Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel... Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid
Trang 15
6
7 T Hayata,b, Naseema Aslama, M Rafiqa,⇑, Fuad E Alsaadib
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
10
1 3 a r t i c l e i n f o
14 Article history:
15 Received 12 November 2016
16 Received in revised form 24 December 2016
17 Accepted 3 January 2017
18 Available online xxxx
19 Keywords:
20 Peristalsis
21 Hall effects
22 Slip conditions
23 Joule heating
24 Eyring–Powell fluid and inclined channel
25
2 6
a b s t r a c t
27 This article is intended to investigate the influence of Hall current on peristaltic transport of conducting
28 Eyring–Powell fluid in an inclined symmetric channel Energy equation is modeled by taking Joule
heat-29 ing effect into consideration Velocity and thermal slip conditions are imposed Lubrication
approxima-30 tion is considered for the analysis Fundamental equations are non-linear due to fluid parameter A
31 Regular perturbation technique is employed to find the solution of systems of equations The key roles
32
of different embedded parameters on velocity, temperature and heat transfer coefficient in the problem
33 are discussed graphically Trapping phenomenon is analyzed carefully
34
Ó 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY license (http://
35 creativecommons.org/licenses/by/4.0/)
36 37
39 Investigation regarding the flow of non-Newtonian fluid cannot
40 be overlooked due to its extensive applications in variety of field
41 like physiology, engineering and industry No doubt various
consti-42 tutive relations are suggested for the flow description of such fluids
43 diverse characteristics Some recent researchers are even now
44 engaged for the flow analysis of such fluids In connection with
45 peristalsis, the non-Newtonian fluids gained much attention due
46 to their various applications in physiological and industrial
pro-47 cesses Spontaneous compressing and relaxing movement along
48 the walls of tabular structures is termed as peristalsis Digestive
49 tract, blood flow in lymphatic transport are few examples that
50 can be observed within human body The phenomenon is also
51 involved in designing many devices like dialysis machine, heart
52 lung machine and blood pump machine to blood pump during
sur-53 gical processes Some worms also use this phenomenon for their
54 locomotion Pioneering studies in this direction were done by
55 Latham [1], Shapiro et at [2] and Lew et al [3] After these
56 attempts the investigators analyzed the peristaltic flow of
Newto-57 nian and non-Newtonian fluids under different flow situations[4–
58 10] Heat transfer also has a vital role in peristaltic flows especially
59 blood flows Heat conduction in tissues, convective heat transfer
60 during blood flow from pores of tissue, radiative heat transfer
61 between environment and surface, food processing and
vasodila-62 tion are some main applications of heat transfer Oxygenation
63 and hemodialysis are the processes involving heat transfer in
con-64 nection with peristalsis Recent attempts on peristaltic flow with
65 heat transfer effects can be visualized by Refs.[11–20]
66 Magnetic field has gained significance due to its variety of
appli-67 cations in biomedical engineering and industry Power generators,
68 electrostatic precipitation, purification of molten metal from
non-69 metallic inclusions etc are some processes that deals with
mag-70 netic field The shear rate of less than 100 s1 for blood flow
71 shows the model for MHD peristaltic flows in coronary arteries
72
[21] MHD may also be used to control the blood flow during
car-73 diac surgeries from stenosed arteries Hall effects cannot be
74 ignored when strong magnetic field is considered Representative
75 studies in this direction can be consulted by the Refs.[22–31]
76 The problems studying thin films, rarefied fluid, fluid motion
77 inside human body and polishing of artificial heart values etc do
78 not follow no-slip boundary condition Experimental investigations
79 show that slippage can occur in non-Newtonian fluids Moreover,
80 many physiological systems are neither horizontal nor vertical
81 but show inclination with axis (see Refs.[32–36]) Therefore, aim
82
of the present study is to investigate the peristaltic flow of
Pow-83 ell–Eyring liquid in an inclined symmetric channel Heat transfer
84
is studied in the presence of Joule heating Problem is formulated
85
by taking partial slip effects into account Nonlinear equations
86 are simplified by adopting lubrication approach Perturbation is
http://dx.doi.org/10.1016/j.rinp.2017.01.008
2211-3797/Ó 2017 The Authors Published by Elsevier B.V.
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
⇑ Corresponding author.
