%to−9%

Anexceptionwaskernelsetting,whichhasalarge(58%)positive

effectonstoverbiomasswhenlimitedwatersupplyreducessink

size(Fig.8,rightpanel).Thistrendoccursbecauseof(1)

accumu-lationofphotosynthateinstem(Christensenetal.,1981)and(2)

lessuseofcarbohydratereserveinstemforgrainfilling(Humeand

Campbell,1972).However,themagnitudeoftheincreaseinstover

biomassunderreducedkernelsettingislikelyover-estimatedas photosyntheticrateisalsolikelytoreducewhenthesinksizeis reduced(Christensenetal.,1981)butthemodellacksthefeedback mechanism

7 Discussion

Modelingcropgrowthand yieldunderlimitedwater supply hasbeenasignificantscientificchallengeduetoalargenumberof interactingsoilandplantfactorsthatdeterminethefinalimpacton grainandbiomassyields.Tomeettheincreasingdemandformore robustsimulationsinwater-limitedenvironments,weattempted

torevisetheHybrid-Maizemodeltoimproveitscapacitytoaccount fortheimpactofwaterdeficitsonmaizedevelopment,growth, andyield.Tothat end,subroutineswererevisedwithregard to

Trang 9

Fig 7.Difference in the duration (HM2006 minus HM 2016, days) of grain filling as

simulated by HM2006 and HM2016 for Dataset 2 (in Table 2 ) of the 33 rainfed maize

crops grown during 2001–2009 at Colby, KS The difference in simulated duration

was, on average, 4.2 days shorter with HM2016 than by HM2006.

soilwaterbalance,soilprofilerootdistributionandwateruptake,

andtheimpactsofwaterdeficitoncanopyexpansion,senescence,

drymatterproduction,andkernelsetting.ComparedtoHM2006

(theearlierversion),HM2016(therevisedversion)produced

sim-ulationresultsin muchbetter agreementwithmeasuredyield,

abovegroundbiomass,andharvestindex,acrossawiderangeof

environmentswithyieldsrangingfrom0to18Mgha−1.Amongthe

majorrevisions,therevisionofrootdistributionledtoagreaterroot

lengthdensityintheentiresoilprofile,resultinginhighergrainand

stoveryieldsinwater-limitedenvironments.However,thiseffect

waspartlyoffsetbyreducedkernelsettingthatwassimulatedwith

HM2016duetotheimpactofdroughtstressoncropgrowthrate

aroundsilkingstage.Whiletheotherrevisionshadrelativelysmall

effectsongrainandyield,together,onaverage,theycontributedto

agrainyieldreductionof1–13%

Thesemodelimprovementsareconsistentwithrecentadvances

in understanding the improved performance of newer maize

hybrids in terms of stress resistance, including drought,

com-paredtoolderhybrids,especially asrelated tothecompetition

for resourcesimposed by increasing inter-plant competition at

higherplantdensities(TollenaarandLee,2002;Camposetal.,2004,

2006).Indeed,producerplantpopulationshaveincreasedsteadily

inrecentdecades(Pioneer,2014;Grassinietal.,2014),leavinga

smallerlateraltopsoilvolumeforwaterextractionbyindividual

plants.Thismayleadtoa changeinrootdistributionfroma V

shapethroughouttheprofiletoacombinedcylindricalshapein

top-soilandaV-shapebelow,thusincreasingthesoilvolumeforplant

wateracquisition,whichmayimpartadditionaldroughttolerance

assuggestedbyHammeretal.(2009)

Inadditiontoimprovedsensitivityofkernelsettingunderwater deficit,HM2016bettercaptures impactoflimitedwater supply duringgrainfilling through acceleratedleaf senescenceand, as

aresult,earlierterminationofgrainfillingwhenthereis persis-tentwaterdeficit,asdocumentedbySainiandWestgate(2000) These improvements are make the revisedmodel considerably moreresponsiveinsimulatingmaizeyieldsinharshrainfed envi-ronmentslikethosefoundinthewesternUSCornBeltwherecrop waterdeficitislikelytooccuraroundpollinationandduringthe grainfillinginamajorityofyears

Theinclusionofroutinesforwaterrunoffcanpotentiallymake therevisedmodelmoreaccurateatsimulatingsoilwaterstatusin fieldswithsteepterrainandenvironmentswithhighfrequencyof intenserainfallevents.Theaddedeffectsofcropresiduecoveron waterrunoffandsoilevaporationmakeHM2016simulationsofsoil waterbalancemoreresponsivetotillagemethodandconservation practices

