Themycelial growth rate ofMK3 was fasterthanMK13onpotatodextroseagarPDAplatesFig.1 DikaryonDK13×3wasfromMK13andMK3throughA1B1and A2B2mating,asidentifiedusingmatingtests.28DK13×3grew faste
Trang 1h tt p : / / w w w b j m i c r o b i o l c o m b r /
ostreatus
Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
a r t i c l e i n f o
Article history:
Received14June2015
Accepted20September2016
Availableonlinexxx
AssociateEditor:GiseleMonteirode
Souza
Keywords:
Differentialgeneexpression
Monoallelicexpression
Monokaryon
RNAediting
RNA-Seq
a b s t r a c t
Dikaryais asubkingdom offungithatincludes AscomycotaandBasidiomycota.The gene expressionpatternsofdikaryonarepoorlyunderstood.Inthisstudy,webredadikaryon DK13×3bymatingmonokaryonsMK13andMK3,whichwerefromthebasidiosporesof Pleu-rotus ostreatusTD300.UsingRNA-Seq,weobtainedthetranscriptomesofthethreestrains
Wefoundthatthetotaltranscriptnumbersinthetranscriptomesofthethreestrainswere allmorethantenthousand,andtheexpressionprofileinDK13×3wasmoresimilarto MK13thanMK3.However,thegenesinvolvedinmacromoleculeutilization,cellular mate-rialsynthesis,stress-resistanceandsignaltransductionweremuchmoreup-regulatedin thedikaryonthanitsconstituentmonokaryons.Allpossiblemodesofdifferential gene expression,whencomparedtoconstituentmonokaryons,includingthepresence/absence variation,andadditivity/nonadditivitygeneexpressioninthedikaryonmaycontributeto heterosis.BysequencingtheureasegenepouresequencesandmRNAsequences,we iden-tifiedthemonoallelicexpressionofthepouregeneinthedikaryon,anditstranscriptwas fromtheparentalmonokaryonMK13.Furthermore,wediscoveredRNAeditinginthepoure
genemRNAofthethreestrains.Theseresultssuggestthatthegeneexpressionpatternsin dikaryonsshouldbesimilartothatofdiploidsduringvegetativegrowth
©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis
anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/
licenses/by-nc-nd/4.0/)
Introduction
Dikaryonisauniqueorganisminwhicheachcompartmentof
ahyphacontainstwohaploidnuclei,eachderivedfroma
dif-ferentparent.ItconsistsofasubkingdomoffungiDikarya,
∗ Corresponding author.
E-mail:qliyou@henau.edu.cn(L.Qiu)
including Ascomycota and Basidiomycota. A dikaryon strain
is formed by mating two compatible monokaryon strains, resulting in plasmogamy but not karyogamy in the fused compartment.Whennewhyphaegrow,thetwonuclei syn-chronously divide, and each new compartment keeps two nuclei1;karyogamyonlyoccursbeforetheinitiationofsexual
http://dx.doi.org/10.1016/j.bjm.2016.12.005
1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Trang 2Pleasecitethisarticleinpressas:LiuT,etal.Genome-widegeneexpressionpatternsindikaryonofthebasidiomycetefungusPleurotus ostreatus.
reproduction.Thissexualreproductionmodewasdistinctly
differentfromthatindiploids.Theinteractionbetweenthe
geneticmaterialsofthetwonucleiindikaryonshasnotbeen
wellcharacterized.Arethemodesofgeneactionindikaryons
thesameasthatindiploidsduringvegetativegrowth?
The major types of gene expression patterns found in
diploids during vegetative growth are mitotic crossover or
mitoticrecombination,2,3 DNAmethylationandgene
silenc-ing by RNAi,4 monoallelic expression (sex chromosome
inactivation, imprintedgeneexpression, orautosomal
ran-dommonoallelicexpression),5RNA-editing,6anddifferential
alleleexpressioninhybridsandparentsthatcontributesto
heterosis,7etc.Mitoticrecombination(alsonamed
parasexu-alityinfungi),DNAmethylationandgenesilencingbyRNAi
werealsofoundindikaryons,8–10 whilemonoallelic
expres-sionandRNA-editinghavenotbeenidentifiedinthedikaryon
Althoughnotstrictlytrueforallreportedspecies,intermsof
thegrowthrate,enzymeactivityandpathogenicity,diploids
have a significant advantage over their parental haploids,
which is similar to what is exhibited when dikaryons are
comparedto their parental monokaryons Itwas proposed
thatthe heterosisindiploidsresultedfrom the allelegene
differentialexpressioninhybridsandtheirparents,suchas
presence/absencevariationandadditive/non-additive
(high-andlow-parentdominance,underdominance,and
overdom-inance)geneexpression.11–14Themechanismofheterosisin
dikaryonsremainsobscure
Aneffectiveapproachforexploringtheallelegene
differ-entialexpressionindikaryonsisthecomparisonofsoluble
proteinprofiles or isoenzyme patterns betweena dikaryon
anditsconstituentmonokaryons.Thesolubleproteinprofile
ofSchizophyllum communedikaryonwasdramaticallydifferent
fromthatofitsparentalmonokaryons,and therearemany
newbandsinthedikaryon15;furtherstudiesshowedthat14