E-mail address: maimona_88@hotmail.com (M Rafiq).
Contents lists available atScienceDirect Results in Physics
j o u r n a l h o m e p a g e : w w w j o u r n a l s e l s e v i e r c o m / r e s u l t s - i n - p h y s i c s
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 287 employed to find the solution of stream function, velocity,
temper-88 ature and heat transfer coefficient Results are analyzed via graphs
90 Here we assume the two-dimensional electrically conducting
91 non-Newtonian incompressible fluid in an inclined symmetric
92 channel having width 2d (seeFig 1) We consider Cartesian
coor-93 dinates ðx; yÞ in such a way that wave propagates in x-direction
94 and y-axis is taken transverse to it The walls of channel are
95 assumed compliant Also the channel is inclined at anglea Strong
96 magnetic field 0ð ; 0; B0Þ is applied Hall and Joule heating
contribu-97 tions are retained Peristaltic waves propagate with constant speed
98 c and wavelength k along channel walls The structure of wall
99 geometry is described as:
100
y¼ gðx; tÞ ¼ d þ asin2p
k ðx ctÞ
102
103 Here t is the time, a the wave amplitude andgthe
displace-104 ments of upper and lower walls respectively
105 The Cauchy stress tensor ðsÞ for Eyring–Powell fluid is Refs
107
109
110
S¼ lþb_1
csinh
1 c_
c1
112
113
_
c¼
ffiffiffiffiffiffiffiffi
1
2P
r
115
116
P¼ trðA2
1Þ; A1¼ grad V þ ðgrad VÞ: ð5Þ
118
119 Here S designates the extra stress tensor, I the identity tensor, b
120 and c1the material parameters of Powell–Eyring fluid andlthe
121 dynamic viscosity The term sinh1is
122
sinh1 c_
c1
¼ c_
c1
c_3 6c3;c_5
124
125 The generalized Ohms law with Hall effects is written as:
126
J¼r V B 1
enðJ BÞ
128
129
J B ¼ rB
2
1þ m2½ðu mvÞ;ðvþ muÞ; 0; ð8Þ
131
132 in which J characterizes the current density, V the velocity field, B
133 the applied magnetic field,rthe electrical conductivity, n the
num-134 ber density of electron, e the electric charge, u andvthe velocity
135 components in x and y directions respectively, B0the magnetic field
136 strength and m¼r B 0
en
the Hall parameter The fundamental flow
137 equations are
138
141
qdV
144
qCP dT
dt ¼ T:L þj r2TþJ:J
147
in whichqis the fluid density,jthe thermal conductivity and Cp
148 the specific heat
149 The two dimensional fundamental flow equations after using
150 Eqs.(2)–(8)in Eqs.(9)–(11)can be expressed as:
151
@u
@xþ
@v
154
q @v
@tþv@@yvþ u@v
@x
¼ @p
@yþ
@Syy
@y þ
@Syx
@x
þ rB
2 0
1þ m2ðvþ muÞ þqg cosa; ð13Þ 156
157
q @u
@tþv@u@yþ u@u
@x
¼ @p
@xþ
@Sxx
@x þ
@Sxy
@y
þ rB 2
1þ m2ðu mvÞ þqg sina; ð14Þ 159
160
qCp @
@tþv@y@ þ u@
@x
T¼j @2
T
@x2þ@
2 T
@y2
!
þ ðSyy SxxÞ@v
@y
þ Sxy @u
@yþ
@v
@x
þ rB
2 0
1þ m2ðu2þv2Þ; ð15Þ 162
163 where p; Sijði; j ¼ x; yÞ; g and T signify the pressure, the components
164
of extra stress tensor, the gravity and temperature respectively
165 The slip conditions for velocity and temperature at the walls
166 are:
167
170
T b1
@T
173 Flexible walls can be characterized by
174
s@3
@x3þ m1 @3
@x@t2þ d @
2
@t@x
g
¼@Sxx
@x þ
@Sxy
@y q
@u
@tþv@u@yþ u@u
@x
rB
2 0
1þ m2ðu mvÞ
177
In the above expressions T0is the temperature at the upper and
178 lower walls,sis the elastic tension, m1the mass per unit area and d
179 the coefficient of viscous damping
180 Dimensionless parameters are:
181
x¼x
k; y¼dy; u¼uc; v¼v
c; t¼ct
k;
g¼g
d; p¼d
2 p
ckl; c¼c
d; b
1¼b1
d;
h¼T T0
T0 ; S
ij¼dSij
cl; w¼w
cd:
ð19Þ
183 184
By using dimensionless variables, Eqs.(12)–(15)become:
Fig 1 Geometry of the problem.
