Blaizot Keywords: Exotic state Tetraquark Rescattering effect Triangle singularity We investigatethe possiblerescattering effects whichmaycontributeto theprocess B+→ J /ψφ K+.. Rescatter
Trang 1Contents lists available atScienceDirect
www.elsevier.com/locate/physletb
Xiao-Hai Liu
Department of Physics, H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
Article history:
Received 20 July 2016
Received in revised form 22 December 2016
Accepted 7 January 2017
Available online 11 January 2017
Editor: J.-P Blaizot
Keywords:
Exotic state
Tetraquark
Rescattering effect
Triangle singularity
We investigatethe possiblerescattering effects whichmaycontributeto theprocess B+→ J /ψφ K+.
It isshownthatthe ψφrescatteringviathe ψK1loopcansimulatethestructureofX (4700).Thecusp effectduetothe D∗+
s D−
s rescatteringmaypossiblysimulatethe X (4140) structure,butitdependson the cuspmodelparameters.Ifthe quantumnumbersof X (4274) (X (4500) are 1++ (0++), it ishard
toascribetheobservationof X (4274)and X (4500)tothe P -wavethresholdrescatteringeffects,which impliesthat X (4274)and X (4500)couldbegenuineresonances.Wealsosuggestthat X (4274)maybe theconventionalorbitallyexcitedstateχc1 ( 3P )
©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3
IntheStandardModel,quarksandgluonsarerelatedto
color-singletmesons andbaryonsby the long-distanceregime ofQCD,
which remains the least understood aspect of the theory.In
ex-periments, there has been a renewal of hadron spectroscopy in
thelastdecade,initiated bythefindingsofnumerousX Y Z states
Mostofthesestatesdonotfitintothepredictionsofthe
conven-tionalquark model,whichhasbeenproved tobe verysuccessful
indescribing the heavy quarkonia belowthe open-flavor
thresh-olds.Someofthe X Y Z states, suchaschargedcharmonium-likeZ c
states,chargedbottomonium-like Z b states,andheavypentaquark
candidates P c(4450) and P c(4380), definitely cannot be the
con-ventionalq q-mesons ¯ or qqq-baryons Thesenewobservations not
onlyenrichourknowledgeaboutthehadronspectroscopybutalso
bring new challenges We refer to Refs [1–5] for both
theoret-ical and experimental reviews about the recent study on exotic
hadrons
Veryrecently, theLHCbcollaborationreportedthe observation
ofseveralresonance-likestructuresin J/ψφ invariantmass
distri-butionsin B+→ J/ψφK+ decays[6,7].Theirmasses, widthsand
favorable quantumnumbersare
M X(4140)=4146.5±4.5+4.6
−2.8MeV,
X(4140)=83±21+21
−14MeV, J P C=1++,
E-mail address:liuxh@th.phys.titech.ac.jp
M X(4274)=4273.3±8.3+17.2
−3.6 MeV,
X(4274)=56±11+8
−11MeV, J P C=1++,
M X(4500)=4506±11+12
−15MeV,
X(4500)=92±21+21
−20MeV, J P C=0++,
M X(4700)=4704±10+14
−24MeV,
X(4700)=120±31+42
−33MeV, J P C=0++, (1)
among which the higher states X(4500) and X(4700) are firstly reported by the LHCb collaboration X(4140) and X(4274) were firstly observed by the CDF collaboration in the J/ψφ invariant massdistributionfromB →K J/ψφ decays[8,9].Thepresenceof
X(4140)in B decays waslaterconfirmedbytheCMSandD0 col-laborations [10–12] Another state X(4350) was reported by the Bellecollaborationfromthetwophotonprocess γ γ →J/ψφ[13]
X(4140) and X(4274)were alsoexpectedto be produced in the twophotonfusionreaction,butneitherofthemwasobserved[13]
Ifthequantumnumbersof X(4140)and X(4274)are1++,as
re-portedbytheLHCbcollaboration,theirnon-observationinthetwo photofusionreactionscanbeunderstoodaccordingtothe Landau– Yang theorem, which forbids the transitions between a massive spin-1 particle andtwo real photons[14,15] But fortwo virtual photonfusionorone realandonevirtual photonfusion,the pro-ductionofmassivespin-1particlesisnotforbidden
http://dx.doi.org/10.1016/j.physletb.2017.01.008
0370-2693/©2017 The Author Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) Funded by
3
Trang 2Fig 1 Rescattering processes via the open-charm meson loops.
Theseresonance-like peaksin the J/ψφ invariant mass
spec-trumareveryintriguing,becausetheymaycontainbotha cc pair ¯
and an s ¯s pair, whichimpliesthatthesestatesmaybeexotic
Tak-ingintoaccounttheirmassesanddecaymodes,someresearchers
suggest that X(4140) and X(4274) could be the hadronicbound
statesof D∗+
s D∗−
s and D+
s0 D−
s,respectively [16–26].By means of quarkmodelorQCDsumrules,these“ X ”stateobservedin J/ψφ
distributionsare alsosuggestedtobe some csc¯ ¯s tetraquark states
withproperquantumnumbers[27–32]
Concerning those exotic states, apart from the genuine
reso-nances explanations, such as molecular states, tetraquark states,
or hybrid, some non-resonance explanations were also proposed
in literatures There have been many theoretical attempts to try
to connect the singularities of the rescattering amplitudes with
the resonance-like peaks in experiments, such as the cusp
ef-fect [33–38], or the triangle singularity (TS) mechanism The TS
mechanismwas firstnoticein1960s[39–49].Unfortunately,most
ofthoseproposed processeswerelackofexperimental supportat
thattime.Itwas rediscoveredbypeopleinrecentyearsandused
to interpret some exoticphenomena, such as the largely isospin
violationin η (1405) →3π, theproduction of a1(1420),the
pro-ductionofsome X Y Z particles andsoon[50–64].Itisshownthat
sometimes it is not necessary to introduce a genuine resonance
todescribearesonance-likepeak,becausesome kinematic
singu-laritiesoftherescatteringamplitudescouldbehavethemselvesas
bumps in the corresponding invariant mass distributions, which
maybring ambiguities to ourunderstanding about the natureof
exoticstates.Before claiming thatone resonance-likepeak
corre-spondsto onegenuine particle,it isalsonecessary toexclude or
confirmthesepossibilities
Inthiswork, we investigatesome possiblerescatteringeffects
intheprocess B+→J/ψφK+.Theopen-charmmesons
rescatter-ingandψφrescatteringarestudiedinSection2.Theconclusions
andsomediscussionsaregiveninSection3
2.1 Open-charm meson rescattering effect
In experiments, the rates of B decays into a charmed meson
andacharmed-strangemesonare foundtobe quitelarge among
thehadronicdecaymodes.Sincethevelocitiesoftheopen-charm
mesonswillnotbelarge,theyhaveadequatetimetogetinvolved
inthefinalstateinteractions.Ithasbeensuggestedthatthe
