Bai bao nay trinh bay phuang phap va ket qua xay dung md hinh toan hgc va khao sat dao dgng cua xe tai chd gd klii chuyen dgng tten dudng lam nghiep, lam ca sd cho viec kiem tra ben khun
Trang 1Cong nghiip rirng
\JDAO DONG CUA 6 TO TAI SAN X U A T LAP RAP 6 VIET NAM KHI VAJV CHUYEN GO CO TINH DEN XOAN CUA KHUNG XE Nguyen Hdng Quang', Nguyin Van B a n g \ Nguyin Nhat Chieu^
'•^Trucmg Dai hpc Ldm nghiep
'Tmcmg Dai hpc Giao thong Van tai
TOM TAT
6 to tai san xuat lap rap a Viet Nam da va dang diigfc sir dung de van chuyen go rimg trong Do chuyen dong tren duong lam nghiep chat lugmg khong cao, hay gap map mo, nen xe thuang bi dao dong lam giam do em diu chuyen dong va lam cho khung xe bi xoan Bai bao trinh bay ket qua xay dung mo hinh toan hgc va khao sat dao dgng ciia xe tai cho go co tinh den sir xoan khung xe
Tu khoa: Do em dju chuyen dgng, dutmg lam nghiep, mo hinh toan hoc, o to tai, van chuyen go rimg trong
I DAT VAN DE
Hien nay cd nhieu ca sd trong nude lien
doanh vdi nude ngoai san xuat \ a lap rap cac
loai xe tai nhd va trung binh Da cd nhieu cac
cdng ty, hd san xuat kinh doanh rimg su dung
loai xe nay vao viec van chuyen gd rimg trdng
Su dung cac loai xe nay khdng ddi hdi vdn ldn
cho viec mua sam xe ciing nhu khdng can thiet
phai lam dudng rong den cac khu rimg trdng
Do chuyen ddng tren dudng lam nghiep, hay
gap nhirng map md, d ga, gay nen dao ddng
cho xe, anh hudng den do em diu chuyen ddng
va lam cho khung xe bi xoan
Bai bao nay trinh bay phuang phap va ket
qua xay dung md hinh toan hgc va khao sat
dao dgng cua xe tai chd gd klii chuyen dgng
tten dudng lam nghiep, lam ca sd cho viec
kiem tra ben khung xe va hoan thien them ket
cau he thdng treo
n N(31 DUNG, PHlTONG PHAP NGHIEN CUU
Ddi tugng nghien cim la dao ddng cua d td
tai dugc san xuat lap rap d Viet Nam Thaco
165 K chd gd, xe chuyen ddng tren nhinig
doan dudng thang vdi van tdc khdng ddi
De lap md hinh tinh toan dao dgng ciia xe
trong trudng hgp nay, cdng nhan mgt sd gia
thiet sau; (i) Tren xe chd day go va coi khoi go
tren xe nliu mgt khoi dac do da dugc bd chat;
(ii) Khung xe bi xoan do cac goc nghieng d
dang trudc va sau khung khac nhau; (iii) Cac
banii xe ludn bam dudng, bd qua anh hudng
ciia su trugt ciia cac banh xe; (iv) Mat dudng coi nliu cimg tuyet ddi; (v) Khdi lugng cua xe
va gd dugc lien ket cung vdi san thiing xe khdi lugng tdng hgp dugc dat tai trgng tam chung cua chiing; (vi) Bd qua anh hudng cua luc can khdng khi va ma sat d cac d true ciia cac banh xe; (vii) Dao dgng cua xe dugc xet la cac dich chuyen quanh vi tri can bang tinh; (viii) Ket cau cua xe va tai trgng phan bd ddi xiing qua mat phang thang dung dgc [ 1 ]