outof15isoenzymepatternschangedbetweenthedikaryon
andtwomonokaryons.16 Similarresultswere alsoreported
inotherbasidiomycetes,suchasCoprinus congregatus17 and
Coprinopsis cinerea.18Thosestudiesindicatedthatalleleshad
differentexpressionpatternsindikaryonsandmonokaryons
However, subsequent studies found no such difference in
higher basidiomycetes and suggested that those reported
differenceswereprobablycausedbygrowthconditionsand
the electrophoresis procedure.19,20 Since then, many other
observationshaveconfirmedsuchfindings.Forexample,
com-paringS commune monokaryonsand the dikaryon, protein
two-dimensionalgel electrophoresisshowedonly6.6%and
7.7%differences,21andthesequencecomplexitiesandcoding
propertiesofpolysomalRNAandtotalRNAhadnodetectable
difference.22,23Nevertheless,usinggeneexpressionprofiling,
therelativedifferencesinthetranscriptionquantityofthe12
laccasegenesinthePleurotus ostreatusdikaryonanditstwo
parentalmonokaryonsshowedthatthedikaryotic
superior-ityinlaccaseactivitywasduetonon-additivetranscriptional
increasesintwogenes.24Genome-widegeneexpression
pat-ternanalysisofdikaryonsand theirparental monokaryons
hasnotbeenreported
OystermushroomP ostreatus(Jacq.Fr)Kumm.isawhite
rotbasidiomycetethat isan importantedible and medical
mushroom,25–27 and ithasbeen studiedasamodel
organ-ismforbasidiomycetegeneticsandgenomicstudies.24Inthis
study,wecomparedthegenome-widetranscriptionalprofiles amongthedikaryonanditstwoconstituentmonokaryonsof
P ostreatusbySolexa-basedRNA-Seqwithafocusonthe trans-criptomicprofilingdifferenceanalysisbetweenthedikaryon and monokaryons, investigation ofthe mechanisms ofthe advantagesofsexual reproduction, monoallelicexpression, andRNA-editingindikarya
Materials and methods
Monokaryons MK13 and MK3 were from the basidiospores
of P ostreatus TD300, which is a commercial cultivation straininChinaandwasobtainedfromZhengzhou Compos-iteExperimentstation,ChinaEdibleFungiResearchSystem (Zhengzhou, China) Themycelial growth rate ofMK3 was fasterthanMK13onpotatodextroseagar(PDA)plates(Fig.1 DikaryonDK13×3wasfromMK13andMK3throughA1B1and
A2B2mating,asidentifiedusingmatingtests.28DK13×3grew fasterthanitsconstituentmonokaryonsinPDAandformed normalfruitingbodies withabiological efficiencythatwas similartoTD300incottonseedhullmedium(Fig.2 Thethree strains wereculturedinpotatodextrosebroth(150mLina
TD300
MK13
6.0
5.0 4.0 3.0
2.0 1.0 0.0
TD300
a
a
c
b
DK13 ×3 MK13 MK3
MK3 DK13×3
Fig 1 – Mycelial growth of the monokaryons and reconstituted dikaryon ofPleurotus ostreatuson PDA plates MK13, monokaryon; MK3, monokaryon; DK13 × 3, dikaryon; TD300, dikaryon and the two monokaryons’ parent; MGR, mycelial growth rate Data are given as the means and SE of four replicates Data with the same lower case letter do not significantly differ from other data atp< 0.05.
Trang 3TD300
Biological efficiency, %
120 150
DK13×3
DK13×3
Fig 2 – Fruiting body morphology and biological efficiency
of TD300 and DK13 × 3 in cottonseed hull medium.
Biological efficiency indicates the percentage of the fresh
weight of harvested 1st and 2nd flush mushrooms over the
dry weight of inoculated substrates.
500-mLflask)at25◦Cunder150rpmshaking;myceliawere
harvestedinthelateexponentialphase(10and25daysof
cul-turingfordikaryonandmonokaryons,respectively)forDNAor
totalRNAextraction
Mycelia were isolated from culturebroth bycentrifugation
at5000×g for10min; 100goffresh myceliawas
homoge-nizedinliquidnitrogen;andtotalRNAwasextractedusingan
RNApuretotalRNAfastisolationkit(Bioteke,Beijing,China)
ThetotalRNAwasusedforRT-PCRorenrichmentofmRNA
(poly(A)+RNA)withaDynabeadsmRNAPurificationKit
(Invi-trogen,GrandIsland,NY),andmRNAwasthenbrokeninto
shortfragments.Using theseshortfragmentsastemplates,
first-and second-strand cDNA were synthesized
Sequenc-ing adapters, which also served as sample markers, were
ligatedtoshortfragmentsafterpurificationwithaQiaQuick
PCRExtractionKit(Qiagen,Hilden,Germany).Fragmentsthat
were 200–700bp were then separated by agarose gel
elec-trophoresisandselectedforPCRamplificationassequencing
templates.Thethreestrain librarieswere sequencedusing
IlluminaHiSeqTM2000bytheBeijingGenomeInstitute(BGI)
(Shenzhen,China)
Rawreadscontainedlow-quality,adaptor-pollutedandhigh
contentsofunknownbase(N)reads,andthesenoisereads
should be removed before downstream analyses Weused
internalsoftwaretofilterreads.Afterfiltering,theremaining
readswerecalled“CleanReads”andstoredintheFASTQ
for-mat
