1. Trang chủ
  2. » Công Nghệ Thông Tin

a0005 introduction to mathematics with mapl morebook vn 1992

7 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Introduction to mathematics with Maple
Chuyên ngành Mathematics
Thể loại Textbook
Năm xuất bản 2004
Thành phố Singapore
Định dạng
Số trang 7
Dung lượng 0,94 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Published by World Scientific Publishing Co.. 5 Toh Tuck Link, Singapore 596224 USA ofice: Suite 202, 1060 Main Street, River Edge, NJ 07661 UK ofice: 57 Shelton Street, Covent Garden, L

Trang 2

IflTRODUCTIOII TO

MATtlFMATIC5 WITH

Trang 3

This page intentionally left blank

Trang 4

InTRODUCTlOn TO

M A T t l f MAT10

N E W JERSEY * L O N O O N - SINGAPORE * B E l J l N G S H A N G H A I * HONG KONG TAIPEI * C H E N N A I

Trang 5

Published by

World Scientific Publishing Co Pte Ltd

5 Toh Tuck Link, Singapore 596224

USA ofice: Suite 202, 1060 Main Street, River Edge, NJ 07661

UK ofice: 57 Shelton Street, Covent Garden, London WCZH 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

INTRODUCTION TO MATHEMATICS WITH MAPLE

Copyright 0 2004 by World Scientific Publishing Co Pte Ltd

All rights reserved This book, or parts thereoJ may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher

For photocopying of material in this volume, please pay a copying fee through the Copyright

Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to

photocopy is not required from the publisher

ISBN 98 1-238-93 1-8

ISBN 98 1-256-009-2 (pbk)

Printed by FuIsland Offset Printing (S) Pte Ltd, Singapore

Trang 6

522 Introduction to Mathematics with Maple

commands, 513

integration, 443

Using

convert 0 , 17

collect 0, 24

diffo, 360

Digitso, 15

expando, 21

factor0, 22

int 0 , 443

normal 0 , 23

simplify(), 22

sort(), 24

Maclaurin, 400

max, 76

maximum

mean

local, 375

arithmetic, 158

geometric, 157

min, 76

minimum

Moivre, 201

multiple commands, 7

local, 375

N, the set of natural numbers,

No, the set of non-negative

Newton, 498

43

integers, 43

binomial theorem, 150

Leibniz formula, 457

nops, 502

Oresme, 309

IF', the set of positive real

Peano, 477

numbers, 43

axiomatic approach, 166

axioms, 121, 127

remainder, 397

Peano, Giuseppe, 114

Perron.0, 500

pi, 12

Polya, G, 134

polynomial, 167, 170

polynomials

unending, 169 multiplication, 170, 173 ring of, 170

previous results, 8 proc, 501

products

in Maple, 143

Q , the set of rational numbers,

quitting Map'le, 8

43

Raabe radius

range, 63 reducible, 185 relation, 63 inverse, 91 reflexive, 66 symmetric, 66 transitive, 66 integrable, 438 sum, 432

test, 304

of convergence, 301

Ri emann

Riemann, Bernard, 306

ring

isomorphic, 171

of polynomials, 170 multiple, 217

primitive of unity, 204 rational, 214

Ruffini Paulo, 220 Russell, Bertrand, 53

root

scheme

Horner, 180 semicolons, 6 sequence, 145 decreasing, 257

Trang 7

Index 523

Fibonacci, 148

increasing, 257

formal power, 169

countable, 232

Cartesian product, 43

countable, 232

difference, 36

enumerable, 232

intersection, 35

union, 35

series

set

sets

sgn, 74

signum, 74

sin, 76

singleton, 53

sinh, 430

spaces, 7

sqrt, 11, 76

starting Maple, 4

statement if, 502

step function, 450

stopping Maple, 8

Stusm, 218

sums

in Maple, 141

tagged division, 431

&fine, 342, 437

tan, 76

Tarski, Alfred, 55

Taylor, 400

polynomial, 180

Taylor expansion, 181

Taylor polynomial, 181

Taylor theorem, 477

test

D’Alembert, 297

D’Alembert limit, 298

Leibniz, 292

Raabe, 304

root, 299

binomial, 150

Bolzano-Cauchy, 271, 291, 354

theorem

Bolzano-Weierstrass, 273

dominated convergence, 497

greatest lower bound, 117 least upper bound, 124

monotone convergence, 495

square root, 198 Taylor, 477

The Intermediate Value Weierstrass, 344, 347

Theorem, 340

Vieta, 214 von Neumann, John, 96 Wallis, 470

formula, 471 What is Maple?, 4

Z, the set of integers, 43

zero polynomial, 171

Ngày đăng: 04/12/2022, 09:47

🧩 Sản phẩm bạn có thể quan tâm