rescat-teringeffectmayplayanimportantroleinthehadronicdecaysof
bottommeson[65–69].Forhigherexcited charmedmesons,they
mayfurtherdecayintoakaonandacharmed-strangemeson,and
then wemayexpect that therescatteringprocesses illustrated in
Fig 1wouldcontributetothedecaychannel B+→K+J/ψφ.The
lowestcharmedmesonswhichcandecayinto D ( ∗)
s K could bethe first radially excited states D and D∗ . The experimentally
ob-served resonancescorresponding to D and D∗ are D(2550) and
D(2600) respectively[70],whichiswidelyaccepted.Accordingto
thelatestresultsofLHCb[71],theirmassesandwidthsare
Table 1
Thresholds for theD ( s J ∗)+ D ( s ∗)− Threshold [MeV] D+s D∗+s D+s0 (2317) D+s1 (2460) D+s1 (2536)
D−s 3936.6 4080.4 4286.0 4427.8 4503.4
D∗−s 4080.4 4224.2 4429.8 4571.6 4647.2
M D=2579.5±3.4±5.5 MeV,
D=177.5±17.8±46.0 MeV,
M D∗ =2649.2±3.5±3.5 MeV,
D∗ =140.2±17.1±18.6 MeV. (2)
Sincethemassof Dissomewhatlowerthanthethresholdof D∗s K
(∼2606 MeV), its contribution to the rescattering amplitude is supposedtobesmallercomparedwith D∗ .Thereexisttheoretical and experimental indications that the ratesof B decays into ex-citedcharmedmesonswouldbesizable,althoughsuchdecaysare supposedtobesuppressedbytheheavyquarksymmetry(HQS)at theleadingorder[72–76].Thisimpliesthattherescatteringeffects inducedbythoseexcitedstatesmaybeimportant
Anotherinteresting propertyofFig 1isthat thethresholdsof some D ( ∗)+
s J D ( ∗)−
s combinationsare rathercloseto the“ X ” states observed in J/ψφ distributions For convenience, we use D s0,
D s1 and D
s1 to represent the P -wave charmed-strange mesons
D s0(2317), D s1(2460) and D s1(2536), respectively From Table 1, one can see that the thresholds of D∗
s D s, D∗
s D∗
s (D s0 D s), and
D
s1 D s (D s1 D s, D s1 D∗
s, Ds0 D∗
s)areclosetothemassesof X(4140),
X(4274)andX(4500),respectively.Duetothesingularitiesaround these thresholds may be present in the rescattering amplitudes One may wonder whether there are some connections between the singularitiesandthe“ X ” states.There aretwo intriguing sin-gularitieswhichmayappearinthetrianglerescatteringdiagrams When two of thethree intermediate states are on-shell,the sin-gularity at threshold is a finite square-root branch point, which corresponds to the cusp effect In some special kinematic con-figurations, all of the three intermediate states can be on-shell simultaneously, which corresponds to the leading Landau singu-larity of the triangle diagram This leading Landau singularity is usually called the TS, which may result in narrow peaks in the correspondingspectrum.Moreover,whentheTSoccurs,the trian-glerescatteringdiagramcanbeinterpretedasaclassicalprocessin space–time,andtheTSwilljustbelocatedonthephysical bound-aryofthescatteringamplitude[45].InRef.[49],itwasarguedthat forthesingle channelrescatteringprocess,when the correspond-ing resonance-productiontreediagramisaddedcoherentlytothe trianglerescatteringdiagram,theeffectofthetrianglediagramis nothingmorethanamultiplicationofthesingularityfromthetree diagrambyaphasefactor.Thereforethesingularitiesoftriangle di-agramcannotproduceobviouspeaksintheDalitzplotprojections Thisistheso-calledSchmidtheorem.Butforthecoupled-channel cases,thesituationwillbequitedifferentfromthesinglechannel casediscussed in Ref [49].For therescatteringdiagrams studied
inthispaper,theintermediateandfinalstatesaredifferent, there-forethesingularitiesinducedbytherescatteringprocessesarestill expected to be visible in the Dalitz plot projections The reader
is referred toRefs [43,77]forsome comments abouttheSchmid theorem,andRefs.[78,79]formorediscussionsaboutthe coupled-channelcase
2.1.1 The model
Inthefactorizationapproach,ifthecontributionsfrompenguin operators are neglected, the decays B →D ( ∗)
s J D¯( ∗) receive
contri-butions only from the external W -emission diagram The weak
Trang 3
D ( ∗)
s J D¯( ∗)|H W|B
canthen befactorizedintothe prod-uctoftwomatrixelements,i.e.,
D ( ∗)
s J D¯( ∗)|H W|B
= G F
√
2V
∗
cb V cs a1
¯
D ( ∗)|(V−A)μ|B
× D ( ∗)
s J|(V−A)μ|0
withtheWilson-coefficientcombination a1=c1+c2/N c
Thematrixelement ¯D ( ∗)|(V−A)μ|B
canbeparametrizedby
aseriesofhadronicformfactors:
¯D|V μ|B
= M B M D
h+( ω )(v+v)μ+h−( ω )(v−v)μ
,
¯D|A μ|B
=0,
¯D∗ |V μ|B
= M B M D∗
ih V( ω ) εμνα βν∗v
β v α ,
¯D∗ |A μ|B
= M B M D∗
h A1( ω )( ω +1) ∗μ− (h A2( ω )v μ
+h A3( ω )vμ)( ∗·v)
wherev (v)isthevelocityof B (D¯( ∗)), ωistheproductof
veloc-ities v ·v,and isthe polarizationvector of D¯∗ .Forthedecay
process B →D ( ∗)
s J D¯( ∗),intherestframeofB, both D ( ∗)
s J and D¯( ∗)
nearly stay at rest, which is very close to the zero recoil limit
(ω =1) As an approximation, we will set v=v= (1,0,0,0) in
thefollowing sections,andcalculatethe numericalresults atthe
zerorecoillimit.Itshouldbementionedthatforsomeofthe
sub-diagramsinFig 1,thevelocityoftheD¯( ∗)mesonmaynotbevery
small.Forinstance, inthe process B+→ ¯D∗ D∗+
s thevelocity of
¯
D∗ is around 0.4atthe restframe of B+, whichis actually not
very small.This may bring some theoretical uncertainties to the
strengthofrescatteringamplitudes.Butthe positionsofthe cusp
structures(ortheTS),whichmainlydependonthekinematic
con-figurationsofrescatteringprocesses,willnotbeaffectedbythe
ap-proximationofzerorecoillimit.Fortheprocesses B+→ ¯D∗ D ( )+
s1 , the velocity of D¯∗ is smaller, and the approximation would be
better
InEq.(3),thematrixelement
D ( ∗)
s J|(V−A)μ|0
isrelatedwith thedecayconstantofthecorresponding D( s J ∗),whichisdefinedas
D s|A μ|0
= f D s M D s v μ,
D∗
s|V μ|0
= f D∗
s M D∗
sμ∗,
D s0|V μ|0
= f D s0 M D s0 v μ,
D ( )
s1|A μ|0
= f
D ( )
s1
M
D ( )
At zero recoil, it can be noticed that in Eq (4) only the form
factors h+ and h A1 have the non-vanishing contributions
Cor-respondingly, for the rescattering processes B+→ J/ψφK+ via
the D ( ∗)
s J D¯( ∗)-loops, only the diagrams illustrated in Fig 1 can
survive Explicitly, the sub-diagrams involved in the calculations
are D+
s D¯0[D∗−
s ], D+
s0 D¯0[D∗−
s ], D∗+
s D¯∗ 0[D−
s], D∗+
s D¯∗ 0[D∗−
s ],
D+
s1 D¯∗ 0[D−
s], D+
s1 D¯∗ 0[D∗−
s ], D+
s1 D¯∗ 0[D−
s], and D+
s1 D¯∗ 0[D∗−
s ]
loops, of which the particles in the brackets represent the
ex-changedmesonsbetweenD ( ∗)
s J andD¯( ∗).