Contigs were assembled from clean readsusing a denovo assemblerTrinity29;then,non-redundantunigenesetsforall threestrainswereconstructedusingtheESTassembly pro-gramTGICL.30Anall-unigenesetwasproducedfromthethree contigdatasetsbyfurthersequenceoverlapsplicingand non-redundancies
Cleanreadsweremappedtothereferencegenomesequence
of Pleurotus ostreatus PC15 (http://genome.jgi-psf.org/ PleosPC152/PleosPC152.home.html) using Bowtie231; then, thegeneexpressionlevelwascalculatedusingRSEM.32
TheunigeneexpressionlevelswerecalculatedusingtheReads per kb per Million reads(RPKM) method.33 Under the null hypothesisofequalexpressionbetweentwosamples,the fol-lowing test gives the p-values for identifying differentially expressedgenes(DEGs)betweentwosamples.34
P(y|x)=N2
N1
x!y!(1+(N2/N1))(x+y+1)
N1isthetotalnumberofcleantagsinMK3orMK13;N2is thenumberinDK13×3;xisthenumberofthecleantagsofthe targetgeneinMK3orMK13,andyisthenumberinDK13×3
p≤0.001and|log2Ratio|≥1wereusedasthethresholdtofilter DEGs
TheDEGsexpressedinallthreestrainswereusedto esti-matethemid-parentexpressionvalue(MPV).TheMPVwas calculatedbyaveragingtheexpressionleveloftheparental monokaryons,assumingan(MK3:MK13)ratioofRNA abun-danceinthenucleusofDikaryonDK13×3of1:1,asdescribed elsewhere.35
To validate the gene expression profiles obtained by RNA-seq,ureasegenepoureofthemonokaryonsanddikaryonwas cloned,amplified,andsequenced.Cloningwasperformedby colony direct PCR36 using primers POU1
conditionsof94◦Cfor30s,51◦Cfor40s,and72◦Cfor3min, whichwererepeated31times.mRNAswereamplifiedusing RT-PCRwithprimersPOU3(TTACCGAGGGAAGAAGCGAA)and POU4 (GGTGGTGACAGAAACGGGAGTA), and PCR conditions were setat94◦Cfor30s, 52◦Cfor40s,and72◦Cfor2min, whichwasrepeated31times.ThePCRproductsofDNAand mRNAwere purifiedand were thencloned intothe
pGEM-T Vector (Promega, Madison, WI, USA) The vectors were transformed intoE coliDH5␣,and fivetransformantswere randomly selected and sequenced by the Beijing Genome Institute(BGI)(Shenzhen,China)
Trang 4Pleasecitethisarticleinpressas:LiuT,etal.Genome-widegeneexpressionpatternsindikaryonofthebasidiomycetefungusPleurotus ostreatus.
Table 1 – Throughput and quality of RNA-Seq of the dikaryon and its constituent monokaryons ofPleurotus ostreatus.
reads(Mb)
Totalclean reads(Mb)
Totalclean bases(Gb)
Cleanreads Q20(%)
Cleanreads ratio(%)
Total mapping ratio(%)
Uniquely mapping ratioa(%)
a Uniquemapping:readsthatmaptoonlyonelocationofthereference,calleduniquemapping
Results
Table1liststhestatisticsofthereads.TheRNA-seqreadswere
ofhighquality;almostallmRNAfragmentsweresequenced,
and97%ofthereadshadaPhredqualityscoregreaterthan
20.Wemappedcleanreadstothereferencegenomesequence
of Pleurotus ostreatus PC15 (http://genome.jgi-psf.org/
PleosPC152/PleosPC152.home.html) using HISAT.37 On
average,60.44%ofreadsaremapped,andtheuniformityof
themappingresultforeachsamplesuggeststhatthesamples
are comparable The GenBank accession number for the
RNA-seqdatasetsofthethreestrainsisBioProjectAccession:
PRJNA326297
Aftergenome mapping,weused StringTie38 toreconstruct
transcripts,andwithgenomeannotationinformation,wecan
identifynoveltranscriptsinoursamplesusingcuffcompare,
atoolofcufflinks.39Intotal,weidentified4261novel
trans-cripts.Then, wemerged novelcoding transcripts withthe
referencetranscripttoobtainacompletereference,mapped
cleanreadsusingBowtie2,40andcalculatedthegene
expres-sionlevelforeachsamplewithRSEM.41Thereupon,thetotal
mappingratiosofthecleanreadsinthetranscriptomesofthe
threestrainswereincreased.Totaltranscriptnumberswere
allmorethantenthousand(Table2
We then calculated the read coverage and read
distri-butiononeachdetectedtranscript.ThePearsoncorrelation
betweenthetranscriptomesofthethreestrainswasobtained
ThePearsoncorrelationsofthedikaryonDK13×3toits
con-stituentmonokaryons,MK13andMK3,were0.8523and0.8100,
respectively,whilethePearsoncorrelationbetweenthe two
monokaryonswas0.8124,indicatingthattheexpression
pro-fileinDK13×3wasmoresimilartoMK13thanMK3(Fig.3
ThetotalRPKMsoftheunigenesinMK13,MK3andDK13×3
were559494,550716,and586583.ThetotalRPKMsofthe
uni-genesinDK13×3were4.8%and6.5%higherthan thosein
MK13andMK3(p<0.05)(Fig.4 Amongtheunigenesbetween
DK13×3andMK13orMK3,thecommonunigenesofthethree
strainswere27.6%,the commonunigenesforDK13×3and
MK13were 10.8%,and the common unigenesfor DK13×3
andMK3were11.3%.ThespecialunigenesinDK13×3,MK13
MK13
MK13
1 0.95 0.9 0.85 0.8 0.75
MK13×3
MK13×3
MK3
MK3
Fig 3 – Heatmap of Pearson correlations between the dikaryon and its constituent monokaryons ofPleurotus ostreatus.