\'di cac gia thiet tren, xay dung md hinh nghien ciiu dao dgng ciia xe quanh vi tri can bang tinh klii di chuyen tren dudng lam nghiep
Sii dung nguyen ly D'Alambert de thiet lap
phuang trinh \i phan dao dgng cua khdi lugng
dugc tteo va khdng dugc treo cau trudc; sau do thiet lap phuong trinh vi phan dao ddng cua klioi lugng dugc treo va khong dugc treo cau sau tuong tir nhu ddi voi cau trudc, vdi chu y
ve dau ciia luc tuong tac giua khdi lugng dugc treo phan bd len cau trudc \ a khdi lugng dugc treo phan bd len cau sau
Cac he phuang trinh neu tren dugc giai bang phan mem Matlab - Simulink sau klii da xac dinh cac thdng so dau \'ao bang thuc nghiem
111 KET QUA NGHIEN CUtl
Md hinh dao dgng khdng gian cua xe tai Thaco 165K co tinh den xoan kliung chiing tdi
da xav duns duac cidi thieu d hinh 01
TAP CHI KHOA HOC vA CONG NGHE LAM NGHlEP SO 6-2016 193
Trang 2Cong nghiep rirng
Hinh 01 Mo hinh dao dong cua xe trong khong gian co ke den xoan khung
Cac ky hieu tren hinh ve dugc giai thich
nhu sau:
+ Zki, Pki - dich chuyen va gdc lac ciia khdi
lugng dugc treo phan bd len cau trudc;
+ Zk2, Pk2 - dich chuyen va gdc lac cua khdi
lugng dugc treo phan bd len cau sau;
+ zi, PJ - dich chuyen va gdc lac cua khdi
lugng khdng dugc treo cau trudc;
+ Z2, P2 - dich chuyen va gdc lac ciia khdi
lugng khdng dugc treo ciu sau;
+ mid, Iki - khdi lugng dugc treo phan bd
len cau trudc, md men quan tinh cua khdi
lugng dugc treo phan bd len cau trudc ddi vdi
true ddi xiing dgc;
+ mia, Ik2 - khdi lugng dugc treo phan bo
len cau sau, md men quan tinh ciia khdi lugng
dugc treo phan bd len ciu sau ddi vdi true ddi
ximg dgc;
+ mi, Il - khdi lugng khdng dugc treo ciu
trudc, md men quan tinh ciia khdi lugng khdng
dugc treo cau trudc ddi vdi true ddi xiing dgc;
+ m2, I2 - khdi lugng khdng dugc treo cau
sau, md men quan tinh cua khdi lugng khdng
dugc treo cau sau ddi vdi true ddi xiing dgc cua d td;
-I- Kni, Cni - he sd can va do ciing ciia he thdng treo tren mgt banh xe cau trudc;
+ Kn2, Cn2 - he SO Can va do ciing cua he
thdng treo tren mgt ben banh xe ciu sau; + Kl, Ci - he sd can va do ciing cua banh xe ciu trudc;
+ K2, C2 - he sd can va do ciing cua banh xe ciu sau;
+ Ct - do Cling chdng lac ngang cua he thdng treo ciu trudc;
-I- Cs - do Cling chdng lac ngang ciia he thdng treo ciu sau;
+ Cx do Cling xoan ciia khung xe theo phuang dgc;
+ qit, qip - chieu cao map md mat dudng tai
vi tri banh xe trudc trai va trudc phai;
+ q2t, q2p - chieu cao map md mat dudng tai
