Ngi dung bii bao, trinh biy viec Ung dung ly thuyet tip md chan doin xic dinh cic hU hdng sU CO cho he thdng phanh xe URAL43206 trong qud trinh khai thdc.. D A T V A N D E Chan doan tin
Trang 1NGHIEN c u u - TRAO DOI JCFNG DUNG LY THUYET TAP wia CHAN DOAN
"riNH TRANG KY THUAT HE T H 6 N G P H A N H XE URAL 43206
DIAGNOSIS, IDENTIFYING BRAKE SYSTEM TECHNICAL STATES OF URAL
43206 VEHICLE BY USING FUZZY LOGIC
PGS, TS Nguyen Van Dung, TS Vii Ngoc TuSn
Hoc vien Ky thuat Quan sd
TOiM TAT
Bet echdn doin tinh trgng ky thuit (TTKT) cua cic cum, he thong tren d td cd the sti dung nhilu phUdng phdp khic nhau, vi du nhU: Ly thuylt thdng tin; ly thuyet nhin dgng; ly thuyet do tin cdy hoie
ly thuyet tap md Ngi dung bii bao, trinh biy viec Ung dung ly thuyet tip md chan doin xic dinh cic
hU hdng sU CO cho he thdng phanh xe URAL43206 trong qud trinh khai thdc
Td khoa: Chan dodn ky thuit; Ly thuylt tap md; He thdng phanh
ABSTRACT
A variety of different methods can be used such as information theory, theory of identity, reliability theory or fuzzy theory to diagnose technical state of vehicle systems or sub-systems Meanwhile, clearly and fully infomation of research subjects need to known This paper presents the method for diagnosis, identifying brake system technical states of URAL-43206 vehicle by using fuzzy logic
Keywords: Diagnosis; Fuzzy logic; Brake system
ISSN 0866-7056
TAP CHi CO KHi VIET NAM, S6 5 nam 2016
Trang 2NGHIEN Cliu-TRAO D 6 |
l D A T V A N D E
Chan doan tinh trang ky thuat cua cac he
thong tren 6 to la tac dgng ky thuat vao qua trinh
khai thae va sii dung 6 to, nham dam bao cho 6
to boat dpng co do tin cay cao, an toan, hieu qua
bang each phat hien kip th6i cac hii hong va dU
bao tinh trang ky thuat cua xe trong tiidng lai
Tac dong ky thuat cUcfng bile, con bao diidng,
sifa chifa la he qua theo nhu cau cua chan doan
Nhli vay, tac dpng cua chan doan viia mang tinh
chu dgng, dd bao vifa mang tinh ngan chan cac
hU hong CO the xay ra, nhat la tren cac thi^t bi
CO ket cau phcfc tap da dang, nhnng khong thao
rdi ma sit dung cac bien phap tham do, dUa vao
cac bieu hien dac trifng de xac dinh tmh trang
ky thuat cua doi tiipng Chan doan ky thuat co y
nghia ldn nhU: (i) Nang cao do tin cay cua xe va
an toan giao thong nhd phat hien kip thdi va dU
doan trUdc dngc cac hit hong co the xay ra; (ii)
Nang cao dp ben lau, giam chi phi va phu tiing
thay the, giam diidc do hao mon cac chi tiet do
khong phai thao rdi cac tong thanh; (iii) Giam
dngc tieu hao nhien heu, dau nhdn do phat hien
kip thdi de dieu chinh cac bp phan diia ve trang
thai lam viec toi Uu; (iv) Giam gid cong lao dpng
cho cong tac bao dUdng ky thuat va stfa chiia
Khi sii dung cac phddng phap nhU: Ly
thuyet thong tin; ly thuyet nhan dang, hoac ly
thuyet do tin cay, can co thong tin ro rang, day
du ve doi tugng nghien cifu Tuy nhien, trong
chan doan ky thuat (CDKT) khong ton tai