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 3@v
@yþ d
@u
187
188
R1d d@v
@tþv@@yvþ du@v
@x
¼ @p
@yþ d
2@Syx
@x þ d
@Syy
@y
þH 2
dðvþ muÞ
1þ m2 þ R1
Fr
ð Þ2cosa; ð21Þ
190
191
R1 d@u
@tþ du
@u
@xþv@u@y
¼ @p
@xþ d
@Sxx
@x þ
@Sxy
@y
H2ðu mvÞ
1þ m2
þ R1 Fr
193
194
R1Prd d@
@tþv@y@ þ du@
@x
h¼ BrdðSxx SyyÞ@u
@x
þ SxyBr @u
@yþ d
2@v
@x
þ d2@2 h
@x2
þ@ 2 h
@y2þ H
2Br
1þ m2ðu2þv2Þ; ð23Þ
196
197 with the dimensionless boundary conditions
198
200
201
h b1
@h
203
204 wherecand b1represent the dimensionless velocity and thermal
205 slip parameters and for simplicity we omitted asterisk Now
206
E1@3
@x3þ E2 @3
@x@t2þ E3 @2
@t@x
g
¼ R1 d@u
@tþ du
@u
@xþv@u@y
þ d@Sxx
@x þ
@Sxy
@y
H2ðu mvÞ
1þ m2
þ R1
Fr
208
209
g¼ 1 þ½ sin 2pðx tÞ: ð27Þ
211
212 Here d is the wave number, E1; E2and E3the elasticity
parame-213 ters,the amplitude ratio, R1the Reynolds number, Pr the Prandtl
214 number, H the Hartman number, Ec the Eckert number; Br the
215 Brinkman number and Fr the Froude number These definitions are
216
d¼ d=k; E1¼ sd
3 1
k31lc; E2¼m1cd31
k31lc ; E3¼dd
3 1
k21l;
¼ a=d; R1¼qcd1
l ; Pr ¼lCp=j; H ¼ B0d ffiffiffiffiffiffiffiffiffi
r=l
p
;
Ec¼ c2=CpT0; Br ¼ EcPr; Fr ¼ cffiffiffiffiffiffi
gd
p :
218
219 Defining the stream function wðx; y; tÞ by
220
u¼@w
@y; v¼ d@w
222
223 the continuity equation(20)is identically satisfied Note that the
224 lubrication process remain useful for the chyme transport in small
225 intestine[36] Also Lew et al.[3]mentioned that Reynold number
226
in intestine is small Moreover the state of intrauterine fluid flow
227 due to myometrial contractions is a peristaltic type fluid motion
228
in a cavity The sagittal cross section of the uterus indicates a
nar-229 row channel bounded by two fairly parallel walls[37] Thus large
230 wavelength and small Reynolds number yield
231
@p@xþ@Sxy
@y
H2
1þ m2
@w
@y
þ R1 Fr
ð Þ2sina¼ 0; ð29Þ
233 234
@p
237
@2 h
@y2þ BrSxy@2
w
@y2þ H
2
1þ m2Br @w
@y
2
239 240
243
h b1
@h
246
E1 @3
@x3þ E2 @3
@x@t2þ E3 @2
@t@x
g
¼@Sxy
@y
H2
1þ m2
@w
@yþ
R1 Fr
ð Þ2sinaat y¼ g: ð34Þ
248 249 Combining the dimensionless equations(29)and(30) we obtain
250
resulting form
251
@2
Sxy
@y2 H
2
1þ m2
@2 w
@y2
!
