NGHIEN CIJTU-TRAO Ddl KHAO SAT HAM HAP THU TRONG TINH TOAN UNG SUAT VAT LIEU PHI DANG HU'OfNG B A N G NHlfiU XA X - QUANG SU* DUNG PHU'OnVG PHAP DO OMEGA STUDY OF ABSORPTION FACTOR IN
Trang 1NGHIEN CIJTU-TRAO Ddl
KHAO SAT HAM HAP THU TRONG TINH TOAN UNG SUAT VAT LIEU
PHI DANG HU'OfNG B A N G NHlfiU XA X - QUANG
SU* DUNG PHU'OnVG PHAP DO OMEGA
STUDY OF ABSORPTION FACTOR IN X-RAY STRESS ANALYSIS OF ANISOTROPY
MATERIAL USING Q-TYPE GONIOMETER
TS Le Chi Cmrag
Khoa Co khi mdy, Trudng Dgi hpc Su phgm Ky tiiuat Thanh phd Hd Chi Minh
TOM TAT
Bdi bdo nghien ciru tinh todn hdm hdp thu trong do ung sudt diing nhieu xg X-quang doi v&i vgt lieu phi dang hu&ng Kit qud mo phong thepferrite v&i ho mat phang nhieu xg {211} diing dgc tinh tia X la Cr-Ka cho thdy mo hlnh Eshelby-Kroner cho gid tri gdn vai thuc nghiem han so v&i mo hinh Voigt vd Reuss
Tir khda: Do ung sudt bdng X-quang; He so hdp thu; Tex-tua; Vgt lieu phi dang hu&ng
ABSTRACT
This research will represent the influence of the anisotropy of material into the generalized absorption function in stress measurement using x-ray diffraction The simulation result offerritic steel {211} plane using Cr-Ka radiation shows that the Eshelby-Kroner give the closer result to the experimental data in comparision to those from the Voigt and Reuss models
Keywords: X-ray Stress Measurement; Absorption Factor; Texture; Anisotropic materials
1 Gidl THI$U neutron, nhidu xa X-quang Trong dd, phuang
phap nhidu xa X-quang la phuang phdp khdng U'ng suit du Id mpt trong nhung nhan td phd hfly cd the xac dinh chinh xdc ung suat, de quan trpng dnh hudng din dp bin, tudi thp cfla chi dang tu dpng hda Dd tinh toan chinh xdc gid tri tidt may iTng suit du dugc phat sflih trong qua flng suit, cucrag do tia X phai dugc hieu chinh trinh gia cdng co, gia cdng dp luc, xu ly nhidt bang he sd hap thu hoac ham hap thu [1,2] Ddi
Vi vdy vipc xac djnh flng suit du cd vai trd rit vdi vat lieu ding hudng, ham nay da dugc tinh quan trpng trong qua trinh xu ly va cdi thien diiu toan[3] Tuy nhidn, ddi vdi vat lieu phi dang hudng ki^n lam vipc ciia cac chi tidt mdy nhu thep can ed td chflc texture, hdm hap thu
vdn chua dupe tinh toan, do dd, bdi nghidn cuu
Cd nhieu phuang phdp xac dinh flng suat ndy se tinh ham hap thu tdng qudt cho vdt lipu phi
du tren be mdt chi tiit nhu phuang phap; Due Id, ding hudng su dung cac gia thiet Voigt, Reuss va
cdt tiet di$n, sidu dm, quang ddn hdi, nhieu xa Elsherby-Kroner dflng phuang phdp do Q ^
Trang 2NGHIEN CUTU-TRAO Ddl
2 M 6 I Q U A N WE UlSG SUAT - BIEN D ^ ^ G
Xit he toa do nhu Hinh 1, trong do S 14 he