ngUcfng chinh xac giiia trang thai hong va khong
hong, cac dai lUOng do mang tinh ngau nhien va
khong dinh nghia chinh xac quan he giCfa cac dai
lifdng Do do, viec ap dung ly thuyet tap md xac
dinh TTKT la hdp ly hdn ca; dac biet, doi vdi cac
he thong phiic tap
2 COSdLYTHUYET
2.1 Tap mt*
Tap md A dUdc dac tning bdi cac ph^n
tii dUa vao d dang mijfc phu thupc ^^ ggi la
ham lien thupc va diidc ky hieu nhn la bac phu
thupc MiEc phu thupc la gia tri bieu thi sir danh
gia khdch quan cua con ngiidi d6i vdi trang t! cua sn vat Xet tap E bat 1^, trong do ca tap c
A Ham ^^ co the co c,c gia tri trong doan ti
den 1 Tip con A la t^p md (ky hieu la A) va du
dinh nghia nhif tap ciia hai v€c td:
A=(x, ( x ) ) x e E Vec td X la dinh nghia cua ph£n tif tro
tap md A, vec td fi^ la ham lien thugc cua A I
do tap md difdc phat bieu nhif sau: So thifc c ham//^ (x) ddi vdi moi phan ttf x ^ E difdc i nhu la bac cua y^u to phu thupc cua A
2.2 Ham phu thuoc Cac dac tinh cua ham phu thugc t
gora cd: (i) Dp cao cua tap md A cdn gpi la phu thugc cua ham phu thupc va ky hieu n
sau: hgt (A) = supfi^ (x); x E E Tap md phai
it nhat mgt phan tt co dp cao bang 1 va no di
ggi la tap md chinh tac, ngUdc lai gpi la tap i khdng chinh tac; (ii) Mien xac dinh la tap h
cac phan td x cua t i p md A co //^ (x) >0; m
tin cay la tap hdp cac phan til x cua tap md A
/'.W=i-Cac ham phu thupc co the la cac h, vdi cac dang dUdng cong tuy y gan vdi cac h dai so cd ban Tuy vay, cac ham phu thupc di trong chan doan va dieu khien md thUdng ch
la cac ham tuyen tinh (ham T, L, hinh tam gi
hinh thang ) Trong pham vi nghien cifu, c luat cua ham phu thude dUdc chgn la ham dt hinh thang
2.3 Cac phep tinh logic vdi tap md
a) Logic rad: Logic md la logic nhieu tri trong khoang tU 0 den 1 Ddi hoi trong lo
md la phai co quy luat trong khoang nhd K niem logic md dong nghia vdi khai niem tap i Bi^n logic trong tap md la cac ham phu thug*
ISSN 0866 - 7056
TAP CHi CO KHi VIET NAM, S6 5 nam 2016
Trang 3"
Cac phep tinh logic bao gom: tri cua no theo ham phu thuoc tuong dng
2.4 Suy luan m d
- Phep so sanh: TElp^la tap con cua S
nohTala 3 n 5 m t r n „ „ S ' r\^ r \ -v Suy luan md sd dung to help cac luat Su
ngma la yl nam trong B neu: u (x) < / i R ( x ) Tap , - , - , , , , ^
~ , _ ^/i V ' f-n > ' 1- luan tren CO sa logic ma, bieu thi cac ham qua
A bang tap B neu ^ ^ (x) = MB W - he gida cac bien vao va ra Cac gia tri bie'n va
la cac tin hieu so, cac sd lieu cua ngddi sd d u n |
- Phep hop: Neu C la tap ddec tao thanh ^^ U*" cua he thdng chuyen gia Cac bien ra ba
t f l p h e p h o p c u a h a i t a p : j v a « t h i n 6 d d o c k y h i e u 8°™ ^^^ ham tdong dng phd hop vdi thong th _ _ _ ve tinh trang ky thuat hoac cac hu hong sd cc
nhd suniC = AuB = {{x, /jj^^ {x)), VxeE}; cua doi tdong
diayA(^„,(jc) = max[/i (x) /j,(x)\
a) Menh de hgfp thanh
- Phep giao: Ne'uClaJap ddoc tao thanh vdi quan he don dieu hay quan he nhiei
t d p h e p g i a o c u a h a i t a p ^ v a S thinoddockyhieu thanh phan deu ddoc thuc hien bang co cau su)
c r^ 1 ^ D (r / ^N w T.t ^u^ti "Neu Thi" Suy luan md don dieu "Neu -nh\ls!ia:C=AnB = \(x,fl,^„(x)),VxeEi; T U - , j - , • i-« •.-• ,
IV 'r^AcBs '" 1, ijii trong dang ngon ngd CO the Viet nhu sau
d % fto W = nmiL".4 W ft W ] Neu (X la TV) thi (Y la Y2) Hay: IF (Bieu thdc
- Phep bd: Neu tap C la tap hop bu cda mc<) THEN (bieu thdc md); Trong do, X va Y k 7 , , , , , '^ic bien md, TV va Y2 la cac gia tri ngon ngi tap ^ xac dmh trong E thi no ddoc ky hieu nhu , , , - ^ ».» ^ , , ,
• ' • ddoc dinh nghia trdc tiep cua tap mo Menh de sau: C = complA = ^x, / / „ , „ (jc)), Vx e E] ™y '^^° V^^V ^ ™9t B'* f i 'l^u vao xac dinh
thoa man yeu cau suy luan cua gia tri dau ra va
b) Quan he mt* iiitsc ggi la menh de hop thanh co dieu kien
„ - , , ,^ , , , , ,, b) Mdc p h u thude cua ket qua suy luan
Moi tap hop nho A cua phep nhan khong
cungcoso 3 v i 5 , t a g o i l a q u a n h e c u a t a p ^ , d d i Mdc phu thupc cua ket qua suy luan cua vdi tap 5 Quan he m d khong cdng co sd la quan cac luat trong tap md co gia tri trong khoang
he khong the xac dinh theo mot co sd Gida (0,1) va co the ap dung cac phep tmh dng dung chdng ton tai quan he cua hai hay nhieu tap hop md tren co sd cac mdc phu thuoc cho trddc cda khong cung ca sd Doi vdi quan he md khong tien menh de Luat IF - THEN cd the bieu th,
cung CO sd cd m dung each ghi ma tran thdng ^hd cac phep tudi dng dung Neu IA, (p); n^ (p, thudng Cac ham phu thugc quan he: / ; „ ix, y) la cac gia tri cu the cua ham phu thugc n, (x) '^ = l(^, j ) ^t^{x,y)y, 11^ (y) can tim ham//^ (x,y) la mdc phu thugc
6 dav u ix v) = li (x v) ^^ ^^ ^^ ^^^ ^^^^ ''^ ^^^^ thong qua cac phef
tmh Ung dung:
Khi do, ma tran chan doan co the dung
trUc t i l p bang ngon ngii, cac gia tri ngon ngU I (/y^ (x), fi^ (y)) = //^ (x,y) vdi quan he R;
theo dang quy luat "Neu -Thi" Bien md tdng /(^,(x)//,(,v]
quat CO dac trUng la mdi thanh phan x e E la gia {p, ^^ (p) '—^^ {q, ^^ (q)
ISSN 0866 7056 TAP CHI CO KHi VIET NAM, S6 5 nam 2016
Trang 4NGHIEN CCfU - TRAO 0 6 l
Cac phep toan Ung dung gom co:
- Mamdan I (/^^ (x), fig (y)) = min( //^ (x), //g (y))
- Larsen I ( / i , (x), ^, (y)) = (l^, (x) -"B (y))
- Lukasiewicz 1 (/i^ (x),//^ (y)) = m i n ( l , l - / i ^ (x)+//fl (y))
- Zadeh I (//^ (x),/^s (y)) = niax(l-//^ (x),rain(//_^ (x),/^^ (y)))
Kleene Dienes 1 (//^ (x) fi^ (y)) = ™ ^ ( 1" f^A W ' "A (y))
-c) Luat hdp thanh dieu ki^n
Tien menh de va lien Ung cd nhieu thanh
phan nhu cac gia thiet trong logic md cd the la
nhan (ANDF), tong (ORF) cua cac phep tinh
Tap tUdng Ung vdi cac quy luat Neu - I h i cua mot
so gia tri (x^, x^, y), cac gia tri xac dinh mpt tap
mdi trong khoang N,, N^, U dUdc bieu thi nhU
la tich cua ham md T^^,^, R Suy luan md Neu
-Thi trong dang ngon ngCf cd the viet nhU sau:
Neu (X| la A\ va va x^ la A"^ I h i (y la YJ
Neu he thong co m dau vao va D dau ra
thi CO the tach thanh n he nhd, moi he nhd cd m
dau vao tU X^ den X^ va mpt dau ra la Y
d) Md hoa va giai md
Trong trUdng hdp cac gia tri dinh trong
khoang chuan, chung ta da sap xep bac phu
thupc vao mpt hay nhieu tap md tUdng Ung vdi
khai niem dgc lap trong cac luat; trong do, chiing
ta chum kin Ididng thifa khoang true cua tap md
tUdng ifng, chiing ta ndi la da md hoa Nhd qua
trinh md hoa trong thUc te lap bang ham tUdng
Ung hay bo sung cac bieu thUc phan tich cua cac
ham nay va tiep la xay difng ham phu thugc cho
cac phan cua tien menh de
Sap xep dinh ciia cac gia tri doi vdi tap
md ra bang giai md Trong chan doan, chiing ta
hieu giai md nhu la sap xep cac ham phu thugc
vdi trang thai dgc lap trong dai lUdng chan doan
Tren cd sd he thong luat IF - THEN ciia tap md,
ta CO dUdc, cd the danh gia trang thai cac gia 1 tUdng ifng ciia mite phu thupc va khdng tit
hanh giai md Giai md la phep tinh cd ban o
dieu chinh md
Khi da cd dUdc do thi bieu dien tap m
ta cd the tien hanh giai md bang cac phUdi phap khac nhau nhU sau:
PhUdng phap trgng tam dien ti (COA), bao gdm: Tinh toan tat ca cac gia tri go cua dien tich bi6u dien tap md va xac dinh t
dp trpng tam cua chung Hay chinh la cac g tri trung binh nam tren true ngang cua bien ngdn ngS
- PhUdng phap trpng tam cua cac ph (COS) TUc la di xac dinh toa do trung binh c trpng tam dien tich cung mUc tren cac true t
dp cua dd thi
- PhUdng phap ldn thii nhat FOM
- PhUdng phap ldn sau cung LOM
- PhUdng phap tam dien tich BOA
- PhUdng phap tam dien tich ldn nhat MOM
2.5 iTng dung nghien ciiu chan doan ht tho
phanh xe Ural - 43206
Sd do can tao chung he thong pha thuy khi tren xe URAL-43206 dUdc the hien ti hinh 1 Qua phan tich he thong phanh thiiy 1 tren xe Ural - 43206, xac dinh dupc 10 thong chan doan va 13 bi^u hien hU hdng cua he thd (bang 1)
ISSN 0866 - 7056
TAP CHI CO KHi VIET NAM, Sd 5 nam 2016
Trang 5.? NGHIEN ClJU - TRAO D(
Hinh 1 Sd dd ddn dpng he thdng phanh chan vd ddn dpng to hdp he thdng phanh rd mode tren xe URAL-43206 Bdngl: Cdc thdng sd chdn dodn vd bieu hien hu hong
TT
1
2
3
4
5
6
7
8
9
10
11
12
13
Thdng so chSn doan (Sj-^S^^)
Gia toe phanh
LUc phanh banh xe
Ap suat dau trong xi lanh cong tac cau trUdc
Ap suat dau trong xi lanh cong tac cau sau
Ap suat khi sau tdng van phanh
Ap suat khi trUdc tong van phanh
Ap suat khi sau bp dieu cliinh ap suat khi nen
Dp lech hudng chuyen dong thang khi phanh
Nhiet sinh ra tai cd cau phanh
LUc tac dung len ban dap phanh
Bieu hien hU hdng (Hj-^H^^)
May nen khi hong Binh khi nen hong Xylanh thuy khi hong Xylanh phanh cau trUdc hong Xylanh phanh cau sau hong Cac dudng khi, dau noi hd Thieu dau phanh Van phan phoi hong Khe hd ma phanh ldn Ket phanh
Bg dilu chinh ap suat hong Khe hd ma phanh, ap suat dau 2 ben khac nhai
Ket, dieu chinh sai cin lien dgng
3 KET QUA VA B A N LUAN