vi tri banh xe sau trai va sau phai;
-I- bl , ci - khoang each giiia hai nhip cua he thdng treo cau trudc va sau;
+ b2 , e2- khoang each giua tam hai vdt
banh xe cau trudc va cau sau
Trang 3Cong nghiep rieng Cac phuang trinh vi phan dao ddng da lap Phuong trinh dao ddng cua khdi lugng dugc
duac nhu sau: treo ciu trudc:
mt^h, + KJ,, - IK J -h 2C„,Z„ - 2C„,Z, = 0 hA,+2l^K,A-2l^-Kj, + 26rC„,Ai -2b;C„,jB, + C,(^„ -/?,)+ Q ( A , - A J = 0
Phuang trinh dao dgng ciia khdi lugng khdng dugc treo ciu trudc:
m,z, - IK J,, + IK J - 2C„,z„ + 2C„,z, + lK,z, + 2C,z, - K,ii,, -K,q,^- qg„ - C,q,^ = 0
I A -2bXA> + 2Z.Xi A -2^rC„,Ai +2Z.rC„, - C,A, -p,)+lb\KA ~hK,q, + b,K,q,^ + + 2b^C,fi, - b,C,q„ + b,qq,^ = 0
Viet lai cac he phucmg trinh tren dudi Phuang trinh dao ddng ctia khdi lugng dugc dang khac: treo ciu trudc:
«.ii.i + 2^„,i„ - 2KJ + 2C„,z,, - 2C„,z, = 0 Ij„ + 2&,^^„,Ai - 2bXA + {2bK, + C, )A, - (2/>,^Q, + C, )fi, + C, (/?„ - A , ) = 0
Phuang trinh dao ddng cda khdi lugng khdng dugc treo ciu trudc:
"'A - 2KJ,, + {2K„, + 2K,)z, - 2C„,z„ + (2C„, + 2C, )z, - K,q, -K,q,^- C,q„ - C,q,^ = 0 7,4 - 2^^XiA, + {2bX„, + 2b;K, >, - (26rC„, + C, K , + {2&rC„, + 2i,^C, + C, )A
- b,K,% + b,K,q,^ - b,C,q„ + bX,q,^ = 0
Chuyen cac he phuang trinh tren sang dang ma tran:
A^x^ -I- B^i^ -h C ^x^ -I- D^ = 0
Tron a dd:
C
^/ =
.4 =
B,=
^k\
A,
^ 1
m„ 0
0 /,,
0 0
0 0
2K^
0
-2K„,
0
IC,
0
(b 2 C ,
0
0
m
0
0
b[
0
b{K:
0
0
0
0
A
- 2K„, 0
0 -2hrK„, i2K^.~2K,) 0
0 i2brK„, ^ 2b;K,'
- 2C.,- 0
Q - C + C J 0 (2b'C„,+C + C.J
0 26;
C-( 2 Q , + 2 C | 0
+ C ) 0 ilhrC., ^ 2b: C + C
T.AP CHi KHOA HOC VA CONG NGHE LAM NGHIEP SO 6-2016 195
Trang 4Cong nghiep rung
Df-0
0
- K,% - K^q^p - C^q,, - C^q,^
- *2^]?i, + ^2-^1^1;, + bjQqu + hQq,^
Phuang trinh dao ddng ciia khdi lugng dugc treo ciu sau:
' " t 2 ^ « + K„2h2 - 2^,2^2 + 2C„2Zj, - 2C„2Z, = 0
h:Pn+2^Kj,,-2e^K„A+2^C„,P,,-2e^C„,P,+C^(fi,,-p,)+CXPn - A 2 ) = 0
Phuang trinh dao ddng ciia khdi lugng khdng dugc treo cau sau:
'"222 - 2KJ,^ + lK„,z^ - 2C„3Z,, -H 2C„2Zj -l- IK^z^ + 2 Q z , - K,q^, - K^q,^ - C^q^, - C,q^^ = 0
Ij, - 2elK„An + 2 ^ X 2 ^ - 2e,'C„,A2 + ^^C„, - C^^a " A ) + ^^KJ, - e,K,q^, + e,K,q,^ + + 2e\C^li^ - e^C,q^, + efi^q^^ = 0
Viet lai cac he phuang trinh tren dudi dang: treo ciu sau:
Phuang trinh dao ddng ciia khdi lugng dugc
rntiiu + 2K„,z,, - 2K„^z^ -h 2C„,z„ - 2C„,z, = 0
hA, + 2elK„An - 2 ^ X 2 ^ + (2e,^C„, + Cj;ff„ -(2e,^C„, + c)p, + Q ( A , -/3,,)=0
Phuang trinh dao ddng ciia khdi lugng khdng dugc treo ciu sau:
m,z, - 2K„,z,, + {2K„, + 2K,)z, -2C„,z„ + (2C„, + 2 Q ) Z , - K,q„ - K,q,^ - C,q„ - C,q,^ = 0