tpa dp gan hen voi mau, trong do 5^, S^ nam trong
b^ mat mlu L^ \k he toa do do, vuong goe voi
hg mat phang nguyen tii {hkl} L^ nam trong mat
phang man t?o voi S^ mpt goe (p BiSn dang xac
dinh duac la biln dang trong h6 tpa dp do, duac
bieu dien thdng qua biSn dang ciia he tpa dp mau
bang he thong ma tran chuyen doi tpa dp
Binh 1 Cdc he true toa do thi nghidm L va mau thuS
BiSn dang tnmg binh dpc true L3 duac
xacdinhbSng {e^,)^ = '''"~''° =a,,a„>!„ (1)
Trong do: d^ la khoang each giCa cac mat
m ^ g khi chua co iJng suat; a^j , j^, la cosin chi
hudng cia L^, S, va Lj, S,; a^ li ma trjn chuyen
giiSa he thong miu S va he thong do L Thay a^,,
a^ vio phiiang trinh (1) ta co biSn d^ng:
^eJ3J =£„cos psin <i/+£^^sin(psva if + e^^sm tpsm^ili
+53jCos^t(^+f,3Cos^sin2(/+£:j3Sinpsin2((/ (2)
TClbiendang, tacothexacdinh dupe iJng
suat thong qua m6i quan he ling suat bien dang
Trong v4t lif u phi dang hudng cac tinh the khong
sap xep mpt each nglu nhien, tinh chat tai mpt
dilm nao dp eiia no khong giong nhau theo cac
phuong khae nhau Dl dje trUng cho tinh chat
phi dang hudng, he so ling suat tia X dupe sil
dung, va dupe xac dinh bang [4,5]:
v6i/Cg; li him phan bo hudng (ODF); S,^ ket hpp
don tinh the phi dang hudng; A la gdc quay quanh
vecta vuong gdc vdi hp mat nhieu xa {hkl}
Trpng bii nghien eilu nay, ta gia djnh vat lifu phi dang hUdng la dong nhat, co t6 chiic tex-tua manh, tiic li phin be cua tinh the
ly tudng hda chi vii hildng Uu tien Khi dd h? s6 ling suat dilpe tinh qua trung binh ciia h | so dan hpi dan tinh t h i phi dang hudng, tiic li h| s6 din hoi dan tinh the trpng h^ trilc tpa d$ L
HI SP ling suat dUpe xac dinh li:
F(M;,<P,V/ )=s^a J+^s^m,fs,,j (4)
Trong do 5','", 5'*' li he sd dan hoi dOn tmh the
ciia mat (hkl), 5^ Ii cac delta Kronecker, vi oj la
cac cosin chi hudng ciia h? true
3 H A M H X P THU DOI VOI VAT LIEU PHI DANG HUdNG
Xet ehiun tia tdi phan to ed the tieh Sdz va
nhieu x^ ra khdi mau thii Ddi vdi vat H|u phi d4ng hiidng, chieu dii xuyen than cua chum tia tdi vi tia nhilu xa can phii hieu chinh bang hi s6 ling suat TrUdng hpp niy, cUdng do nhieu xa eua phan to la:
p{hkl,if,\^)- ~2it
J/te¥>
(3)
Co djnh I/O C6 dinh;;
Hinh 2 Phuong phdp do Q
Trang 3NGHIEN cufu - TRAO BOI
<S = a/, exp{,-fi(F,fAB+F^BC)]Sdz
vdi AB = —^,BC = — ^ • Lay tich ph^n ta cd:
cosa cos^
= J/oiiexp -^1
cosa " cosjS ^.hdz
Ddy la cdng thuc tmh hdm hap thu tdng
qudt khdng gidi han didn tieh nhidu xg ddi vdi vat
li^u phi ding hudng Trong do he sd flng sudt tia
X trdn tia tdi AB la F-^ Tfl (4) ta cd:
cosVsinV -sm2psinV -cos^sin2j?