Inordertoestimatetherescatteringamplitudes,wealsoneed
to know the relevant strong couplings in Fig 1 To proceed, the
momentum for external and internal particles are denoted as
B+(P) →K+(p
1)J/ψ(p2)φ (p3)and D( s J ∗)+(q3) ¯D ( ∗)0(q
2)[D ( ∗)−
s (q1)], respectively In the framework of heavy hadron chiral
perturba-tion theory [66,80–84], the decay amplitudes for D¯( ∗)→D ( ∗)
s K
aregivenby
A ( ¯D→D∗
s K) = g
f K
M DM D∗
s p1· ∗(D∗
s),
A ( ¯D∗ →D s K) = g
f K
M D∗ M D s p1· ( ¯D∗ ),
A ( ¯D∗ →D∗
s K) =i g
f K
M D∗ M D∗
s εμνα β p1μ v να( ¯ D∗ ) ∗
β(D∗
s),
(6)
wheretherelativecouplingstrengthbetweendifferentchannelsis determined bytheHQS.Forthe S-wave scattering D ( ∗)+
s D ( ∗)−
J/ψφ,acontactinteractionwhichrespectstheHQSisconstructed
inRef.[58],andtherelevantscatteringamplitudetakestheform
A (D∗+
s D−
s → J/ψφ) =iβSεα β γ δ v αβ(D∗+
s ) ∗γ(φ) δ∗(J/ψ ),
A (D∗+
s D∗−
s → J/ψφ) = βS(−g α β g γ δ+g α δ g β γ+g αγ g βδ)
× α( D∗+
s ) β(D∗−
s ) γ∗(φ) ∗δ(J/ψ ), (7)
whereβS isthecouplingconstantforthecontactinteraction
Itis worthnoticingthat accordingtoEqs.(4),(6)and(7),the rescattering amplitude corresponding to the D∗+
s D¯∗ 0[D∗−
s ]-loop actually vanishes.Because ofparityandangularmomentum con-servations, if D∗+
s and D∗−
s scatter in relative S-wave, the quan-tumnumbersof D∗+
s D∗−
s systemcanonlybe 0++ or2++,which
means the quantum numbers of the produced J/ψφ can only
be 0++ or 2++. Withan anti-symmetric tensorappearing in the
rescattering amplitude, this sub-diagram finally gives a vanish-ing contribution We can understand this conclusion by firstly considering the J/ψφ system as a single scalar particle The
¯
D∗ 0D∗−
s K+vertexinthe D∗+s D¯∗ 0[D∗−
s ]-loopisaVector–Vector– Pseudoscalar type coupling, where an anti-symmetric tensor is requiredinthecorrespondingcovariantamplitude Theloop inte-gralsintherescatteringamplitudewithatensorstructurecanbe reduced to linearcombinations ofLorentz-covariant tensors con-structedfromthemetrictensorandalinearlyindependentsetof the external momentum, accordingto the Passarino–Veltman re-ducedmethod[85].Thesetensorloopintegralswillbecontracted withthemetrictensors,externalmomentum,polarizationsvectors and anti-symmetric tensors to obtain the covariant rescattering amplitude There is no anti-symmetric tensor from the B D¯∗ D∗
s
vertex dueto the zerorecoil limit approximation in Eq.(4) For
B decaying into K and a scalar particle ( J/ψφ system) via the
D∗+
s D¯∗ 0[D∗−
s ]-loop,thereareonlytwo linearlyindependent mo-mentum that will be contracted with the anti-symmetric tensor from the D¯∗ 0D∗−
s K+ vertex, which gives a vanishing
rescatter-ing amplitude.The Lorentz indicesofthe polarizationtensors for
atensorparticleare symmetric.According tothesimilaranalysis,
ifthequantum numbersof J/ψφ systemare setto be 2++,one
willalso obtaina vanishingrescatteringamplitudecorresponding
tothe D∗+s D¯∗ 0[D∗−
s ]-loop
If the quantum numbers of J/ψφ system are J P C =0++ or
J P C=1++,the P -wave and S-wave charmed-strangemesonscan scatterinto J/ψφ viarelative P -wave Tosimplifythediscussion, the quantum numbers of J/ψφ are firstly set to be 0++, then
the P -wave scatteringamplitudeswhichrespecttheHQStake the form
A (D+
s0 D∗−
s → J/ψ φ)
M D s0 M D∗
s
q D s0· (D∗
s) ∗(φ) · ∗(J/ψ ),
A (D ( )+
s1 D−
s → J/ψ φ)
M
D ( ) M D s q D s· (D ( )
s1) ∗(φ) · ∗(J/ψ ),
Trang 4A (D ( )+
s1 D∗−
s → J/ψ φ)
= iβP
M
D ( )
s1
M D∗
s
εμνα β q α D∗
s q β
D ( )
s1
μ(D∗
s) ν(D ( ) s1) ∗(φ) · ∗(J/ψ ),
(8)
whereβP isthe dimensionlesscouplingconstant forthe P -wave
scattering Other assignments of thequantum numbers of J/ψφ
systemwillbediscussedlater
Bymeans ofthe above scatteringamplitudes,the rescattering
amplitudeof B+→K+J/ψφ via theopen-charmmesonloopsin
Fig 1isgivenby
T[D ( ∗)
s J D¯( ∗)]
B+→K+J/ψ φ=1
i
d4q 1
(2π )4
×A( B→D ( s J ∗) D¯( ∗ ) ) A( ¯ D ( ∗)→D ( ∗)
s K) A( D ( ∗)
s J D∗
s→J/ψ φ) (q2−M2
D∗s )(q2−M2
¯
D ( ∗)+iM D¯( ∗) D¯( ∗) )(q2−M2
D ( ∗)
s J ) ,
(9)
wherethesumoverpolarizationsofintermediatestatesisimplicit
TheTScorrespondstoalogarithmicsingularityoftheloopintegral
Aslong asthekinematicconditions oftheTSare fulfilled,it
im-plies that one of the intermediate state in the triangle diagram
must be unstable, and we have to take into account the width
effect.Inourmodel,weuseaBreit–Wignertypepropagatorto
re-placethenormalpropagatorintheloopintegral,asdidinEq.(9)
The complex masswill remove the singularity from thephysical
boundary by a smalldistance, andmakes the physical scattering
amplitudefinite.However,thismethodisjustanapproximationof
some more complete theories InRef [44], it isargued that this
approximation is appropriate forcalculating enhancement effects
duetotheTS
2.1.2 Numerical results
Ignoringthecommoncouplingconstantsandformfactors,the
relativestrengthbetweendifferentrescatteringamplitudesmainly
depend on the decay constants of D ( ∗)
s J and the form factors h+
and hA1.Forthedecayconstantof D s,weadopttheexperimental
value,i.e., f D s=257.5MeV[70],andmake f D∗s= f D s.Intheheavy
quarklimit,wehavethefollowingrelations[86–89]
f D s0= f D s1, f D
But theserelations are not consistent with the experimental
ob-servations very well In the numerical calculation, we adoptthe
valuescalculatedinthecovariantlight-frontmodel[90,91],which
gives
f D s0=71 MeV, f D s1=121 MeV, f D
s1=38 MeV. (11)
Fortheformfactors h+and hA1,weadoptthevaluescalculatedin
theframeworkofrelativisticquarkmodel[72],whichgives
h+(1) 0.012,h A1(1) 0.098. (12)
Since hA1(1) ismuch largerthan h+(1), correspondinglyone can
expectthatthecontributionofFig 1(b)wouldbemuchlargerthan
thatofFig 1(a).Thenumericalresultsof J/ψφinvariantmass
dis-tributionsviatherescatteringprocessesaredisplayedinFig 2.The
experimental data from Ref [6] is also displayed in Fig 2 to be
comparedwiththenumericalresult.The resultinFig 2(a)is