253 254 Dimensionless form of extra stress tensor for Powell–Eyring
255 fluid is
256
Sxy¼a1wyyAða1 1Þ
3 wyy
3
259 witha1¼ 1 þ M; M ¼ 1
l bc 1and A¼1 c
1 d
2
and asterisks have been
260 suppressed for simplicity Viscous fluid model is obtained for
261
a1¼ 1
262 Heat transfer coefficient is defined as
263
266 Solution methodology
267 Here we used the perturbation technique for small parameter A
268
to solve the non-linear governing equations Expand the following
269 flow quantities as:
270
w¼w0þ Aw1þ ;
Syx¼S0yxþ AS1yxþ ;
h¼h0þ Ah1þ ;
273 Solving the resulting zeroth and first order systems through
274 Eqs.(31)–(37)we have the solutions as follows
275
w0¼ C3þ C4yþ
e
Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
C2þ C1e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p 0
@
1
A 1 þ m 2
a1
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 4w1¼ e
3Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
24H2a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
ð Þa1
4Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
1þ m2
a1ðA13 A14ð2Hy þ A15ÞÞ þe
6Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
A12 6e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
1þ m2
a1ðA16 A17ð2Hy þ A18ÞÞ
0 B
@
1 C
h0¼ L1þ L2y
Bre
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
2
4H4y2e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
þ C2
2þ C2
1e
4Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p 0
@
1
AB11 þ4C4e
Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
C2þ C1e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p 0
@
1
AB12
0 B B B
@
1 C C C A
ð40Þ
h1¼ K1þ K2y Bra1
72H 1ðð þ m2Þa1Þ3
C11e
3Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
C12e
3Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p
þC13e
4Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ C14e
4Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p þ72y2C15þ 36e
Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
1þ m2
yC16 C17
þ36e
Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
1þ m2
a1ðyC18þ C19Þ þ3C1a11þ m22
e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
yD11þD 12
H
3C2a11þ m22
e
2Hy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
yD 13 þD 14
H
0 B B B B B B B B B B B
1 C C C C C C C C C C C
Expression of heat transfer coefficient is
Z0¼gx
L2þ
Bre
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p E11 C22þ C2
1e
4H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p 0
@
1
A þ C2
4H4g2e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p
þ4E12C4e
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
C2þ C1e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p 0
@
1 A
0 B B B
@
1 C C C A
H 1ðþm 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 þm 2Þa 1
p
Bre
2H g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p E13e
3H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ 4E14C4e
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
C2þ C1e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p 0
@
1 A
þ2C2
4e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
H4gþ E15e
4H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
þ e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
g2E16
0 B B
@
1 C C A 2H 2ð1þm 2Þ
0
B
B
B
B
B
B
B
B
B
B
B
@
1 C C C C C C C C C C C A
Z1¼gx K2 Bra1
72H 1ðð þ m2Þa1Þ3
F11e
4H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
F12e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ F13e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p
þF14e
4H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ F15e
3H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ F16e
3H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1 p
þF17e
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ F18e
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
þ F19g
þ36Hð1 þ m2Þe
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
g Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi11 þG 12
1 þm 2
ð Þa 1
p
!
þ6C1a1ð1 þ m2Þ2
e
2H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa 1
p
g Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi13þG 14
1þm 2
ð Þa 1
p
!
þ6C2a1ð1 þ m2Þ2
e
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
g Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi15 þG 16
1 þm 2
ð Þa 1
p
!
36 1 þ m 2
He
H g ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
ð Þa1
p
g Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi17 þG 18
1 þm 2
ð Þa 1
p
!
0 B B B B B B B B B B B B B B B
@
1 C C C C C C C C C C C C C C C A
0
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@
1 C C C C C C C C C C C C C C C A
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 5Fig 2d Effect via m on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
4 ; H ¼ 0:5; Fr ¼ 0:08; A ¼ 0:01; M ¼ 0:1; R 1 ¼ 0:2 and
c¼ 0:01.
Fig 2e Effect via Fr on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
4 ; H ¼ 0:5; M ¼ 1:0; A ¼ 0:1; m ¼ 0:2; R 1 ¼ 0:2 andc¼ 0:01.
Fig 2g Effect via angle inclinationaon u when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03;
E 2 ¼ 0:02; E 3 ¼ 0:01; Br ¼ 2:0; M ¼ 1:0; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; R 1 ¼ 0:2 andc¼ 0:01.
Fig 2a Effect via wall parameters on u when¼ 0:2; x ¼ 0:2; t ¼ 0:1; Br ¼ 2:0;
a¼ p
4 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; M ¼ 1; R 1 ¼ 0:1 andc¼ 0:1.