DespitetheimprovedpredictivepowerofHM2016,relativeto HM2006,thereremainotherimpactsofseverewaterdeficitthat arenotyeteffectivelyaccountedforHM2016.Thesefactorsinclude reduction of effectiveLAI due toleaf rolling(Asim and Rabiye,

2007),theincreaseincanopytemperaturethatoccursunderwater limitedconditions(Gonzalez-Dugoetal.,2005), andheatstress duringpollination(Cicchinoetal.,2013;Gabaldon-Lealetal.,2016) Eachoftheseeffects maylastonlyafewhoursduringmid-day heatandaredifficulttoquantifyinmodelswithadailytimestep temperature.Additionalfielddataarealsoneededtodevelopand calibrateusefulsubroutinesforquantifyingtheseeffectsonyield, andamodelthatrunsonanhourlytimestepmaybeneededas well

8 Conclusion

Moderate to severe water deficit is common in many rain-fedmaizeproductionenvironmentsworldwide.Yieldlossesfrom waterdeficitresultfromanumber ofinteractingprocessesthat involvesoilwaterbalance,cropgrowth,canopysenescence,and kernelsetting.Mostoftheprocessesaredifficulttomathematically describeandsimulateincropmodels.WerevisedtheHybrid-Maize model in an attemptto improve maize yield simulation under rainfedconditionswithwaterdeficit.Therevisionsandnew

rou-Fig 8.Sensitivity analysis of each of the five major revisions in HM2016 (including root and distribution, canopy expansion and senescence, kernel setting, runoff, and crop ET) on simulated grain yield (left panel) and stover biomass (right panel) for the 33 cases of Dataset 2 The relative change was calculated as (HM2016–HM2006)/HM2006

*100% Positive and negative values indicate respective higher or lower values relative to those obtained using HM2006 The bottom and top of each box represent the first and third quartiles, respectively, while the horizontal line band inside each box is the median, the x sign is the mean The upper and lower end of the bars indicate the

Trang 10

them.Likewise,weimprovedsimulationofsoilevaporation,

sur-facerunoff,andestimationofsoilwatercontentatsowingbased

onthesoilwaterbalanceduringthefallowperioduptosowing

time.Together,thesechangesmaketherevisedHybrid-Maizemore

robustatsimulatingyieldsovera wider rangeofenvironments

andfieldconditions.Consequently,theseimprovementsmakethe

model moreusefulin researchoncroptraits and management

optionstomitigateyieldlossesfromwaterdeficits,andfor

sup-portingin-seasoncropmanagementdecisionsandyieldforecasts

Documentationofthesechangesasprovidedinthispaper,andin

greaterdetailintheusers’guide(Yangetal.,2016),willfacilitate

futuremodeldevelopmentbyothers,andtheHM2016hasbeen

releasedtothepublicandisavailableathttp://hybridmaize.unl

edu/

Acknowledgements

wethankDrSuatIrmak(DepartmentofBiologicalSystem

Engi-neering,UniversityofNebraska–Lincoln)andDr.AndrewSuyker

(SchoolofNaturalResources,UniversityofNebraska–Lincoln)for

providingsomeofthedatausedinthestudy.WealsothankJenny

ReesandKeith Glewen,Extension EducatoroftheUniversityof

NebraskafortheirfeedbackonapplicationsoftheHybrid-Maize

model

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998 Crop evapotranspiration.

Guidelines for computing crop water requirements In: FAO Irrigation and

Drainage Paper 56 FAO, Rome.

Andrade, F.H., Vega, C.R., Uhart, S.A., Cirilo, A.G., Cantarero, M., Valentinuz, O.,

1999 Kernel number determination on maize Crop Sci 39, 453–459.

Andrade, F.H., Echarte, L., Rizzalli, R., Della Maggiora, A., Casanovas, M., 2002.

Kernel number prediction in maize under nitrogen or water stress Crop Sci.

42, 1173–1179.

Asim, K., Rabiye, T., 2007 A dehydration avoidance mechanism: leaf rolling Bot.

Rev 73, 290–302.

Ben Nouna, B., Katerji, N., Mastrorilli, M., 2000 Using the CERES-maize model in a

semi-arid Mediterranean environment: evaluation of model performance Eur.

J Agron 13, 309–322.