I A, - 2eXA2 + {2^K„, + le\K, )p, - {2e^C„, + C, K 2 + (26,^C„, + 2ejQ + Q ) A
- «2'*^292, + ^2^292, - S j Q ^ i , + e2C2?2p = 0
Chuyin cac phuang trinh tren vd dang ma tran:
A , x , + B X + C , x ^ + D , = 0
Trong dd:
A:
A
mn
0
0
0
2^„2
0
- 2 ^ „ 2
0
0 0 0 / „ 0 0
0 ra, 0
0 0 7,
0 -2K„,
ef 0
0 {2K„,+2K,)
e^K„2 0
0
- 2 ^ X 2
0 (2^X2+ 2 e X ;
196 TAP CHi KHOA HOC vA CONG NGHE LAM NGHIEP SO 6-2016
Trang 5Cong nghiep rirng
C =
A =
2C., 0
0 {^C„, + C,+CJ
2 C „ , 0
-0 (2efC„,-HCJ
0
0
- • ^ 2 9 2 , - ^ 2 9 2 , - Q ? 2 ,
- 62.^:2^2, -1- 62^:2^2;, + e2C29
- 2 C „ 2
0 (2C„2 + 2C2)
0
, + ^ 2 ^ 2 9 2 ; ,
0 (2e,^C„2+C, + C J
0 (2e,^C„2 + 2e2'C2 + Q ;
Phuang trinh lien he khi ke tdi do ciing xoan ciia khung xe:
xoan ciia khung xe nhu sau: M^ -CXPk\~ Pti)
Md men Mang tie giiia khdi lugng dugc Phuong trinh chuyen ddng lie ngang ciia treo phin bd len ciu trudc va khdi lugng dugc kh^j , y ^ g j ^ ^ j treo phin bd len ciu trudc: treo phin bd len ciu sau khi ke tdi do cung
I,A, + 26X„iA -2ftX„,A + (2fti'C„, + C , K , -(2Z>,=C„, + C,)^, + C,{j3,, -/3j=0
Phuang trinh chuyen ddng lac ngang cua khdi lugng dugc treo phin bd len ciu sau:
7,2^2+2^X2^2 - 2 ^ X 2 ^ + ( 2 ^ X 2 + c , K 2 -(2^1 c „ 2 + C J A - c , ( A , - ^ 2 ) = 0
Chuang trinh khao sat dao ddng d td khi Simulink cd ke den xoan khung nhu sau
di qua mip md dom bang phin mem Matlab - (hinh 02)
BO HUHCO ^ E l B I ' l i HDOIGtQCVIG ^ ^ I C U ' l R U I G x E
e^
•Dtttittuna >* I
b HhMit Ih^e T K C aiOsj 1
Hmh 02 Chuong trinh khao sat dao dong 6 to TAP CHi KHOA HOC vA CONG NGHE L A M NGHIEP SO 6-2016 197
Trang 6Cong nghiep rirng
Cdc IcSt qud khao sdt dao dpng cda xe: Trong cac do thi, chi so 1 la trudng hgp ke
* Truong hpp banh xe truac trdi di tren mat den do ciing cua xoin ciia khung xe, chi sd 2 la ducmg CO dang buac nhdy, cdc banh xe cdn lai trudng hgp khdng ki &in dg ciing xoan cua chuyin dpng tren mat phdng khung xe (coi khung xe ciing tuyet ddi)
Q15
E 0-1
QCB
' 1 — -«l
:
; ;
Hinh.03 Bien dang m^t duong
tai banh trirdc trai
Hinh 04 D|ch chuyen than xe cua trong tam o to
QCB
Qce
/ / //
V p*>i
*—^;
Hmh 05 Gdc lac ngang cua tr^ng tam 6 to
Hinh 06 Djch chuyin ciia khoi luwng khong dugc treo cau trudc
Hmh 07 Dich chuyen cua khoi luong
khong dugc treo cau sau
QCB
QQE
ace
3 Q
—
5
N;^^^
1.5
pBUl [Bte2,
2 2 5 3
Hinh 08 Goc lac ngang cua khoi luong khong dvgrc treo cau trudc
: ' ^ : 1- SS
: \'
\ y
/'' ^ — ; y
-Q 1
Qoe
QQ6
Qce
0
Hinh 09 Goc lac ngang ciia khoi Ivgng
khong dugc treo cau sau
Hinh 10 Goc xoan ciia khung xe
198 TAP CHI KHOA HOC VA CONG NGHE LAM NGHIEP SO 6-2016