ob-tainedbysettingthevaluesof MD¯( ∗) andD¯( ∗) asthoseinEq.(2)
Toinvestigatethedependenceonthemassofintermediatestates,
wealsocalculatetherescatteringamplitudesbysettingthevalues
of M¯( ∗) and¯( ∗) asthose ofthesecondradially excited states,
Fig 2 Thesolid line represents the invariant mass distributions of J/ψφ via the rescattering processes of Fig 1 The dotted line represents the distributions expected from the phase space The mass (width) ofD ( ∗)istakentobethatof(a)thefirst
and (b) the second radially excited state ofD ( ∗),respectively.Theverticaldashed
lines indicate the positions ofX(4140),X(4274)and X(4500)respectively The ex-perimental data points with error bars are from Ref [6]
and the result is displayed in Fig 2(b) There is no experimen-tal measurement concerning thesecond radially excited charmed mesons D ( ∗)(3S),andthefollowingresultscalculatedinthequark
modelareadoptedincalculations[92]:
M D( 3S )=3068 MeV, D( 3S )=106 MeV,
M D∗( 3S )=3110 MeV, D∗( 3S )=103 MeV. (13)
In Figs 2(a) and (b), one may notice that there are several cusps whichstay around the thresholds of D s1 D s, D
s1 D s, D s1 D∗
s
and D
s1 D∗
s,respectively.Asdiscussed previously,thesub-diagram
D∗+
s D¯∗ 0[D∗−
s ]-loop gives vanishing contribution, therefore there
is nocusp appearing aroundthe D∗+
s D∗−
s threshold Correspond-ingly, for the rescattering processes studied in this paper, there
is no cusp that can simulate the structure of X(4274) Because the thresholdof J/ψφ islarger thanthat of D∗+
s D−
s,there isno cusp corresponding to the D∗+
s D−
s threshold either In the the-oretical analysis of the LHCb collaboration [6,7], a cusp model proposed by Swanson was introduced to fit the structures of
X(4140)[37].Inthiscuspmodel,theintroductionofan exponen-tial form factor, with a momentum scale (β0) characterizing the hadron size, makes the cusp slightly above the sum of masses
of the rescattering mesons In Refs [6,7], the value of β0 ob-tained by the fit to the data is 297±20 MeV The fittingresult indicates that the below- J/ψφ-threshold cusp can simulate the
X(4140) structure [6,7] Our model in a sense is similar with the cusp modelproposed bySwanson In therescattering ampli-tudes corresponding to the sub-diagrams D+
s D¯0[D∗−
s ]-loop and
D∗+
s D¯∗ 0[D−
s]-loop of Fig 1, there is also a D±
s D∗∓
s -cut corre-sponding to the D±
s D∗∓
s -threshold cusp One of the differences between our model and the cusp model is that the
Trang 5exponen-tial form factor is not introduced in our model As a result, in
our model the cusp of the rescattering amplitude just stays at
the D±
s D∗∓
s -threshold Since the D±
s D∗∓
s -threshold is below the
J/ψφ-threshold,onecannotexpectthatthe D±s D∗∓
s -cuspappears
inthe J/ψφ invariant massdistributions To show the influence
ofthe D±
s D∗∓
s -cut ofthe rescatteringamplitude, the distribution
curvesexpectedfromthephasespacearedisplayedinFig 2.Itcan
beseenthatinFigs 2(a)and(b)thresholdenhancementsappear
inthe J/ψφ distribution,but there is no narrow peak structure
appearingaround4140MeV.InRef.[56],theauthorsarguedthat
thekinematicthresholdcuspcannotproduceanarrowpeakinthe
invariantmassdistributionintheelasticchannelincontrastwitha
genuineS-matrixpole.Weagreewiththisargument.Italsoshould
bementionedthatforthecuspmodelintroducedinRef.[37],the
lineshapeofthecuspstructure isverysensitive totheparameter
β0 in theexponentialformfactor,whichimpliesthat the
conclu-siondrawnfromthismodelisquitemodel-dependent.Wereferto
Ref.[56] formorediscussions aboutthecuspmodelandits
limi-tations.However,takingintoaccountthatthe X(4140)structureis
actuallynotanarrowpeakbutratherabroadthreshold
enhance-mentintheexperimental observations,therescatteringeffect(or
cuspeffect)cannotbesimplyignoredinunderstandingthenature
ofX(4140)
Allof thecusps around X(4500) are toobroad andtoosmall
tosimulatethestructureof X(4500).Therearetwomainreasons
forthisresult Oneisthat the kinematicconditionsforthe
pres-enceofTSarenotsatisfiedinthoserescatteringprocessesofFig 1
[57].Thereforetherescatteringamplitudecannotgetenhancement
induced by the TS Another reason is that, if the J/ψ and φ
stay in relative S-wave, to preserve the parity, only via P -wave
can D ( )
s1 D ( ∗)
s (or D s0 D ( ∗)
s ) scatter into J/ψφ Usually the near-thresholdP -wave scatteringswillbehighlysuppressedduetothe
smallmomentumofscatteringparticles.Becauseoftheunsatisfied
kinematicconditionsofTSandthecharacteristicofnear-threshold
P -wave scatterings,nomatterwhat thequantumnumbersofthe
J/ψφ system are (0++, 1++, or 2++), there will be no obvious
narrowpeaksappearedintheinvariantmassdistributionsaround
4500 MeV
It should be mentioned that in Figs 2(a) and (b), the
distri-butioncurvesarerescaled tobeapproximatelymatchedwiththe
datapoints.Becausesomeofthecouplingsintherescattering
pro-cesses are not well determined, we only focus on the lineshape
behavior,butdonotaimtofitthedata
According to the above analysis, it seems hard to ascribe the
observationof X(4274) and X(4500) in B decays to the
rescat-tering effects This implies that X(4274) and X(4500) may
cor-respondtosome genuineresonances,such astetraquark statesor
somehigherexcitedcharmoniumstates.Thecuspeffectduetothe
D∗+
s D−
s rescatteringmaypossiblysimulatethe X(4140)structure,
butitmaydependsontheparametersofthecuspmodel
2.2 ψφrescattering effect
2.2.1 The model
Inthenaivefactorizationapproach,theamplitudeforthecolor
suppresseddecays B →M c¯c K ( ∗∗),with Mc c¯ and K( ∗∗)representing
acharmoniaandakaon(excited kaon)mesonrespectively,isgiven
by
M c¯c K ( ∗∗)+|H W|B+
= G F
√
2V
∗
cb V cs a2
K ( ∗∗)+|(V−A)μ|B+
× M c c¯|(V−A)μ|0
with a2=c2+c1/N c.Thematrixelement
M c¯c|(V−A)μ|0
is pro-portional to the decay constant of M¯ It can be expected that
Fig 3 Rescattering process via theψK1 loop.