and MK3 were 13.5%,17.6%,and15.5%,respectively Upto 38%ofunigenesinDK13×3were derivedfrom itsparental monokaryons(Fig.5 indicatingthatthegeneexpression pat-tern of present/absentvariation occurred amongthe three strains,andmorethanone-thirdoftheDEGsinthedikaryon weremonoallelicexpressiongenes
Usingp≤0.001and|log2Ratio|≥1asthestandardtoscreen the differentiallyexpressedgenes (DEGs)betweenDK13×3 andMK13orMK3,comparedtoMK13,thenumberofgenes whoseexpressionlevelswereup-regulated inDK13×3was 11323;7953wereup-regulatedmorethan3-fold,and114were up-regulatedmorethan15-fold.Additionally,8421geneswere down-regulated;2573weredown-regulatedmorethan3-fold, whilenoneweredown-regulatedmorethan15-fold(Fig.6A) ComparedtoMK3,thenumberofgeneswhoseexpressionwas up-regulatedinDK13×3was11578;7787wereup-regulated morethan3-fold,and116wereup-regulatedmorethan 15-fold.Furthermore,7425genesweredown-regulated;2176were down-regulatedmorethan3-fold,and1wasdown-regulated morethan15-fold(Fig.6B).Theresultssuggestthatthe num-berofup-regulatedgenesinthedikaryonwasmuchhigher thanthatofdown-regulatedgenes,especiallycomparedtothe constituentmonokaryons
Thegenesinthedikaryonthatwere15-foldup-or down-regulated comparedwiththemonokaryonswere examined with anNCBI onlineBLASTP homology analyzer Addition-ally,28and21up-regulatedgeneswerefoundtohaverelated
Trang 5Table 2 – Summary of gene expression in the dikaryon and its constituent monokaryons ofPleurotus ostreatus.
mapping
ratio(%)
Uniquely mapping ratio(%)
Totalgene number
Knowngene number
Novelgene number
Total transcript number
Known transcript number
Novel transcript number
–4 –4 –3 –2 –1 0 1
Log 10 (DK13×3 RPKM) Log 10 (DK13×3 RPKM)
2 3 4 5 6 –4 –3 –2 –1 0 1 2 3 4 5 6 –3
–2 –1 0 1 2 3 4 5 6
FDR≤0.001 and |log2ratio|≥1 Up-regulated genes Down-regulated Not DEGs
–4 –3 –2 –1 0 1 2 3 4 5 6
Fig 4 – Comparison of the unigene expression levels between MK3 or MK13 and DK13 × 3 Up-regulated genes,
down-regulated genes, and NOT DEGs were determined using a threshold ofp≤ 0.001 and |log2Ratio| ≥ 1 A, MK3 vs DK13 × 3; B, MK13 vs DK13 × 3; NOT DEGs, Unigenes were not obviously changed upon MK3 or MK13 to DK13 × 3.
Unigenes of MK13 13.5%
10.8%
27.6%
11.3%
15.5%
3.7%
17.6%
Unigenes of MK3 Unigenes of DK13×3 Specific genes of DK13×3 Specific genes of MK13 Specific genes of MK3 The common genes of three strains The common genes of MK13 and MK3 The common genes of DK13×3 and MK3 The common genes of DK13×3 and MK13
Fig 5 – Distribution diagram of DEGs between MK3 or MK13 and DK13 × 3 DEGs were screened by a threshold ofp≤ 0.001 and |log2Ratio| ≥ 1.
(Tables3and4 Thesefindingshaveprovidedevidenceforthe
growthadvantagethatthedikaryonhasovertheconstituent
monokaryons
AmongthecommonDEGsofthethreestrains,whenthe
DK13×3levelswerecomparedtoMPVadditivemodelvalues,
approximately63.0%(878/2027)oftranscriptswereidentified
tobeengagedinnon-additivegeneexpression(thresholdof
greaterthantwo-foldhigher/lower).Asmallpluralityofgenes,
36.8%,hadlowerexpressionlevelsinDK13×3thanexpected,
while 26.2% were higher and potentially upregulated (Fig.7
Forexample,weobtainedthetranscriptionprofilingfrom the RNA-seq of the 17 laccase genes in the three strains The gene action modes of the 17 laccase genes could be dividedintothefollowingthreepatterns:genesexpressedin bothparental monokaryonsbut notinthedikaryon; genes expressedinoneparentalmonokaryonanddikaryonbutnot
in another parental monokaryon; and genes expressed in parentalmonokaryonsandthedikaryon.However,thetotal RPKMsoftheselaccasegenesinDK13×3didnotpresent sig-nificantdifferencescomparedtotheparentalmonokaryons (Table5
Trang 6Pleasecitethisarticleinpressas:LiuT,etal.Genome-widegeneexpressionpatternsindikaryonofthebasidiomycetefungusPleurotus ostreatus.