-sin2psin^^ sin^psin^^ -sin^sin^^
-cos^sin2^ -sin
(10)
/ g a cos a cos jg
~ // *^ F,f^ cos ^+Fg^ cos a
Luge bd cdc h i n g sd, ham h i p thu dupe
xdc dinh bing:
7 : " ' ^ F , - " o o s f l + F , ' " ^ c o s a ^ '
Thay thd /|=l/cosi|' vd /^ = l/cosq vdo (5),
ta cd hdm hap thu tong qudt dUpc tinh theo cdng thflc:
1 cosa cos jg
c o s ^ c o s ; ; i^^ c o s a + Z^^ cos^ff (11)
3.1 Phfldng phdp c6 dinh i^j,
„ rcosa = cosK/sinft, , , , ,
Thay J ^ " vao (11), [cos^ = cos(i/sin(2^-^o)
ta daoc ham hap thu trong phiiong phdp c6 djnh
(7)
cosVsin^a -sin2psin'Q: -cos^siii2a
1 , ! : ! 1 J
-sm2$jsm o sin f sm a -sin^sin a
1
(8)
juspsinza -sinpsin2a cos^a
Hp sd flng sudt tia X tren tia nhidu xa BC
ld7=;/"^.Tfl(4)tacd:
e**^ _ v"iis ^ c**'^^«c,,»c (9)
«?;<;"
sin(2e-61,)
Vdi cac t h i n h phan cua ma t r i n chuyin
d 6 i « :
i^j-" sin(2e -e,) + F''^ sin B, (12)
a Mo hinh Reuss
Reuss gid dinh flng suat trong m ^ g da tinh the la nhU nhau H^ s6 ddn hdi tia X trong
md hinh Reuss dflpc tinh bang [6,7l:
5f(Mo=%+Jor; -s^ihki) = sj,-s,^-3sar (13)
Vdi tham sd hudng r
Thay (8) vdo (7) vdi a^o:^ la ma trdn chuyen tfl
tpa do 5 sang tia tdi AB, ta tinh dugc cdc thanh
p h i n ciia he sd dan hdi tia X tren tia tdi AB: Cdc thdnh phan cua ma trgn chuyen doi
c(«)AB ,
-{R)AS -HKSAB -HKSAB
33311 03312 d3313
-{K)J& {R)AB —(R)AB
^3322
-WAS
03332
53323
iR)AB
(14)
Trang 4NGHIEN CJJU - TRAO DOI
Tuong tvr ta tmh dupe he s5 ling suat tren
tia nhilu x?i BC tic cac thinh p h k cua hing so
dan hdi tia X tii (7) va (9) vdi <^1'^<af/14 ma tran
chuyin t i tpa dp S sang tia nhidu x? BC The hd
sd ling suit niy vio cdng thiic (11), ham hap thu
tinh theo md hinh Reuss trd thanh:
sin(2e-e,)
' F / ' - " sin(2S - 6i„) + F™"'sin 6I„ (16)
b.Mdhinh Voigt
FJhkI,ip,yf) = \S„,j+t„ (21)
Trong md hinh Voigt, bien dang ciia cae
hgit tinh thi trong vat Ii|u li nhu nhau H | sd din
hdi tia X trong md hmh Voigt li:
^i _ 2s„(j,| +2s„)+5s„s„ 1 51- _ SJ«.(J|I - J „ ) {j7)
' 6J0+5J44 2 ^ 6sg+5s^
Trong dd S33,) Ii hing s6 din hdi don tmh the da biet, dilpc tinh theo md hinh Reuss vi (,3,^
la phin tiidng tic din hdi ciia h?t vdi ma trin din hdi bao quanh, dildc tinh nhu sau:
lm,=[E{c(.g)-C}+lJ'-I (22)
*
Vdi c (g) la hang sd dg cflng ddi vdi mpt hgt troi^ vgt h^u; / la ma trgn hang tfl, dflgc tinh theo cdng thflc:
C = S-1: dp cflng ddn tinh the
Tenxg E dflgc tinh:
(23)
vdi*o=*ii-*i2—^^^44 [8].'Ihay(17)vao
(7), ta tinh dflgc cdc thdnh phan cfla hp sd ddn hdi
tia X trdn tia tdi AB va tia nhieu xa BC lan Iflpt la:
jp(V}AB _
p(V)BC _
f-(V)AB -{y)AB -(r)AB'
03311 03312 03313
'-z^yiBC ^y)BC —{r)BC
03311 03312 03313
(18)
(19)
Him hip thu eho phUdng phap c6 djnh r]^
theo md hinh Voigt li:
siii(2g-6i,)
/^7>'"siii(2»-».)+fW5in6i (20)
c Mo hinh Esheiby-Kroner