the ratio of the amplitude |A(B → J/ψK∗∗) | to the amplitude
|A(B → ψK∗∗)| willbe close to f J/ψ/f ψ For J/ψ andψ, the
discrepancybetweenthedecayconstants f J/ψ (416±5MeV)and
f ψ (294±5MeV)isnotverylarge.Forthedecay B+→K+J/ψφ,
fromLHCbresultsitisshownthatthereisarichspectrumof ex-citedkaonresonances,whichhassignificantcontributionsvia the sequentialdecaysB+→J/ψK∗∗+→J/ψφK+ [6,7].Althoughthe
reflectionofexcitedkaonscannotresultinobviousresonance-like structuresin J/ψφ distributions,they maycontribute tothe pro-ductionofthose“ X ”statesinanotherway.Asdiscussedabove,it can be expected that the decay rateof B → ψK∗∗ would be at
thesameorderofmagnitudewiththatof B →J/ψK∗∗.Forsome
higherexcitedkaons,theiron-shellproductionmaybe prohibited duetothephasespace, buttakingintoaccounttheirbroaddecay widths,theycanstillcontributetotheprocess B+→ ψφK+.
Interestingly,itisfoundthatthethresholdofψφ(∼4706MeV)
is verycloseto the massof X(4700)(∼4704MeV).Therefore it
is possible that the rescatteringprocess illustrated inFig 3 may resultinsomeresonance-likepeaksin J/ψφ distributionsaround theψφthreshold,whichmaysimulatethe X (4700)signal.Among theexcited kaons,thedominantcontributionscomefromthe ax-ialvector states,asshowninRefs.[6,7].Inthefollowinganalysis,
we willfocusontherescatteringeffects inducedby K1,ofwhich thequantumnumbersare J P=1+.
The general invariant amplitude for B → ψK1 can be
writ-ten as:
A (B→ ψK1) =a∗(ψ) · ∗(K1)
(M B+M K1)2p B· ∗(ψ)p
B· ∗(K1)
(M B+M K1)2iεμνα β p μ B p ν K
1∗α(ψ) ∗β(K
1).
(15)
For B decaying into ψ andthehigher excited state K
1, both ψ
and K1 willnearlystayatrestintherestframeofB Thereforein theaboveequation,onlythefirsttermontherighthandsidewill contributesignificantly.Asanapproximation,weonlykeepthefist term inthe calculation, and setthe form factor a as a constant Theaxial-vectormeson K1 candecayintoφK in S-wave, andthe amplitudetakestheform
where gK 1isthecouplingconstant.ψφcanscatterinto J/ψφvia
exchangingsoftgluons.Tosimplifythemodel,weonlyconstructa contactinteractionforthisscattering,andtheamplitudereads
A (ψφ → J/ψφ) =g C T (ψ) · (φ) ∗(J/ψ) · ∗(φ), (17)
where the quantum numbers of J/ψφ system are 0++. For the
rescattering process ψK1→K J/ψφ via strong interactions, the totalangularmomentum(orspin)ofψK1 systemshouldbe
con-served.IfweonlytakeintoaccountthefirsttermofEq.(15)inthe calculation,itimpliesthattheangularmomentumofψK1system
is0.Furthermore,since K decaysintoφK in S-wave, itmeansthe
Trang 6Fig 4 Invariantmass distributions ofJ /ψφvia the rescattering processes of Fig 3 ,
where the mass/width of the intermediate stateK1 is taken to be 1650/150 MeV
(solid line), 1793/365 MeV (dotted line), and 1968/396 MeV (dashed line)
sepa-rately The vertical dashed line indicates the position ofX(4700) The experimental
data points with error bars are from Ref [6]
angular momentum of the intermediate ψφ systemis 0,which
further meansthe angularmomentum of thefinal J/ψφ system
isalso0.As aresult, forthe S-wave scatteringψφ →J/ψφ,
al-thoughthequantumnumbersof J/ψφ (ψφ)systemcanbe0++,
1++or2++,onlythe0++partcansurviveintherescattering
am-plitude.Thisisconsistentwiththeexperimentalfittingresultsthat
thequantumnumbersof X(4700)are0++.
The rescattering amplitude of B+→K+J/ψφ via the ψK1
-loopinFig 3isgivenby
T [ψK1]
B+→K+J/ψ φ=1
i
d4q1
(2π )4
A (B→ ψK
1) A (K1→ φK) A (ψφ → J/ψφ) (q21−M2φ)(q22−M2K
1+iM K1K1)(q23−M2ψ) ,
(18)
wherethesumoverpolarizationsofintermediatestatesisimplicit
2.2.2 Numerical results
Forthemomentwejustfocusonthelineshapebehaviorofthe
J/ψφ distributions via therescattering processes,butignore the
explicitvaluesoftherelevantcouplingconstantsandformfactors
Thenumericalresultsaredisplayed inFig 4.Accordingtothe
fit-tingresultsofLHCb [6,7],the distributionsin Fig 4are obtained
by setting the mass (width) of K1 to be 1650 MeV (150 MeV),
1793MeV (365MeV)and1968MeV (396MeV)separately.From
Fig 4, one can see that there is a clear peak appearing in the
vicinityof4.7 GeV,whichcorresponds tothe ψφthreshold.The
S-wave near threshold scattering makes this peak very obvious
Furthermore,althoughthekinematicconfigurationofthe
rescatter-ingprocessinFig 3doesnotmeettheconditionsofTSverywell,
itisalreadyveryclosetothekinematicregionwherethetriangle
singularitycanbepresent[57].Thereforethephysicalrescattering
amplitude will be influenced by the triangle singularity to some
extent.From Fig 4,it can be seen that thepeak induced by the
rescatteringeffect issimilarwiththestructureof X(4700)
The Argandplot corresponds to therescattering amplitude in
Eq (18) is displayed in Fig 5 It can be seen that the phase of
theamplitudeshowsabehaviorofrapidcounter-clockwisechange,
whichissimilarwithagenuineresonance
In conclusion, it is possible that the ψφ rescattering via the
ψK loopcouldsimulatethe X (4700)structurein J/ψφ
distribu-Fig 5 Realand imaginary parts of the rescattering amplitude in Eq (18) Motion with the increasing invariant massM J /ψ φis counter-clockwise.