1 10 100 1000 10000
12–15 9–12 6–9 3–6
Up-regulation Down-regulation
1 10 100 1000 10000
12–15 9–12 6–9 3–6 1–3
|log2 ratio of RPKM| |log2 ratio of RPKM|
Fig 6 – Differentially expressed genes in dikaryon DK13 × 3 compared to parental monokaryons MK13 (A) or MK3 (B) RPKM, reads per kb per million reads.
Table 3 – Function annotation of differentially expressed genes in dikaryon DK13×3 compared to its parental
monokaryon MK13.
poure monoallelic expression in the dikaryon
Thepouregeneofthe twomonokaryonsand mRNAofthe
(http://genome.jgi-psf.org/PleosPC152/PleosPC152.home.html;
http://genome.jgi-psf.org/PleosPC91/PleosPC91.home.html);
those for MK3 (GenBank access number:KF312590.1) were
96%and95%identical.Thedifferentbasesbetweenthepoure
geneCDSofMK13andMK3were93(Table6 ThepouremRNA
sequencesofMK13,MK3andDK13×3wereall100%identical
tothe RNA-seqresults.However,themRNAsequencesand
geneCDSofpouredifferedby4basesinMK13and12inMK3
InMK13,thedifferencesweretwoTstoCsandtwoGstoAs
InMK3,thedifferenceswereoneCchangingtoG,fourCsto
Ts,fourAstoGs,andthreeGstoAs(Table7 Thisrevealed that P ostreatussimultaneously occurred innumerousRNA editing types Furthermore, the poure mRNA sequences of DK13×3 were more identical to that of MK13 than MK3, withonlytwodifferentbasesandonepredictedaminoacid
to MK13, whilethere were 89 differentbases comparedto MK3 As with MK13, the mRNA sequence and gene CDS
ofPoureinDK13×3involved4bases,oneTtoC,oneCto
T, andtwo GstoAs(Tables6and 7 Urease catalyzedthe hydrolysisofureaintocarbondioxideandammonia.Urease was the first enzyme to be crystallized from jack beans, and it was the first protein whose enzymatic properties weredemonstratedbySumnerin1926.42Ureaseshavebeen
Trang 7Table 4 – Functional annotation of differentially expressed genes in dikaryon DK13×3 compared to its parental MK3 monokaryon.
Table 5 – Laccase gene expression profile inPleurotus ostreatusdikaryon DK13×3 and its parental monokaryons MK13 and MK3.
Group1
Group2
Group3
a Group1,genesexpressedinbothparentalmonokaryonsbutnotinthedikaryon;Group2,genesexpressedinoneparentalmonokaryonand thedikaryonbutnotinanotherparentalmonokaryon;Group3,genesexpressedinparentalmonokaryonsandthedikaryon
foundinnumerousbacteria, fungi, algae,plantsand some
invertebrates, and they have been found to help
microor-ganismsandplantsuseendogenousandexogenousureaas
anitrogensource.Theammonia produced issubsequently
utilizedto synthesizeproteins.43 Ureases ofbacteria, fungi
and higher plantsare highly conserved.44 In higher plants
andfungi,theenzymeisencodedbyasinglegene.45,46Thus,
ourresultsshowedthatthepouretranscriptofDK13×3was
fromtheMK13pouregeneandthatRNAeditingalsooccurred
(Table6
Discussion
Our resultsshowed thatthe global geneexpressionprofile
ofdikaryonwasdistinctfrom itsconstituentmonokaryons, andtherewasanexpressiondifferenceinnearlytwo-thirds
of the genes This change was also confirmed by RT-PCR cloningandsequencingofthepouremRNAofthethreestrains Theseresultsarenotinagreementwithpreviousreports,22,23
which is probably due to the different gene expression
Trang 8Pleasecitethisarticleinpressas:LiuT,etal.Genome-widegeneexpressionpatternsindikaryonofthebasidiomycetefungusPleurotus ostreatus.
Table 6 – Sequence alignment of thepouregene CDS between the two monokaryons ofPleurotus ostreatus.
CDSa Thepositionofmismatchedbasesfromthe5endofthePoureCDS
924 966 975 978 1005 1061 1074 1083 1170 1200 1209 1236 1290 1311 1326 1335
1383 1521 1523 1527 1536 1587 1605 1628 1641 1680 1689 1707 1709 1713 1764 1767
1769 1782 1788 1808 1848 1857 1876 1917 1992 2061 2067 2070 2076 2079 2158 2208
2224 2229 2268 2317 2325 2364 2409 2450 2451 2469 2475 2478 2480
a TheaccessionnumbersinGeneBankofthepouregeneCDSofPleurotus ostreatusMK13andMK3areKF312589.1andKF312590.1
Table 7 – Sequence alignment of thepouregene CDS, mRNA and predicted AAs between the three strains ofP ostreatus.