Fig 2b Effect via a1 on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
4 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; R 1 ¼ 0:2 andc¼ 0:01.
Fig 2c Effect via A on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
6 ; H ¼ 0:5; Fr ¼ 0:8; M ¼ 1:0; m ¼ 0:2; R 1 ¼ 0:2 andc¼ 0:01.
Fig 2f Effect via H on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
4 ; M ¼ 1:0; Fr ¼ 0:5; A ¼ 0:1; m ¼ 0:2; R 1 ¼ 0:2 andc¼ 0:01.
Fig 2h Effect via R 1 on u when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0;a¼ p
6 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; M ¼ 1:0 andc¼ 0:01. Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 6278 Here the values of Ai;s ði¼ 1; 2; ; 8Þ; Bi;s ði¼ 1; 2Þ; Ci;s
279
i¼ 1; 2; ; 7
ð Þ; Di;s ði¼ 1; 2; ; 4Þ; Ei;s ði¼ 1; 2; ; 6ÞFi;s
280
i¼ 1; 2; ; 9
ð Þ and Gi;s ði¼ 1; 2; ; 8Þ can be calculated
alge-281 braically using MATHEMATICA
282 Analysis
283 The purpose of this section is to analyze the behavior of
differ-284 ent embedded parameters on the velocity u, temperature h and
285 heat transfer coefficient Z Trapping phenomenon is also examined
286 via graphs
Fig 3b Effect via H on h when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:3; E 2 ¼ 0:2;
E 3 ¼ 0:1; Br ¼ 2:0;a¼ p
4 ; M ¼ 1:0; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; b 1 ¼ 0:01; R 1 ¼ 0:1 and
c¼ 0:01.
Fig 3a Effect via wall parameters on h when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; Br ¼ 2:0;
a¼ p
4 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; M ¼ 1; R 1 ¼ 0:1 b 1 ¼ 0:01 andc¼ 0:01.
Fig 3d Effect via angle inclinationaon h when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:4;
E 2 ¼ 0:2; E 3 ¼ 0:3; Br ¼ 2:0; M ¼ 1:0; H ¼ 0:2; Fr ¼ 0:08; A ¼ 0:01; m ¼ 0:2; R 1 ¼ 0:1;
b 1 ¼ 0:01 andc¼ 0:01.
Fig 3e Effect via Br on h when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:4; E 2 ¼ 0:2; E 3 ¼ 0:3;
Br ¼ 2:0; M ¼ 1:0; H ¼ 0:2; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; R 1 ¼ 0:1; b 1 ¼ 0:01;a¼ p
4 and
c¼ 0:01.
Fig 3c Effect via m on h when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:4; E 2 ¼ 0:2; E 3 ¼ 0:3;
Br ¼ 2:0;a¼ p
4 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:1; M ¼ 1:0; R 1 ¼ 0:1; b 1 ¼ 0:01 andc¼ 0:01.
Fig 3f Effect via Fr on h when ¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 4:0;a¼ p
4 ; H ¼ 0:2; M ¼ 1:0; A ¼ 0:01; m ¼ 0:2; b 1 ¼ 0:01; R 1 ¼ 0:1 andc¼ 0:01.
Fig 3g Effect via R 1 on h when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:3; E 2 ¼ 0:2; E 3 ¼ 0:1;
Br ¼ 4:0;a¼ p
4 ; H ¼ 0:2; Fr ¼ 0:8; A ¼ 0:1; m ¼ 0:2; M ¼ 1:0; b 1 ¼ 0:01 andc¼ 0:01.
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 7Fig 4c Effect via Br on Z when¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02; E 3 ¼ 0:01;
Br ¼ 2:0; M ¼ 1:0; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:2; m ¼ 0:2; R 1 ¼ 0:1; b 1 ¼ 0:01;a¼ p
6 and
c¼ 0:01.
Fig 3h Effect via A on h when¼ 0:2; x ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:3; E 2 ¼ 0:2; E 3 ¼ 0:1;
Br ¼ 4:0;a¼ p
4 ; H ¼ 0:2; Fr ¼ 0:8; M ¼ 1:0; m ¼ 0:2; R 1 ¼ 0:2; b 1 ¼ 0:01 andc¼ 0:01.