Boote, K.J., Jones, J.W., Pickering, N.B., 1996 Potential uses and limitations of crop

models Agron J 88, 704–716.

Boote, K.J., Jone, J.W., Hoogenboom, G., White, J.W., 2010 The role of crop systems

simulation in agriculture and environment Int J Agric Environ Inf Syst 1,

41–54.

Borg, H., Grimes, D.W., 1986 Depth development of roots with time: an empirical

description Trans Am Soc Agric Eng 29, 194–197.

Bouman, B.A.M., Van Keulen, H., Van Laar, H.H., Rabbinge, R., 1996 The ‘School of

de Wit’ crop growth simulation models: a pedigree and historical overview.

Agric Syst 52, 171–198.

Bu, L.D., Liu, J.L., Zhu, L., Luo, S.S., Chen, X.P., Li, S.Q., Lee, H.R., Zhao, Y., 2013 The

effects of mulching on maize growth, yield and water use in a semi-arid region.

Agric Water Manage 123, 71–78.

Cakir, R., 2004 Effect of water stress at different development stages on vegetative

and reproductive growth of corn Field Crops Res 89, 1–16.

Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., Schussler, J.R., 2004.

Improving drought tolerance in maize: a view from industry Field Crops Res.

90, 19–34.

Campos, H., Cooper, M., Edmeades, G.O., Löffler, C., Schussler, J.R., Iba ˜ nez, M., 2006.

Changes in drought tolerance in maize associated with fifty years of breeding

for yield in the US Corn Belt Maydica 59, 369–381.

Carter, P.R., 1995 Late spring frost and post frost clipping effect on corn growth

and yield J Prod Agric 8, 203–209.

Cassman, K.G., Grassini, P., Van Wart, J., 2010 Crop yield potential, yield trend, and

global food security in a changing climate In: Hillel, D., Rosenzweig, C (Eds.),

Handbook of Climate Change and Agroecosystems World Scientific, pp 37–51.

Chen, X.P., Cui, Z.L., Vitousek, P.M., Cassman, K.G., Matson, P.A., Bai, J.S., Meng, Q.F.,

Hou, P., Yue, S.C., Romheld, V., Zhang, F.S., 2011 Integrated soil-crop system

management for food security Proc Natl Acad Sci 108, 6399–6404.

Chen, X., Chen, F., Chen, Y., Gao, Q., Yang, F., Yuan, F., Zhang, F., Mi, G., 2013.

Modern maize hybrids in Northeast China exhibit increased yield potential and

resource use efficiency despite adverse climate change Global Change Biol 19,

923–936.

Christensen, L.E., Below, F.E., Hagemen, R.H., 1981 The effects of ear removal on

Cicchino, M.A., Edreira, J.I.R., Otegui, M.E., 2013 Maize physiological responses to heat stress and hormonal plant growth regulators related to ethylene metabolism Crop Sci 53, 2135–2146.

Connor, D.J., Loomis, R.S., Cassman, K.G., 2011 Crop Ecology: Productivity and Management in Agricultural Systems Second Edition Cambridge University Press.

Dardanelli, J.L., Bachmeier, O.A., Sereno, R., Gil, R., 1997 Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll Field Crops Res 54, 29–38.

Djaman, K., Irmak, S., 2012 Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions J Irrig Drain Eng 139, 433–446.

Dobermann, A., Walters, D.T., 2004 What was my attainable yield potential for corn in 2003 Better Crops 88, 17.

Driessen, P.M., Konijn, N.T., 1992 Land-use Systems Analysis Wageningen Agricultural University, Wageningen.

Dwyer, L.M., Stewart, D.W., Balchin, D., 1988 Rooting characteristics of corn, soybeans and barley as a function of available water and soil physical characteristics Can J Soil Sci 68 (1), 121–132.

Farmaha, B.S., Lobell, D.B., Boone, K., Cassman, K.G., Yang, H.S., Grassini, P., 2016.

Contribution of persistent factors to yield gaps in high-yield irrigated maize Field Crops Res 186, 124–132.

Gabaldon-Leal, C., Webber, H., Otegui, M.E., Slafer, G.A., Ordonez, R.A., Gaiser, T., Lorite, I.J., Ruiz-Ramos, M., Ewert, F., 2016 Modelling the impact of heat stress

on maize yield formation Field Crops Res 198, 226–237.