Strain Thepositionofmismatchedbasesfromthe5endof
AAresidues
Based on the gene transcriptional quantity, heterosis
indiploids was considered toresultfrom differential gene
expression,includingthefollowingfivegeneexpression
pat-terns:(i)genesexpressedinbothparentsbutnotinhybrids,(ii)
genesexpressedinoneparentandhybridbutnotinanother
parent,(iii)genesexpressedinoneparentbutnotinanother
parentorhybrid,(iv)genesexpressedonlyinahybridbutnot
inbothparents,and(v)genesexpressedinbothparentsand
thehybrid.Thefirstfourpatternsarethepresence/absence
variations (PAV)48; the fifth could be divided into additive
andnon-additivegeneexpressionpatternsforwhichhybrids
showedatranscriptlevelequaltoordeviatingfromthe
mid-parentvalue(averageofthetwoparents).49–51Inthisstudy,the
mycelialgrowthrateofP ostreatusdikaryonDK13×3was
sig-nificantlyhigherthanthatofthetwoparentalmonokaryons,
indicating the advantage of sexual reproduction or
heterosisinthedikaryon.Thetotalgeneexpressionquantity
inthedikaryonwas4.8%and6.5%higherthanitsconstituent monokaryons, and all possible modes of differential gene expressionthatwerepresentinthedikaryonwhencompared
toitsconstituentmonokaryons,includingpresence/absence variation and additive/non-additive gene expression, may
becontributingtoheterosis.Thiswasconfirmedinprevious studies.24
Monoallelicexpressiongeneshavebeenfoundinanumber
oforganisms,includinghumans,rodents,corn,andyeast.52
They are on theX chromosome infemale placental mam-malsoronautosomes,5 andtheselectionoftheexpressed allele may depend on the parental origin or be random.53
However, this phenomenon has not been reported in the dikaryon Those DEGsin the dikaryon can bedivided into fourgroups.Themaingroupwassimultaneouslyexpressedin bothofthemonokaryons.Theothertwosmallergroupswere expressedinonlyoneoftwomonokaryons.Thefourthgroup wasexpressedinthedikaryonalone DEGsinthedikaryon
Trang 9Log 10 (DK13×3 RPKM)
–1
0
1
2
3
4
5
Fig 7 – Scatter plots showing the expression levels of the
differentially expressed genes in dikaryon DK13 × 3 vs.
mid-parent expression value model estimates RPKM, reads
per kb per million reads and MPV, mid-parent expression
values.
onlyexpressingMK3orMK13mightberegardedas
monoal-lelicexpressiongenes, asevidencedbyRT-PCRcloningand
sequencingresults.Forexample,thepouretranscriptinthe
dikaryonwasfromtheMK13nucleusgenebutnotMK3.More
than10%ofthemonoallelicexpressiongenesinthedikaryon
were from each parental monokaryon However, we could
notdetermine whether theydemonstrated autosomal
ran-dommonoallelicexpression,sexchromosomeinactivation,
orimprintedgeneexpression.Infungi,thechromosome
con-tainingmatinggenesmaybedeemedasthesexchromosome
Inmiceandhumans,morethan10%ofthegeneshave
autoso-malrandommonoallelicexpression.54,55 Theisozymebands
thatareonlypresentintheS communedikaryonwere
demon-stratedtodependontheexpressionofmatinggenesAand
B.16 Accordingly,therelationshipbetweenthefourthgroup
andthematinggenesmeritsfurtherstudy
RNA-editing by base deamination has been reported
in plant mitochondria and plastids (C-to-U editing)56 and
mammals (A-to-I editing)57; U-to-Cand guanosine(G)-to-A
changes, which are probably by trans-amination, are also
reportedinmammals.58,59Nosimilarcaseshavebeenfoundin
higherfungi.Inthisstudy,ourresultsshowedthatnumerous
typesofRNAeditingexistedinthepouremRNAinP ostreatus,
includingC-T,A-G,andC-Gbasesubstitution
Takentogether,ourresultssuggestthatthegene
expres-sionpatternsindikaryonsshouldbesimilartodiploid.Finally,
we strongly propose that the fungal dikaryon is a perfect
experimentalmodelforstudyingsexevolutionand
monoal-lelicexpressionduetoits uniquebiology.Thetwoparental
monokaryons can independently live with asexual
repro-duction It was proposed that the monokaryons were the
temporarystageofdikaryonsandhadlesscombativeability
than dikaryons,60 but several speciesmodels have
demon-stratedthatmonokaryonshaveasimilarormorecombative
phenotype compared to dikaryons.61,62 Therefore, it was
suggestedthat monokaryonswith greater adaptive genetic
potentialmayimprovethecombativeabilitytodikaryons.63
In dikaryons, the two monokaryon nuclei do not fuse to
karyogamy,andthetwochromosomalsetsonlyoccasionally
recombineduringvegetativegrowth63;therefore,itiseasyto determinetheoriginsofallelesinadikaryon.Althoughthere
isnopaternalandmaternaldistinctioninthematingoftwo compatiblemonokaryons,aswithothersexualreproduction, themitochondrioninalmostalldikaryonsisfromonlyone monokaryon.64 Theexampledonor canberegarded as the femaleparent
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest
Acknowledgments
This work was funded by a grant from the Natural Sci-ence FoundationofHenanProvince(112300410115)and the programforInnovativeResearchTeam(inScienceand Tech-nology)inUniversityofHenanProvince(15IRTSTHN014)
r e f e r e n c e s
1.StajichJE,BerbeeML,BlackwellM,etal.Thefungi.Curr Biol.
2009;19(18):R840–R845
2.SternC.SomaticcrossingoverandsegregationinDrosophila melanogaster Genetics.1936;21(6):625–730
3.LaFaveMC,AndersenSL,StoffregenEP,etal.Sourcesand structuresofmitoticcrossoversthatarisewhenBLM helicaseisabsentinDrosophila Genetics.2014;196(1):107–118
4.FellmannC,LoweSW.StableRNAinterferencerulesfor silencing.Nat Cell Biol.2014;16(1):10–18
5.ChessA.Mechanismsandconsequencesofwidespread randommonoallelicexpression.Nat Rev Genet.
2012;13(6):421–428
6.StepanovaVV,GelfandMS.RNAediting:classicalcasesand outlookofnewtechnologies.Mol Biol.2014;48(1):11–15
7.ChenZJ.Genomicandepigeneticinsightsintothemolecular basesofheterosis.Nat Rev Genet.2013;14(7):471–482
8.QiuLY,YuC,QiYC,etal.Recentadvancesonfungal epigenetics.Chin J Cell Biol.2009;31(2):212–216
9.NicolásFE,Torres-MartínezS,Ruiz-VázquezRM.Lossand retentionofRNAinterferenceinfungiandparasites.PLoS Pathog.2013;9(1):e1003089
10.GoodenoughU,HeitmanJ.Originsofeukaryoticsexual reproduction.Cold Spring Harb Perspect Biol.2014;6(3):a016154
11.GibsonG,Riley-BergerR,HarshmanL,etal.Extensive sex-specificnonadditivityofgeneexpressioninDrosophila melanogaster Genetics.2004;167(4):1791–1799
12.HeGM,ZhuXP,EllingAA,etal.Globalepigeneticand transcriptionaltrendsamongtworicesubspeciesandtheir reciprocalhybrids.Plant Cell.2010;22(1):17–33
13.MeyerRC,Witucka-WallH,BecherM,etal.Heterosis manifestationduringearlyArabidopsisseedlingdevelopment
ischaracterizedbyintermediategeneexpressionand enhancedmetabolicactivityinthehybrids.Plant J.
2012;71(4):669–683
14.PascholdA,JiaY,MarconC,etal.Complementation contributestotranscriptomecomplexityinmaize(Zea mays
L.)hybridsrelativetotheirinbredparents.Genome Res.
2012;22(12):2445–2454
15.WangC-S,RaperJR.Proteinspecificityandsexual morphogenesisinSchizophyllum commune J Bact.
1969;99(1):291–297
Trang 10Pleasecitethisarticleinpressas:LiuT,etal.Genome-widegeneexpressionpatternsindikaryonofthebasidiomycetefungusPleurotus ostreatus.
16.WangC-S,RaperJR.Isozymepatternsandsexual
morphogenesisinSchizophyllum Proc Natl Acad Sci U S A.
1970;66(3):882–889
17.RossIK,MartinEM,ThomanM.Changesinisozymepatterns
betweenmonokaryonsanddikaryonsofabipolarCoprinus J
Bact.1973;114(3):1083–1089
18.MooreD,JirjisRI.Electrophoreticstudiesofcarpophore
developmentinthebasidiomyceteCoprinus cinereus New
Phytol.1981;87(1):101–113
19.UllrichRC.Isozymepatternsandcellulardifferentiationin
Schizophyllum Mol Gen Genet.1977;156(2):157–161
20.EversDC,RossIK.Isozymepatternsandmorphogenesisin
higherbasidiomycetes.Exp Mycol.1983;7(1):9–16
21.deVriesOM,HogeJH,WesselsJG.Regulationofthepattern
ofproteinsynthesisinSchizophyllum communebythe
incompatibilitygenes.Dev Biol.1980;74(1):22–36
22.ZantingeB,DonsH,WesselsJG.Comparisonof
poly(A)-containingRNAsindifferentcelltypesofthelower
eukaryoteSchizophyllum commune Eur J Biochem.
1979;101(1):251–260
23.ZantingeB,HogeJH,WesselsJG.Frequencyanddiversityof
RNAsequencesindifferentcelltypesofthefungus
Schizophyllum commune Eur J Biochem.1981;113(2):381–389
24.CastaneraR,OmariniA,SantoyoF,etal.Non-additive
transcriptionalprofilesunderliedikaryoticsuperiorityin
Pleurotus ostreatuslaccaseactivity.PLOS ONE.
2013;8(9):e73282
25.WangL,LiY,LiuD,etal.Immobilizationofmycelialpellets
fromliquidspawnofoystermushroombasedoncarrier
adsorption.Horttechnology.2011;21(1):82–86
26.DongX,ZhangK,GaoY,etal.ExpressionofhygromycinB
resistanceinoysterculinary-medicinalmushroom,Pleurotus
ostreatus(Jacq.:Fr.)P.Kumm.(higherBasidiomycetes)using
threegeneexpressionsystems.Int J Med Mushrooms.
2012;14(1):21–26
27.ChaiR,QiuC,LiuD,etal.-Glucansynthasegene
overexpressionand-glucansoverproductioninPleurotus
ostreatususingpromoterswapping.PLOS ONE.
2013;8(4):e61693
28.KotasthaneAS.Asimpletechniqueforisolationof
Xanthomonas oryzaepvoryzae.J Mycol Plant Pathol.
2003;33(2):277–278
29.GrabherrMG,HaasBJ,YassourM,etal.Full-length
transcriptomeassemblyfromRNA-Seqdatawithouta
referencegenome.Nat Biotechnol.2011;29(7):644–652
30.PerteaG,HuangX,LiangF,etal.TIGRGeneIndices
clusteringtools(TGICL):asoftwaresystemforfastclustering
oflargeESTdatasets.Bioinformatics.2003;19(5):651–652
31.LangmeadB,SalzbergSL.Fastgapped-readalignmentwith
Bowtie2.Nat Methods.2012;9(4):357–359
32.LiB,DeweyCN.RSEM:accuratetranscriptquantification
fromRNA-Seqdatawithorwithoutareferencegenome
BMC Bioinform.2011;12(1):323
33.MortazaviA,WilliamsBA,McCueK,etal.Mappingand
quantifyingmammaliantranscriptomesbyRNA-Seq.Nat
Methods.2008;5(7):621–628
34.AudicS,ClaverieJM.Thesignificanceofdigitalgene
expressionprofiles.Genome Res.1997;7(10):986–995
35.PumphreyM,BaiJ,Laudencia-ChingcuancoD,etal
Nonadditiveexpressionofhomoeologousgenesis
establisheduponpolyploidizationinhexaploidwheat
Genetics.2009;181(3):1147–1157
36.IzumitsuK,HatohK,SumitaT,etal.Rapidandsimple
preparationofmushroomDNAdirectlyfromcoloniesand
fruitingbodiesforPCR.Mycoscience.2012;53(5):396–401
37.KimD,LangmeadB,SalzbergSL.HISAT:afastsplicedaligner
withlowmemoryrequirements.Nat Methods.
2015;12(4):357–360
38.deHoonMJ,ImotoS,NolanJ,MiyanoS.Opensource clusteringsoftware.Bioinformatics.2004;20(9):1453–1454
39.SaldanhaAJ.JavaTreeview—extensiblevisualizationof microarraydata.Bioinformatics.2004;20(17):3246–3248
40.PerteaM,PerteaGM,AntonescuCM,etal.StringTieenables improvedreconstructionofatranscriptomefromRNA-seq reads.Nat Biotechnol.2015;33(3):290–295
41.TrapnellC,RobertsA,GoffL,etal.Differentialgeneand transcriptexpressionanalysisofRNA-seqexperimentswith TopHatandCufflinks.Nat Protoc.2012;7(3):562–578
42.KarplusPA,PearsonMA,HausingerRP.70yearsofcrystalline urease:whathavewelearned?Acc Chem Res.
1997;30(8):330–337
43.MobleyHL,HausingerRP.Microbialureases:significance, regulation,andmolecularcharacterization.Microbiol Rev.
1989;53(1):85–108
44.MobleyHLT,IslandMD,HausingerRP.Molecularbiologyof microbialureases.Microbiol Rev.1995;59(3):451–480
45.TakashimaK,SugaT,MamiyaG.Thestructureofjackbean urease.Thecompleteaminoacidsequence,limited proteolysisandreactivecysteineresidues.Eur J Biochem.
1988;175(1):151–165
46.WagemakerMJ,EastwoodDC,vanderDriftC,etal
ExpressionoftheureasegeneofAgaricus bisporus:atoolfor studyingfruitbodyformationandpost-harvest
development.Appl Microbiol Biotechnol.2006;71(4):
486–492
47.HiguchiR,DollingerG,WalshPS,GriffithR.Simultaneous amplificationanddetectionofspecificDNAsequences
Biotechnology (N Y).1992;10(4):413–417
48.SpringerNM,YingK,FuY,etal.Maizeinbredsexhibithigh levelsofcopynumbervariation(CNV)andpresence/absence variation(PAV)ingenomecontent.PLoS Genet.
2009;5(11):e1000734
49.GuoM,RupeMA,YangXF,etal.Genome-widetranscript analysisofmaizehybrids:allelicadditivegeneexpression andyieldheterosis.Theor Appl Genet.2006;113(5):831–845
50.Swanson-WagnerRA,JiaY,DeCookR,etal.Allpossible modesofgeneactionareobservedinaglobalcomparisonof geneexpressioninamaizeF1hybridanditsinbredparents
Proc Natl Acad Sci U S A.2006;103(18):6805–6810
51.HochholdingerF,HoeckerN.Towardsthemolecularbasisof heterosis.Trends Plant Sci.2007;12(9):427–432
52.BremRB,YvertG,ClintonR,etal.Geneticdissectionof transcriptionalregulationinbuddingyeast.Science.
2002;296(5568):752–755
53.ChessA.Randomandnon-randommonoallelicexpression
Neuropsychopharmacology.2013;38(1):55–61
54.GimelbrantA,HutchinsonJN,ThompsonBR,ChessA Widespreadmonoallelicexpressiononhumanautosomes
Science.2007;318(5853):1136–1140
55.ZwemerLM,ZakA,ThompsonBR,etal.Autosomal monoallelicexpressioninthemouse.Genome Biol.
2012;13(2):R10
56.GrayMW,CovelloPS.RNAeditinginplantmitochondriaand chloroplasts.FASEB J.1993;7(1–2):64–71
57.DanecekP,NellåkerC,McIntyreRE,etal.Highlevelsof RNA-editingsiteconservationamongst15laboratorymouse strains.Genome Biol.2012;13(4):26
58.VillegasJ,MullerI,ArredondoJ,etal.AputativeRNAediting fromUtoCinamousemitochondrialtranscript.Nucleic Acids Res.2002;30(9):1895–1901
59.Klimek-TomczakK,MikulaM,DzwonekA,etal.Editingof hnRNPKproteinmRNAincolorectaladenocarcinomaand surroundingmucosa.Br J Cancer.2006;94(4):586–592
60.GardesM,WongKK,FortinJA.Interactionsbetween monokaryoticanddikaryoticisolatesofLaccaria bicoloron rootsofPinus banksiana Symbiosis.1990;8(3):233–250