Fig 4d Effect via wall parameters on Z when ¼ 0:2; t ¼ 0:1; Br ¼ 2:0;a¼ p
6 ;
H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:2; m ¼ 0:2; M ¼ 1; R 1 ¼ 0:1 b 1 ¼ 0:01 andc¼ 0:01.
Fig 4g Effect via A on Z when ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02; E 3 ¼ 0:01;
Br ¼ 4:0;a¼ p
3 ; H ¼ 0:5; Fr ¼ 0:8; M ¼ 1:0; m ¼ 0:2; R 1 ¼ 0:1; b 1 ¼ 0:01 andc¼ 0:01.
Fig 4e Effect via angle inclinationaon Z when¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02;
E 3 ¼ 0:01; Br ¼ 2:0; M ¼ 1:0; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:2; m ¼ 0:2; R 1 ¼ 0:1; b 1 ¼ 0:01 and
c¼ 0:01.
Fig 4a Effect via H on Z when ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02; E 3 ¼ 0:01;
Br ¼ 2:0;a¼ p
6 ; M ¼ 1:0; Fr ¼ 0:8; A ¼ 0:2; m ¼ 0:2; b 1 ¼ 0:01; R 1 ¼ 0:1 andc¼ 0:01.
Fig 4b Effect via m on Z when¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02; E 3 ¼ 0:01;
Br ¼ 2:0;a¼ p
6 ; H ¼ 0:5; Fr ¼ 0:8; A ¼ 0:2; M ¼ 1:0; R 1 ¼ 0:1; b 1 ¼ 0:01 andc¼ 0:01. Fig 4f Effect via Fr on Z when ¼ 0:2; t ¼ 0:1; E 1 ¼ 0:03; E 2 ¼ 0:02; E 3 ¼ 0:01;
Br ¼ 2:0;a¼ p
3 ; H ¼ 0:5; M ¼ 1:0; A ¼ 0:2; m ¼ 0:2; b 1 ¼ 0:01; R 1 ¼ 0:1 andc¼ 0:01.
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 8287 Velocity profile
288 This subsection presents the effect of various parameters on
289 velocity distribution particularly the wall parameters Eð 1; E2; E3Þ,
290 material parameters of fluida1and A, the Hall parameter m, the
291 Froude number Fr, the Hartman number H, inclination angle a
292 and Reynolds number R1.Fig 2aexhibits that for large values of
293 E1and E2the velocity increases Physically increasing values of E1
294 and E2reduce the viscosity which yield more Wall parameter E3
295 shows decrease in velocity for increasing values of E3 Its reason
296 is that for large values of E3 viscous damping enhances due to
297 which velocity decreases Figs 2band 2cdepict the behavior of
298 fluid parameters on u Reverse results corresponding to larger
val-299 ues ofa1and A are observed i.e higher values ofa1gives reduction
300
in velocity while larger A favor the velocity u The fact behind this
301 behavior is that large A causes increase in kinetic energy of
parti-302 cles which results in increased velocity Fig 2d indicates the
303 increasing behavior when Hall parameter m increases Effect of
304 Froude number Fr on velocity profile shows decreasing impact
305 (see inFig 2e) It is noticed fromFig 2fthat larger values of
Hart-306 man number H decreases the velocity Physically this concept
307 holds because Lorentz force reduces the velocity Fig 2gshows
308 the increasing behavior of inclination anglea towards velocity
309 Increase in inclination angleacauses fluid to move with greater
Fig 5 Effect via H on w for E 1 ¼ 0:2; E 2 ¼ 0:2; E 3 ¼ 0:3;a¼ p
4 ; M ¼ 1:0;¼ 0:2; t ¼ 0:0; A ¼ 0:1;c¼ 0:01; Fr ¼ 0:8; m ¼ 0:2; R 1 ¼ 0:2 when ðaÞ :H ¼ 0:5 and ðbÞ :H ¼ 2:5.
Fig 6 Effect via A on w for E 1 ¼ 0:2; E 2 ¼ 0:2; E 3 ¼ 0:3;a¼ p
4 ; M ¼ 1:0;¼ 0:2; t ¼ 0:0; H ¼ 0:5;c¼ 0:01; Fr ¼ 0:8; m ¼ 0:2; R 1 ¼ 0:2 when ðaÞ :A ¼ 0:1 and ðbÞ :A ¼ 0:5.