tions Thebelow- J/ψφ-thresholdcuspduetothe D∗+
s D−
s rescat-teringmaypossiblysimulatethe X(4140)structure,butitdepends
onthecuspmodelparameters.However,ifthequantumnumbers
of X(4274)( X(4500)) are1++(0++),duetotheconservationsof
parity and angular momentum, and the suppression of the near threshold P -wave scattering, it ishard to describe thestructures
of X(4274) and X(4500) withrescatteringeffects, whichimplies that X (4274)and X (4500)couldbegenuineresonances
Concerning X(4274), although itis observed inthe J/ψφ in-variant mass distributions, it does not necessarily mean that it contains s¯s as the valence quarks We suggest that it may be the conventional orbitally excited state χc1(3P) This suggestion
isbasedonthefollowingarguments:
•First,thepredictedmassof χc1(3P)intheframeworkofquark modelsisabout4271MeV or4317MeV[93,94],whichisvery closetothemassof X (4274).Thepredictedwidth(∼39 MeV)
is also closeto the observed width of X(4274) (∼56 MeV) Althoughforthehighercharmoniumstates,thepredictionof conventional quark modelsisnot veryreliable, itcan stillbe takenasaguidance
•Second,ifthe X(4274)is χc1(3P),apartfrom J/ψφ,onemay expectthatitcanalsoeasilydecayinto J/ψ ω.FromtheFig 2
inRef [95],it canbenoticed thatapart from X(3872),there arealsosomebumpsaround4.3 GeV appearinginthe J/ψ ω
distributions Although the current statics for B → J/ψ ωK
maynotbe largeenoughto confirmthispoint,itcanstill be takenasanevidence
•Third,therescatteringeffectscannotdescribetheobservation
of X(4274),as discussedin thispaperandRefs [6,7],which
to some extentexcludes thepossibilityof non-resonance ex-planations
•Fourth,underthefactorizationansatz,since χc0, χc2andtheir radiallyexcitedstatescannotbeproducedviathe V−A
cur-rent,itcanbeexpectedthatthedecayrateof B →Kχc1(3P)
will be largerthan thatof B →Kχc0(3P)or B →Kχc2(3P) This may lead to that in the J/ψφ distributions, only the
χc1(3P)signalissignificant
Ifthe X (4274)isreally χc1(3P),onemaysearchforitinthe radia-tive decays ofψ(4415) (ψ(4S)),takinginto account thatthis E1
Trang 7theframeworkofquarkmodel[93,94]
Acknowledgements
HelpfuldiscussionswithFeng-KunGuo,GangLiandQiangZhao
are acknowledged This work is supported in part by the Japan
Society for the Promotion of Science under Contract No.P14324,
andtheJSPSKAKENHI(GrantNo 25247036)
References
[1] A Esposito, A.L Guerrieri, F Piccinini, A Pilloni, A.D Polosa, Int J Mod.
Phys A 30 (2015) 1530002, http://dx.doi.org/10.1142/S0217751X15300021 ,
arXiv:1411.5997 [hep-ph].
[2] N Brambilla, et al., Eur Phys J C 71 (2011) 1534, http://dx.doi.org/10.1140/
epjc/s10052-010-1534-9 , arXiv:1010.5827 [hep-ph].
[3] S.L Olsen, Front Phys (Beijing) 10 (2) (2015) 121, http://dx.doi.org/10.1007/
S11467-014-0449-6 , arXiv:1411.7738 [hep-ex].
[4] N Brambilla, et al., Eur Phys J C 74 (10) (2014) 2981, http://dx.doi.org/10.
1140/epjc/s10052-014-2981-5 , arXiv:1404.3723 [hep-ph].
[5] H.X Chen, W Chen, X Liu, S.L Zhu, Phys Rep 639 (2016) 1, http://dx.doi.org/
10.1016/j.physrep.2016.05.004 , arXiv:1601.02092 [hep-ph].
[6] R Aaij, et al., LHCb Collaboration, arXiv:1606.07895 [hep-ex].
[7] R Aaij, et al., LHCb Collaboration, arXiv:1606.07898 [hep-ex].
[8] T Aaltonen, et al., CDF Collaboration, Phys Rev Lett 102 (2009) 242002,
http://dx.doi.org/10.1103/PhysRevLett.102.242002 , arXiv:0903.2229 [hep-ex].
[9] T Aaltonen, et al., CDF Collaboration, arXiv:1101.6058 [hep-ex].
[10] S Chatrchyan, et al., CMS Collaboration, Phys Lett B 734 (2014) 261,
http://dx.doi.org/10.1016/j.physletb.2014.05.055 , arXiv:1309.6920 [hep-ex].
[11] V.M Abazov, et al., D0 Collaboration, Phys Rev D 89 (1) (2014) 012004, http://
dx.doi.org/10.1103/PhysRevD.89.012004 , arXiv:1309.6580 [hep-ex].
[12] V.M Abazov, et al., D0 Collaboration, Phys Rev Lett 115 (23) (2015) 232001,
http://dx.doi.org/10.1103/PhysRevLett.115.232001 , arXiv:1508.07846 [hep-ex].
[13] C.P Shen, et al., Belle Collaboration, Phys Rev Lett 104 (2010) 112004, http://
dx.doi.org/10.1103/PhysRevLett.104.112004 , arXiv:0912.2383 [hep-ex].
[14] L.D Landau, Dokl Akad Nauk USSR 60 (1948) 207.
[15] C.N Yang, Phys Rev 77 (1950) 242, http://dx.doi.org/10.1103/PhysRev.77.242
[16] X Liu, S.L Zhu, Phys Rev D 80 (2009) 017502, http://dx.doi.org/10.1103/
PhysRevD.80.017502 , arXiv:0903.2529 [hep-ph], Erratum: Phys Rev D 85
(2012) 019902, http://dx.doi.org/10.1103/PhysRevD.85.019902
[17] L.L Shen, X.L Chen, Z.G Luo, P.Z Huang, S.L Zhu, P.F Yu, X Liu, Eur Phys J C
70 (2010) 183, http://dx.doi.org/10.1140/epjc/s10052-010-1441-0 , arXiv:1005.
0994 [hep-ph].
[18] X Liu, Z.G Luo, S.L Zhu, Phys Lett B 699 (2011) 341, http://dx.doi.org/10.1016/
j.physletb.2011.04.024 , arXiv:1011.1045 [hep-ph], Erratum: Phys Lett B 707
(2012) 577, http://dx.doi.org/10.1016/j.physletb.2011.12.019
[19] J He, X Liu, Eur Phys J C 72 (2012) 1986, http://dx.doi.org/10.1140/epjc/
s10052-012-1986-1 , arXiv:1102.1127 [hep-ph].
[20] S.I Finazzo, M Nielsen, X Liu, Phys Lett B 701 (2011) 101, http://dx.doi.org/
10.1016/j.physletb.2011.05.042 , arXiv:1102.2347 [hep-ph].
[21] Z.G Wang, Int J Mod Phys A 26 (2011) 4929, http://dx.doi.org/10.1142/
S0217751X1105484X , arXiv:1102.5483 [hep-ph].
[22] Z.G Wang, Phys Lett B 690 (2010) 403, http://dx.doi.org/10.1016/j.physletb.
2010.05.068 , arXiv:0912.4626 [hep-ph].
[23] Z.G Wang, Eur Phys J C 74 (7) (2014) 2963, http://dx.doi.org/10.1140/epjc/
s10052-014-2963-7 , arXiv:1403.0810 [hep-ph].
