Published by World Scientific Publishing Co.. 5 Toh Tuck Link, Singapore 596224 USA ofice: Suite 202, 1060 Main Street, River Edge, NJ 07661 UK ofice: 57 Shelton Street, Covent Garden, L
Trang 2IflTRODUCTIOII TO
MATtlFMATIC5 WITH
Trang 3This page intentionally left blank
Trang 4InTRODUCTlOn TO
M A T t l f MAT10
N E W JERSEY * L O N O O N - SINGAPORE * B E l J l N G S H A N G H A I * HONG KONG TAIPEI * C H E N N A I
Trang 5Published by
World Scientific Publishing Co Pte Ltd
5 Toh Tuck Link, Singapore 596224
USA ofice: Suite 202, 1060 Main Street, River Edge, NJ 07661
UK ofice: 57 Shelton Street, Covent Garden, London WCZH 9HE
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
INTRODUCTION TO MATHEMATICS WITH MAPLE
Copyright 0 2004 by World Scientific Publishing Co Pte Ltd
All rights reserved This book, or parts thereoJ may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher
For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to
photocopy is not required from the publisher
ISBN 98 1-238-93 1-8
ISBN 98 1-256-009-2 (pbk)
Printed by FuIsland Offset Printing (S) Pte Ltd, Singapore
Trang 6522 Introduction to Mathematics with Maple
commands, 513
integration, 443
Using
convert 0 , 17
collect 0, 24
diffo, 360
Digitso, 15
expando, 21
factor0, 22
int 0 , 443
normal 0 , 23
simplify(), 22
sort(), 24
Maclaurin, 400
max, 76
maximum
mean
local, 375
arithmetic, 158
geometric, 157
min, 76
minimum
Moivre, 201
multiple commands, 7
local, 375
N, the set of natural numbers,
No, the set of non-negative
Newton, 498
43
integers, 43
binomial theorem, 150
Leibniz formula, 457
nops, 502
Oresme, 309
IF', the set of positive real
Peano, 477
numbers, 43
axiomatic approach, 166
axioms, 121, 127
remainder, 397
Peano, Giuseppe, 114
Perron.0, 500
pi, 12
Polya, G, 134
polynomial, 167, 170
polynomials
unending, 169 multiplication, 170, 173 ring of, 170
previous results, 8 proc, 501
products
in Maple, 143
Q , the set of rational numbers,
quitting Map'le, 8
43
Raabe radius
range, 63 reducible, 185 relation, 63 inverse, 91 reflexive, 66 symmetric, 66 transitive, 66 integrable, 438 sum, 432
test, 304
of convergence, 301
Ri emann
Riemann, Bernard, 306
ring
isomorphic, 171
of polynomials, 170 multiple, 217
primitive of unity, 204 rational, 214
Ruffini Paulo, 220 Russell, Bertrand, 53
root
scheme
Horner, 180 semicolons, 6 sequence, 145 decreasing, 257
Trang 7Index 523
Fibonacci, 148
increasing, 257
formal power, 169
countable, 232
Cartesian product, 43
countable, 232
difference, 36
enumerable, 232
intersection, 35
union, 35
series
set
sets
sgn, 74
signum, 74
sin, 76
singleton, 53
sinh, 430
spaces, 7
sqrt, 11, 76
starting Maple, 4
statement if, 502
step function, 450
stopping Maple, 8
Stusm, 218
sums
in Maple, 141
tagged division, 431
&fine, 342, 437
tan, 76
Tarski, Alfred, 55
Taylor, 400
polynomial, 180
Taylor expansion, 181
Taylor polynomial, 181
Taylor theorem, 477
test
D’Alembert, 297
D’Alembert limit, 298
Leibniz, 292
Raabe, 304
root, 299
binomial, 150
Bolzano-Cauchy, 271, 291, 354
theorem
Bolzano-Weierstrass, 273
dominated convergence, 497
greatest lower bound, 117 least upper bound, 124
monotone convergence, 495
square root, 198 Taylor, 477
The Intermediate Value Weierstrass, 344, 347
Theorem, 340
Vieta, 214 von Neumann, John, 96 Wallis, 470
formula, 471 What is Maple?, 4
Z, the set of integers, 43
zero polynomial, 171