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 9310 velocity due to increased effect of gravity Fig 2henhances the
311 velocity profile when R1is increased As R1is the ratio of inertial
312 forces to the viscous forces thus decrease in viscosity enhances
313 R1which in turn increases velocity
314 Temperature profile
315 Figs.3a–3hmanifest the impact of different emerging
parame-316 ters on temperature distribution h It is observed that h attains
317 maximum value near the centre of the channel.Fig 3adisplays
318 that temperature profile increases for increasing values of both
319 E1 and E2while it decreases for E3.Fig 3b discloses decrease in
320 temperature profile when Hartman number H is increased For
321 large values of Hall parameter m temperature profile enhances
322 (see in Fig 3c) The ascending values of inclination anglea on
323 temperature profile are depicted inFig 3d As growing values of
324 inclination angle acause increase in temperature profile.Fig 3e
325 illustrates that for higher values of Brinkman number Br the
tem-326 perature profile is enhanced The reason behind this effect is the
327 higher viscous dissipation which generates more heat and hence
328 causing rise in temperature occurs.Fig 3findicates that by
increas-329 ing Fr temperature profile decreases.Fig 3gensures that when we
330 increase Reynolds number R1then temperature enhances.Fig 3h
331 shows that for ascending values of A the temperature profile
Fig 7 Effect via m on w for E 1 ¼ 0:2; E 2 ¼ 0:2; E 3 ¼ 0:3;a¼ p
4 ; M ¼ 1:0;¼ 0:2; t ¼ 0:0; A ¼ 0:1;c¼ 0:01; Fr ¼ 0:8; H ¼ 0:5; R 1 ¼ 0:2 when ðaÞ :m ¼ 0:5 and ðbÞ :m ¼ 1:5.
Fig 8 Effect viaaon w for E 1 ¼ 0:7; E 2 ¼ 0:2; E 3 ¼ 0:1; m ¼ 0:2; M ¼ 1:0;¼ 0:2; t ¼ 0:0; A ¼ 0:1;c¼ 0:01; Fr ¼ 0:8; H ¼ 0:5; R 1 ¼ 0:2 when ðaÞ :a¼ p
6 and ðbÞ :a¼ p
3
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel
Trang 10332 increases It is noticed that velocity and temperature show similar
333 behavior As temperature is defined as average kinetic energy of
334 molecules Hence increased/decreased velocity causes temperature
335 to get increased/decreased
336 Heat transfer coefficient
337 The purpose of this subsection is to investigate the behavior of
338 various parameters on the heat transfer coefficient Z From
339 Figs.4a–4git is observed that magnitude of heat transfer
coeffi-340 cient shows oscillatory behavior for the involved parameters due
341 to sinusoidal waves travelling along the walls Hartman number
342 H provides resistance to heat transfer and thus heat transfer rate
343
Z reduces due to the existence of magnetic field (see Fig 4a)
344
Fig 4bpotrays that for ascending values of m the heat transfer rate
345
Z decreases From Figs.4c and4d it is noticed that Z decreases
346 when Brinkman number Br and wall parameters Eð 1; E2; E3Þ are
347 increased Fig 4e displays that Z reduces when the inclination
348
alarger Froude number Fr enhances the heat transfer distribution
349
Z (seeFig 4f) The results inFig 4gillustrates that an increase of A
350 causes reduction in Z
351 Trapping
352 Formation of circular bolus by internally splitting of streamlines
353
is known as trapping The bolus moves forward through peristaltic
Fig 9 Effect via wall properties on w for m ¼ 0:2; M ¼ 1:0;¼ 0:2; t ¼ 0:0; A ¼ 0:1;c¼ 0:01; Fr ¼ 0:8; H ¼ 0:5;a¼ p
4 ; R 1 ¼ 0:2 when ðaÞ :E 1 ¼ 0:1; E 2 ¼ 0:3; E 3 ¼ 0:1 ðbÞ :E 1 ¼ 0:4; E 2 ¼ 0:3; E 3 ¼ 0:1 ðcÞ : E 1 ¼ 0:1; E 2 ¼ 0:4; E 3 ¼ 0:1 ðdÞ :E 1 ¼ 0:1; E 2 ¼ 0:3; E 3 ¼ 0:02.
Please cite this article in press as: Hayat T et al Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel