High-velocity frictional properties of Alpine Fault rocks: Mechanical data,microstructural analysis, and implications for rupture propagation Carolyn Boulton, Lu Yao, Daniel R.. This is
Trang 1High-velocity frictional properties of Alpine Fault rocks: Mechanical data,
microstructural analysis, and implications for rupture propagation
Carolyn Boulton, Lu Yao, Daniel R Faulkner, John Townend, Virginia G Toy, Rupert
Sutherland, Shengli Ma, Toshihiko Shimamoto
PII: S0191-8141(17)30040-8
DOI: 10.1016/j.jsg.2017.02.003
Reference: SG 3445
To appear in: Journal of Structural Geology
Received Date: 7 August 2016
Revised Date: 30 January 2017
Accepted Date: 9 February 2017
Please cite this article as: Boulton, C., Yao, L., Faulkner, D.R., Townend, J., Toy, V.G., Sutherland, R., Ma, S., Shimamoto, T., High-velocity frictional properties of Alpine Fault rocks: Mechanical data,
microstructural analysis, and implications for rupture propagation, Journal of Structural Geology (2017),
doi: 10.1016/j.jsg.2017.02.003.
This is a PDF file of an unedited manuscript that has been accepted for publication As a service to our customers we are providing this early version of the manuscript The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Trang 62Table 1 Quantitative X-ray diffraction data
Hole Depth/Sample Lithology Quartz K Feldspar Plagioclase Calcite Kaolinite Smectite White mica Chlorite Serpentine c Talc % Phyllosilicates
Trang 63Table 2 Summary of high-velocity friction experiments and results.
Experiment Material Lithology Dry/Wet sN (MPa) veq (m/s) d eq (m) µp corrected µss corrected d w (m) E G (MJ/m 2 )
Trang 64Cemented cataclasite
Active river bed
Australian Plate
Pacific Plate
C
DFDP-1 Gaunt Creek
PSZ gouge
D E
F Gravel 1
DFDP1B 128.80 m DFDP1B 128.44 m
Trang 65Qtz Qtz
Trang 67LHV279 1A90.62m DRY LHV280 1B128.80m DRY
LHV262 HkC PSZ DRY LHV272 HkC PSZ DRY
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LHV278 GC Scarp PSZ WET LHV288 1B144.04m WET
LHV289 HkC PSZ WET
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
LHV284 1A86.41m WET LHV285 1A90.32m WET
LHV286 1A90.62m WET LHV287 1B128.80m WET
Trang 68LHV582 1B128.44m WET v=1 m/s, v=1 mm/s
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
LHV574 LHV583
LHV581
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
LHV579 LHV584
Trang 69WET smectitic phyllosilicate-rich
DRY smectitic phyllosilicate-rich
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Trang 70LHV279 LHV286
LHV277 LHV278
LHV574 LHV579
LHV280 LHV287
LHV283 LHV288
LHV272 LHV289
symmetry axis
heat sources
400 450
150 250
350 300 455
B
0 5 10 15 20
distance from axis (mm)
Figure 7
Trang 710.750 1.0
1.126 1.501
Trang 73LHV574 DRY
LHV583 DRY
LHV581 DRY
Figure 10
Trang 74Figure 11
Trang 76• Alpine Fault rocks exhibit weak friction in high-velocity experiments
• Wet smectitic gouges have the lowest peak friction and steady state friction
values
• Rupture propagation through wet smectitic gouges is energetically favorable
• Wet experimental gouge microstructures resemble natural gouge
microstructures