Vdi md hinh Eshelby-Kroner, ngoii thinh
phin ling suit edn cd tUdng tic gifla cac hat Do
dd, F(hkl,(p,yi) dupe tinh [9]
(24)
vdi A,
sin ^ cos ^ sin ^ cos ^ cos^
Him hip thu dupe tinh theo md hinh Eshelby-Kroner:
sia(29-g.) (25) i^"""sin(2e-9,)+J^™»=cos6!,
Vdi cae thinh phan cua hing sd din hoi tia X tren tia tdi AB vi tia nhilu xa BC dupe tmh trong md hinh Reuss v i them thinh phan tUdng tic din hdi ciia h^t
lf'''=Fr""+'m (27)
3.2 Phiidng phip cd dinh 1) Khi c6 dinh q gdc nhilu xa fl° = 9, nen
thay e„ bang 6 trong edng thije (6) tinh him hJp
Trang 5NGHIEN cufu - TRAO DOI
tiiu vd hing sd ddn hoi tia X trong phuong phap cd dinh gdc T\:
cd dinh gdc TI„, ta dugc ham hip tiiu phuong phap ^(^j^ ^ ^^gy^ ^ ^
cd dinh gdc ij: ir ? s
plK)BC _pmBC
g g 3
^ = _ / - (28)
(33) (34)
a Theo md hinh Reuss
Thayd(, = dvao(14)va(15) ta tinh dugc
cdc thdnh phan cfla hang sd dan hdi tia X tren tia
tdi AB va tia nhieu xg BC:
Fr^ =
r e^*' "^<''> c*^*
03311 03312 03313
-{R) -iR^ -iR)
•3 3321 0 3322 0 3323
•^(.R) -^(fi) -ziR)
0 3331 0 3332 03333
(29)
Him hap thu theo md hinh Reuss dupe
tinh theo
A = - 1
h MS hlnh Voigt
(30)
Thay 6^ = 9 vio (18), (19) ta tmh dupe
cic thinh phin ciia hing sd din hdi tia X trln cic
tiaABviBC:
p(y)._
f-^v) -Tin -^v) ^
03311 03312 03313
- ( f ) - ( F ) - ( F )
0332I 03322 03323
•^(F) - ( F ) - ( F )
03331 t>3332 0 3333
(31)
A = - 1
e Mo hinh Eshelby-Kroner
Ham hip thu theo md hlnh Eshelby-Kioner dupe tinh theo phuong trinh:
1
pi.y)AB ^ piV)BC (35)
4 KHAO SAT BIEN THIEN CUA HAM HAP THU VOfI GOC 0 , T VA O
Hmh 3 cho thiy ham hip thu A d6i vdi
phuang phap do cd dinh gdc i^O trong pham vi gdc nhidu xa 20 tu 140° ddn 180°, Id pham vi cho sai sd phep do nhd vd thdng thudng dugc dflng
dd do ung suit, sfl dung ddc tflih tia X cfla CrKa cho mat nhidu xa (211) cfla thdp ferrite Tfl kit qua tinh todn, ta thiy h ^ hip thu gidm khi gdc nhidu xa tang ldn Ddi vdi md hinh Reuss vd Voigt, A gidm nhanh d cdc gdc 9^ thip, vd gidm chdm d cdc gdc 9^ cao Bien thien ndy ngugc lai, vdi md hinh Eshelby-Kroner Didu ndy phfl hgp vdi kdt qud cfla cac nghien euru trudc vd hdm hip thu cho vgt lipu ding hudng [3,4], khdng dinh md hinh Elsherby - Kroner phfl hpp vdi kdt qud ki^m nghiem bdng thirc nghidm hem Id md hinh Reuss
va Voigt Do dd, md hinh Elsherby-Kroner dugc
de xuat sfl dung trong do ludng - tinh todn flng
Ham hip thu theo md hinh Voigt dugc
tinh theo phuong trinh:
(32)
Hp sd dan h6i tia X tren tia tdi AB va tia
nhieu xg BC dugc tinh trong md hinh Reuss vd
them thdnh phin tuong tdc dan hdi cua hgt dugc
tinh d md hinh Eshelby-Kroner cho phuang phap (a) M6 hinh Reuss
06ciihiSo]if2e,d$
Trang 6NGHIEN cufu - TRAO D(!>l
(b) Mo hinh Voigt
m
1
1-T
• ^
^r J l
3"
— f — i
;
« w
1 j
• n s
1 1
• •
06c •
1
f — 1 — ^
j
420,
p —
It m
"
i!