[24] R.M Albuquerque, M.E Bracco, M Nielsen, Phys Lett B 678 (2009) 186, http://
dx.doi.org/10.1016/j.physletb.2009.06.022 , arXiv:0903.5540 [hep-ph].
[25] L Ma, Z.F Sun, X.H Liu, W.Z Deng, X Liu, S.L Zhu, Phys Rev D 90 (3) (2014)
034020, http://dx.doi.org/10.1103/PhysRevD.90.034020 , arXiv:1403.7907
[hep-ph].
[26] L Ma, X.H Liu, X Liu, S.L Zhu, Phys Rev D 91 (3) (2015) 034032, http://dx.
doi.org/10.1103/PhysRevD.91.034032 , arXiv:1406.6879 [hep-ph].
[27] F Stancu, J Phys G 37 (2010) 075017, http://dx.doi.org/10.1088/0954-3899/37/
7/075017 , arXiv:0906.2485 [hep-ph].
[28] W Chen, S.L Zhu, Phys Rev D 83 (2011) 034010, http://dx.doi.org/10.1103/
PhysRevD.83.034010 , arXiv:1010.3397 [hep-ph].
[29] Z.G Wang, Y.F Tian, Int J Mod Phys A 30 (2015) 1550004, http://dx.doi.org/
10.1142/S0217751X15500049 , arXiv:1502.04619 [hep-ph].
[30] Z.G Wang, arXiv:1607.00701 [hep-ph].
[31] Z.G Wang, arXiv:1606.05872 [hep-ph].
[32] H.X Chen, E.L Cui, W Chen, X Liu, S.L Zhu, arXiv:1606.03179 [hep-ph].
[33] D.Y Chen, X Liu, Phys Rev D 84 (2011) 094003, http://dx.doi.org/10.1103/
PhysRevD.84.094003 , arXiv:1106.3798 [hep-ph].
[34] D.Y Chen, X Liu, S.L Zhu, Phys Rev D 84 (2011) 074016, http://dx.doi.org/
10.1103/PhysRevD.84.074016 , arXiv:1105.5193 [hep-ph].
[35] D.V Bugg, Europhys Lett 96 (2011) 11002, http://dx.doi.org/10.1209/0295-5075/96/11002 , arXiv:1105.5492 [hep-ph].
[36] D.Y Chen, X Liu, Phys Rev D 84 (2011) 034032, http://dx.doi.org/10.1103/ PhysRevD.84.034032 , arXiv:1106.5290 [hep-ph].
[37] E.S Swanson, Int J Mod Phys E 25 (07) (2016) 1642010, http://dx.doi.org/ 10.1142/S0218301316420106 , arXiv:1504.07952 [hep-ph].
[38] E.S Swanson, Phys Rev D 91 (3) (2015) 034009, http://dx.doi.org/10.1103/ PhysRevD.91.034009 , arXiv:1409.3291 [hep-ph].
[39] R.F Peierls, Phys Rev Lett 6 (1961) 641, http://dx.doi.org/10.1103/PhysRevLett 6.641
[40] C Goebel, Phys Rev Lett 13 (1964) 143, http://dx.doi.org/10.1103/PhysRevLett 13.143
[41] R.C Hwa, Phys Rev 130 (1963) 2580.
[42] P Landshoff, S Treiman, Phys Rev 127 (1962) 649.
[43] I.J.R Aitchison, C Kacser, Phys Rev 173 (1968) 1700, http://dx.doi.org/10.1103/ PhysRev.173.1700
[44] I.J.R Aitchison, C Kacser, Phys Rev 133 (1964) B1239.
[45] S Coleman, R.E Norton, Nuovo Cimento 38 (1965) 438.
[46] J.B Bronzan, Phys Rev 134 (1964) B687.
[47] C Fronsdal, R.E Norton, J Math Phys 5 (1964) 100.
[48] R.E Norton, Phys Rev 135 (1964) B1381.
[49] C Schmid, Phys Rev 154 (1967) 1363.
[50] J.J Wu, X.H Liu, Q Zhao, B.S Zou, Phys Rev Lett 108 (2012) 081803, http://dx.doi.org/10.1103/PhysRevLett.108.081803 , arXiv:1108.3772 [hep-ph] [51] M Mikhasenko, B Ketzer, A Sarantsev, Phys Rev D 91 (9) (2015) 094015, http://dx.doi.org/10.1103/PhysRevD.91.094015 , arXiv:1501.07023 [hep-ph] [52] Q Wang, C Hanhart, Q Zhao, Phys Rev Lett 111 (13) (2013) 132003, http://dx.doi.org/10.1103/PhysRevLett.111.132003 , arXiv:1303.6355 [hep-ph] [53] X.H Liu, G Li, Phys Rev D 88 (2013) 014013, http://dx.doi.org/10.1103/ PhysRevD.88.014013 , arXiv:1306.1384 [hep-ph].
[54] X.H Liu, Phys Rev D 90 (7) (2014) 074004, http://dx.doi.org/10.1103/PhysRevD 90.074004 , arXiv:1403.2818 [hep-ph].
[55] A.P Szczepaniak, Phys Lett B 747 (2015) 410, http://dx.doi.org/10.1016/j physletb.2015.06.029 , arXiv:1501.01691 [hep-ph].
[56] F.K Guo, C Hanhart, Q Wang, Q Zhao, Phys Rev D 91 (5) (2015) 051504, http://dx.doi.org/10.1103/PhysRevD.91.051504 , arXiv:1411.5584 [hep-ph] [57] X.H Liu, M Oka, Q Zhao, Phys Lett B 753 (2016) 297, http://dx.doi.org/10 1016/j.physletb.2015.12.027 , arXiv:1507.01674 [hep-ph].
[58] X.H Liu, M Oka, Phys Rev D 93 (5) (2016) 054032, http://dx.doi.org/10.1103/ PhysRevD.93.054032 , arXiv:1512.05474 [hep-ph].
[59] X.H Liu, M Oka, Nucl Phys A 954 (2016) 352, http://dx.doi.org/10.1016/j nuclphysa.2016.04.040 , arXiv:1602.07069 [hep-ph].
[60] X.H Liu, Q Wang, Q Zhao, Phys Lett B 757 (2016) 231, http://dx.doi.org/ 10.1016/j.physletb.2016.03.089 , arXiv:1507.05359 [hep-ph].
[61] X.H Liu, G Li, Eur Phys J C 76 (8) (2016) 455, http://dx.doi.org/10 1140/epjc/s10052-016-4308-1 , arXiv:1603.00708 [hep-ph].
[62] F.K Guo, U.G Meißner, W Wang, Z Yang, Phys Rev D 92 (7) (2015) 071502, http://dx.doi.org/10.1103/PhysRevD.92.071502 , arXiv:1507.04950 [hep-ph] [63] F Aceti, W.H Liang, E Oset, J.J Wu, B.S Zou, Phys Rev D 86 (2012) 114007, http://dx.doi.org/10.1103/PhysRevD.86.114007 , arXiv:1209.6507 [hep-ph] [64] N.N Achasov, A.A Kozhevnikov, G.N Shestakov, Phys Rev D 92 (3) (2015)
036003, http://dx.doi.org/10.1103/PhysRevD.92.036003 , arXiv:1504.02844 [hep-ph].