Trang 7* Trucmg hcrp banh xe truac trdi vd banh xe
sau phdi di tren mat ducmg co dang buac
Cong nghiep rirng
1 41tf>-|
Hinh 15 Dich chuyen cua khoi Ivgng
khong dvgrc treo cau sau
-QGQ
-QOt
-006
-ao6
pas»2
^ - ' ~ ~ - ~ — ^ —
y'
nhdy, cdc banh xe cdn lai chuyen dpng tren mat duang phdng
Hinh 11 Bien dang mat dvong ciia
hanh xe trvdc trai va sau phai
Hinh 13 Gdc lie ngang cua trgng tam 6 to
Hinh 12 Djch chuyen than xe tai trgng tam d to
Hinhl4 Dich chuyen ciia khoi lugng khong dugc treo cau trvdc
Qoe
0 0 4
QOZ
;
Hinh 16 Goc lac ngang ciia khoi Ivgng khong dvgc treo cau trvuc
Hmh 17 Goc lac ngang ciia khdi Ivgrng
khong dugc treo can sau
Hinh 18 Goc xoan ciia khung xe
TV KET LUAN
Tren ca sd nghien cuu ket ciu xe tai Thaco
2,5 tin chd gd rimg trdng da xay dung dugc
md hmh dao ddng khdng gian cd tinh dSn su
xoan khung xe Bang viec ling dung nguyen ly
D'ALambert da thiet lap dugc he phuang trinh
vi phin dao ddng ciia d td tai Thaco chd gd rimg trdng cd ke den su xoan khung xe
Bang viec ling dung phan mem Matlab -Simulink da giai he PTVP, md phdng dao ddng
TAP CHi KHOA HOC VA CONG NGHE L A M NGHIEP SO 6-2016 199
Trang 8Cong nghiep riimg
cua d td khi xe gap cac map md don, tii do xac dao dpng 6 to van tdi nhiiu cdu Luan an tien SI ky
djnh duoc gdc xoin khung xe thuat Ha Npi .„„ ^x„„
\ , 4 Nguyen Van Himg (2016) A^gAien cuu dao (fpng
T A I L I E U T H A M K H A O ^ ^ „ ^ ^ „ ^ ^ ^ ^.^^„^^,^^^^^^^ ,^,- j/;^,Afam Luan
1 Nguyen Van Khang (2001) Dao dpng l^ thuat ^ ngn ^i ky thuat Hoc vi|n Ky thuat Quan sir,Ha Noi
Nha xuat ban Khoa hpc va ky thuat Ha Npi
2 Vo Van Huong (2004) Thiit lap mo hinh khao sdt
FLUCTUATION OF TRUCK PRODUCED AND ASSEMBLED
IN VIETNAM IN PROCESS OF WOOD TRANSPORTATION TAKING
TWISTED CHASSIS INTO ACCOUNT Nguyen Hong Quang', Nguyen Van Bang^, Nguyen Nhat Chieu^
'•^Vietnam National University of Forestry
^University of Transport and Communications
SUMMARY
The trucks produced and assembled in Vietnam have been used to transport plantation timber Because of transportation on low quality forest roads, the trucks often experience large oscillations that reduces mellow motion and causes chassis twist This paper presents the results of mathematical modeling and oscillatioii surveys of trucks for timber transportation taking the twisted chassis into account
Keywords: Forestry roads, mathematical model, plantation timber transportation, the mellow motion truck
Ngirori phan bien
Ngay nhin bai
Ngay phan bien
Ngay quyet dinh dang
PGS.TS Duong Van Tai 16/10/2016
25/10/2016 02/11/2016
200 TAP CHi KHOA HOC vA CONG NGHE LAM NGHIEP SO 6-2016