^«
fj
s '••
'
'
4-1 ••\
• » • » •
4-Si
1
1 M 1 1 1 1 1
OdcnhiSDXfie,^
(&j Afa /lin/i Voigt
G6cnluSDX92e,d$
(cj iW5 /iJn/i Eshelby-Kroner
Hinh 3 Hdm hdp thu A cho phtidng phdp c6 dinh ri^
Suit vdt lieu phi ding hudng dung nhidu
xa X-quang
Tuang tu, hinh 4 Id hdm h i p tiiu tuong
flng dugc tinh toan cho phuang phdp do cd dinh
gdc ?/ Dgc biet, ddi vdi md hinh Reuss va Voigt,
A khdng phu thude vdo gdc nghieng y/ vd gdc
nhidu xa 29, thdng nhit vdi ket qua nghien cuu
trudc [3] Mgt khac, md hinh Eshelby-Kroner cho
hdm hap thu bien thien nhieu ph\i thugc vao gdc
nghieng ij/, tuong tu nhu phuong phap cd dinh
gdc?/
„ "
• ? '
St
K
T
i 1 j 1
p 1 1 1
• f « i
i 1 i
i 1 i
t ^
(a) Mo hinh Reuss
(c) Md hinh Eshelby-Kroner Hinh 4 Hdm hdp thu vdi phUdngphdp c6^nh t}
5 KET L U A N
Nghien cflu da dat dflgc nhflng ket qui
n h u sau: Tinh toan va xay dUng dflgc cdc cdng thflc tong qudt cho h a m hap thu trong vdt Hdu phi dang hfldng thdng qua cac md hinh Reuss, Voigt
vd Eshelby-Kroner
Md phdng cdc dgng dd thi tdng quat va khao sdt sfl bien thidn cfla hdm hap thu tia X cua
vdt lidu tex-tua lam ca sd cho viec tinh todn chinh
xac dinh nhi^u xa va flng suat cua vgt U?u, dgc bi§t
la cac vgt lidu sat thep thdng dung
Md hinh Eshelby-Kroner cho gia tri h ^ hdp thu phu h g p vdi mgng tinh the thflc, nSn dflgc sfl dung trong do Ifldng tinh toan flng sillt dung nhiSu xa X-quang • ^
Trang 7NGHIEN eu'u - TRAO D(!)l
Ngiy nhin bii: 10/9/2012
Ngiy phan bipn: 22/10/2012
Nguiyi phan biSn: TS DJng Thifn NgSn,
Trupng Dai hpc Su pham Ky thuat Thinh phd Hd CU Minh
Tai liSu tham khao:
[1] B.D Cullity, (2001), Elements of X-ray Diffaction, 3rd Edition, Prentice Hall Upper Saddle River, NJ 07458,258-262
[2] Ismail C Noyan, Jerome B Cohen, (1987), Residual Stress-Measurement by Diffraction and Interpreta-tion, Springer - Verlag, 30-42
[3] Le Chi Cuong and M Kurita, (2004), Absorption Factor and Influence of LPA on Stress and Diffraction Line Width in X- Ray Stress Measurement, Joumal of Japanese Society for Experimental Mechanics, 7-14 [4] V Hauk, (1997), Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, 25-33, 114-125
[5] Shouichi Ejiri, Toshihiko Sasaki, Hirofiimi Inoue, Yoshio Shirasuna and Yuido Hirosi, (2001), X-Ray Stress Determination of Cold-Rolled Steel Sheet Using Orientation Distribution Function, Advances in X-ray Analysis, Vol 44,43-49
[6] Jian Lu, (1996), Handbook of Measurement of Residual Stresses, Pegamon, 12-40
[7] Ch Genzel, (1994), FonnaHsm for the Evaluation of Strongly Non-Linear Surface Stress Fields by X-Ray Diffraction Performed in the Scattring Vector Mode, Phys Stat Sol (a) 146, 629
[8] S J Skrzypek, et al, (2005), Progress in X-ray Diilraction of Residual Macro-stress Determination Related
to Surface Layer Gradients and Anisotropy, Advances in X-ray Analysis, Vol 44, 66-72
[9] K Perry, I C Noyan, R J Rudnik, J B Cohen, (2004), The Measurement of Elastic Constants for The Determination of Stresses by X-rays, Department of Material Science, The Technological Instistute, North-westem University, 60601, 93-103