[65] P Colangelo, F De Fazio, T.N Pham, Phys Lett B 542 (2002) 71, http://dx doi.org/10.1016/S0370-2693(02)02306-7 , arXiv:hep-ph/0207061.
[66] P Colangelo, F De Fazio, T.N Pham, Phys Rev D 69 (2004) 054023, http://dx doi.org/10.1103/PhysRevD.69.054023 , arXiv:hep-ph/0310084.
[67] H.Y Cheng, C.K Chua, A Soni, Phys Rev D 71 (2005) 014030, http://dx.doi org/10.1103/PhysRevD.71.014030 , arXiv:hep-ph/0409317.
[68] Z.G Wang, Eur Phys J C 58 (2008) 245, http://dx.doi.org/10.1140/epjc/s10052-008-0751-y , arXiv:0808.2114 [hep-ph].
[69] H Xu, X Liu, T Matsuki, Phys Rev D 94 (3) (2016) 034005, http://dx doi.org/10.1103/PhysRevD.94.034005 , arXiv:1605.04776 [hep-ph].
[70] K.A Olive, et al., Particle Data Group Collaboration, Chin Phys C 38 (2014)
090001, http://dx.doi.org/10.1088/1674-1137/38/9/090001 [71] R Aaij, et al., LHCb Collaboration, J High Energy Phys 1309 (2013) 145, http://dx.doi.org/10.1007/JHEP09(2013)145 , arXiv:1307.4556 [hep-ex] [72] D Ebert, R.N Faustov, V.O Galkin, Phys Rev D 62 (2000) 014032, http://dx doi.org/10.1103/PhysRevD.62.014032 , arXiv:hep-ph/9912357.
[73] P del Amo Sanchez, et al., BaBar Collaboration, Phys Rev D 82 (2010) 111101, http://dx.doi.org/10.1103/PhysRevD.82.111101 , arXiv:1009.2076 [hep-ex] [74] F.U Bernlochner, Z Ligeti, S Turczyk, Phys Rev D 85 (2012) 094033, http://dx doi.org/10.1103/PhysRevD.85.094033 , arXiv:1202.1834 [hep-ph].
[75] J Segovia, E Hernández, F Fernández, D.R Entem, Phys Rev D 87 (11) (2013)
114009, http://dx.doi.org/10.1103/PhysRevD.87.114009 , arXiv:1304.4970 [hep-ph].
[76] D Becirevic, B Blossier, A Gerardin, A Le Yaouanc, F Sanfilippo, Nucl Phys B
872 (2013) 313, http://dx.doi.org/10.1016/j.nuclphysb.2013.04.008 , arXiv:1301.
7336 [hep-ph].
Trang 8[77] C.J Goebel, S.F Tuan, W.A Simmons, Phys Rev D 27 (1983) 1069, http://dx.doi.
org/10.1103/PhysRevD.27.1069
[78] A.V Anisovich, V.V Anisovich, Phys Lett B 345 (1995) 321, http://dx.doi.org/
10.1016/0370-2693(94)01671-X
[79] A.P Szczepaniak, Phys Lett B 757 (2016) 61, http://dx.doi.org/10.1016/j.
physletb.2016.03.064 , arXiv:1510.01789 [hep-ph].
[80] M.B Wise, Phys Rev D 45 (7) (1992) R2188, http://dx.doi.org/10.1103/
PhysRevD.45.R2188
[81] R Casalbuoni, A Deandrea, N Di Bartolomeo, R Gatto, F Feruglio, G Nardulli,
Phys Lett B 299 (1993) 139, http://dx.doi.org/10.1016/0370-2693(93)90895-O ,
arXiv:hep-ph/9211248.
[82] R Casalbuoni, A Deandrea, N Di Bartolomeo, R Gatto, F Feruglio, G Nardulli,
Phys Rep 281 (1997) 145, http://dx.doi.org/10.1016/S0370-1573(96)00027-0 ,
arXiv:hep-ph/9605342.
[83] Z.G Wang, Phys Rev D 88 (11) (2013) 114003, http://dx.doi.org/10.1103/
PhysRevD.88.114003 , arXiv:1308.0533 [hep-ph].
[84] P Colangelo, F De Fazio, F Giannuzzi, S Nicotri, Phys Rev D 86 (2012) 054024,
http://dx.doi.org/10.1103/PhysRevD.86.054024 , arXiv:1207.6940 [hep-ph].
[85] G Passarino, M.J.G Veltman, Nucl Phys B 160 (1979) 151, http://dx.doi.org/
10.1016/0550-3213(79)90234-7
[86] N Isgur, M.B Wise, Phys Lett B 232 (1989) 113, http://dx.doi.org/10.1016/
0370-2693(89)90566-2
[87] N Isgur, M.B Wise, Phys Lett B 237 (1990) 527, http://dx.doi.org/10.1016/ 0370-2693(90)91219-2
[88] A Le Yaouanc, L Oliver, O Pene, J.C Raynal, Phys Lett B 387 (1996) 582, http://dx.doi.org/10.1016/0370-2693(96)01017-9 , arXiv:hep-ph/9607300 [89] S Veseli, I Dunietz, Phys Rev D 54 (1996) 6803, http://dx.doi.org/10.1103/ PhysRevD.54.6803 , arXiv:hep-ph/9607293.
[90] H.Y Cheng, C.K Chua, C.W Hwang, Phys Rev D 69 (2004) 074025, http://dx doi.org/10.1103/PhysRevD.69.074025 , arXiv:hep-ph/0310359.
[91] H.Y Cheng, C.K Chua, Phys Rev D 74 (2006) 034020, http://dx.doi.org/10 1103/PhysRevD.74.034020 , arXiv:hep-ph/0605073.
[92] S Godfrey, K Moats, Phys Rev D 93 (3) (2016) 034035, http://dx.doi.org/10 1103/PhysRevD.93.034035 , arXiv:1510.08305 [hep-ph].
[93] T Barnes, S Godfrey, E.S Swanson, Phys Rev D 72 (2005) 054026, http://dx doi.org/10.1103/PhysRevD.72.054026 , arXiv:hep-ph/0505002.
[94] S Godfrey, N Isgur, Phys Rev D 32 (1985) 189, http://dx.doi.org/10.1103/ PhysRevD.32.189
[95] P del Amo Sanchez, et al., BaBar Collaboration, Phys Rev D 82 (2010) 011101, http://dx.doi.org/10.1103/PhysRevD.82.011101 , arXiv:1005.5190 [hep-ex].
...of< i >X< /i>(4140< h3>)
Allof thecusps around X< /i>(4500< h3>) are toobroad andtoosmall
tosimulatethestructureof X< /i>(4500< h3>).Therearetwomainreasons... willnearlystayatrestintherestframeofB Thereforein theaboveequation,onlythefirsttermontherighthandsidewill contributesignificantly.Asanapproximation,weonlykeepthefist term inthe calculation, and setthe form... the lineshape
behavior,butdonotaimtofitthedata
According to the above analysis, it seems hard to ascribe the
observationof X< /i>(4274< h3>) and