Gonzalez-Dugo, M.P., Moran, M.S., Mateos, L., Bryant, R., 2005 Canopy temperature variability as an indicator of crop water stress severity Irrig Sci 24, 233–240.

Grassini, P., Yang, H.S., Cassman, K.G., 2009 Limits to maize productivity in Western Corn-Belt: a simulation analysis for fully irrigated and rainfed conditions Agric For Meteorol 149, 1254–1265.

Grassini, P., Thorburn, J., Burr, C., Cassman, K.G., 2011a High-yield irrigated maize

in the Western U.S Corn Belt: I On-farm yield potential, and impact of agronomic practices Field Crops Res 120, 142–150.

Grassini, P., Yang, H.S., Irmak, S., Thorburn, J., Burr, C., Cassman, K.G., 2011b.

High-yield irrigated maize in the Western U.S Corn Belt: II Irrigation management and crop water productivity Field Crops Res 120, 133–141.

Grassini, P., Specht, J., Tollenaar, T., Ciampitti, I., Cassman, K.G., 2014 High-yield maize-soybean cropping systems in the U.S Corn Belt In: Sadras, V.O., Calderini, D.F (Eds.), Crop Physiology- Applications for Genetic Improvement and Agronomy , 2nd edition Elsevier, The Netherlands, pp 17–42.

Hammer, G.L., Dong, Z., McLean, G., Doherty, A.I., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., Cooper, M., 2009 Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S Corn Belt? Crop Sci 49, 299–312.

Hume, D.J., Campbell, D.K., 1972 Accumulation and translocation of soluble solids

in corn stalks Can J Plant Sci 52, 363–368.

Irmak, S., Murgert, M.J., Yang, H.S., Cassman, K.G., Walters, D.T., Rathje, W.R., Payero, J.O., Grassini, P., Kuzila, M.S., Brunkhorst, K.J., VanDeWalle, B., Rees, J.M., Kranz, W.L., Eisenhauer, D.J., Shapiro, C.A., Zoubek, G.L., 2012 Large-scale on-farm implementation of soil moisture-based irrigation management strategies for increasing maize water productivity Trans ASAE 55, 881–891.

Jones, C.A., Kiniry, J.R., 1986 CERES-Maize: A Simulation Model of Maize Growth and Development A&M University Press College Station, Texas.

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.L., 2003.

An overview of APSIM, a model designed for farming systems simulation Eur.

J Agron 18, 267–288.

Kiniry, J.R., Tischler, C.R., Rosenthal, W.D., Gerik, T.J., 1992 Nonstructural carbohydrate utilization by sorghum and maize shaded during grain growth Crop Sci 32, 131–137.

Kiniry, J.R., Williams, J.R., Vanderlip, R.L., Atwood, J.D., Reicosky, D.C., Mulliken, J., Cox Jr., W.J., Mascagni Jr., H.J., Hollinger, S.E., Wiebold, W.J., 1997 Evaluation of two maize models for nine U S locations Agron J 89, 421–426.

Ko, J., Maas, S.J., Mauget, S., Piccinni, G., Wanjura, D., 2006 Modeling water-stressed cotton growth using within-season remote sensing data Agron J 98, 1600–1609.

Kropff, M.J., van Laar, H.H., 1993 Modelling Crop-Weed Interactions CAB International.

Lindquist, J.L., 2001 Performance of INTERCOM for predicting corn-velvetleaf interference across north-central United States Weed Sci 49, 195–201.

Littleboy, M., Silburn, D.M., Freebairn, D.M., Woodruff, D.R., Hammer, G.L., Leslie, J.K., 1992 Impact of soil erosion on production in cropping systems: I Development and validation of a simulation model Soil Res 30, 757–774.

Lizaso, J.I., Batchelor, W.D., Westgate, M.E., 2003 A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves Field Crops Res.

80, 1–17.

Lizaso, J.I., Fonseca, A.E., Westgate, M.E., 2007 Simulating source-limited and sink-limited kernel set with CERES-maize Crop Sci 47, 2078–2088.

Lobell, D.B., Cassman, K.G., Field, C.B., 2009 Crop yield gaps their importance, magnitudes, and causes Environ Resour 34, 179–204.

Mastrorilli, M., Katerji, N., Nouna, B.B., 2003 Using the CERES-maize model in a semi-arid Mediterranean environment: validation of three revised versions Eur J Agron 19, 125–134.

Ngày đăng: 04/12/2022, 14:50