B^ng phan mem Matlab cd the xay ddng ddgc chdong trinh tinh toan xac dinh hd hong CL h^ thong phanh He thdng cd 10 bien dau vao (td S^ den S^ J va 13 bien dau ra (H^ den Hjj) Viec XE ddng luat hgp thanh la cong viec rat quan trgng, quyet dinh dg chinh xac cua bai toan Ta can ph chgn nhOng luat thudng xay ra nhat trong qua trinh khai thae, so Idgng luat cang ldn, do chinh xc cang cao, tuy nhien se gay khd khan trong tinh toan Trong chdong trinh xay ddng gom 31 luat ho thanh (hinh 2)
ISSN 0866 - 7056
TAP CHf CO KHl VIET NAM, S6 5 nam 2016
Trang 6NGHIEN ClJU - TRAO D 6 |
Hinh 2 Ludt hdp thdnh xdc dinh hU hdng trong he thdng
Vdi bg cac thong s6 dSu vao gia dinh: Gia toe phanh: 6 m/s^; LUc phanh d banh xe: 13001
Ap suat dau tai xilanh banh xe trUdc: 90 kG/cm^; Ap suat dSu tai xilanh banh xe sau: 93 kG/cm^; suat khi sau tong van phanh: 7 kG/cm^; Ap suat khi sau tong van phanh; 7 kG/cm^; Ap suat khi;
bd dieu chinh ap suat: 7 kG/cm^; Do lech hUdng chuyen ddng thang: 10°; Nhiet dp sinh ra d cd t phanh: 88 "Q Life tac dung len ban dap: 65 kG; Bilu hien hU hdng H^^ = 2,23 nam trong khoang luan hu hdng (khe hd ma phanh 2 ben khdng deu) can phai ki^m tra, dieu chinh Cac bd p h | n kJ van boat dgng tdt (hinh 3)
IQiimraacsiiEQiiing icmSniGinigocEcs)
5 CI|_CE ^ a 3 CB QU CD.LB
mmrara mmmm cnmmm
m L D L D D J
— CD CD CD CD
' a a a a a
fnrnmrnm
nu CD CD CD Dii
CD CD CD CD CD
CD CD CD CD CD CDCDCDCDCLI
GIGiCICICI
aacicici
cnmcD i]iD[r]
I ] CD en
n m m
HCDCD
ncam
3 E I C I
Mnh 3 Ket qud chdn dodn hu hong eda cdc bpphdn
4 KET LUAN
Bai bao da trinh bay Ung dung ly thuyet tap md, tren cd sd sif dung cdng cu Fuzzy Tooll trong phan mem Matlab-Simulink de chan doan xac dinh hU hdng sU co cho he thong phanh trer URAL 43206 Ket qua nay, cd the Ung dung trong qua trinh khai thae xe URAL 43206 va lam co
de nghien cUu chin doan ky thuat cac he thdng khac tren xe 6 to thdng qua viec sif dung cac tn thiet hi do thdng dung De ket qua chinh xac hdn, hUdng nghien cUu tiep theo dUdc dat ra la bo si cac thdng so chan doan va bieu hien hU hdng vao chUdng trinh da dUdc thiet lap, xay dUng tiep luat tUdng ho giUa cac bien vao ra, vdi kien thiic chuyen gia sau rdng nham muc dich nang cao h qua khai thae cua cac he thdng tren cac xe khdng cd he thdng tU chan doan.'l*
Ngay nhan bai: 24/4/2016
Ngayphanbien: 18/5/2016
Tai lieu tham khao:
[1] N g u y e n Van Ki^u (1999); Thuy khidSng lUc ky thuat H o c vien Ky t h u ^ t Q u a n sij,
[2] P h a n X u i n M m h (2000); Lf thuyet dieu khien md, N X B K h o a h o c vh Ky thuSt
[3] N g u y e n Khac Trai (2007), gy thudt ch&n dodn 6 to, NXB, Giao t h o n g V?Ji tai,
[4] M a r t i n t Stockel; Auto Service and repair Suoth Holatid Ilinois, 1992
[5] Prof ing Marcel Kredl Csc Diagnosticke systemy Vydavatelstvi C V U T , 1997
[6] U w e Heisel Simulation with Matlab- Simulink Stuttgart Verlag, 2006,
I S S N 0 8 6 6 - 7 0 5 6
TAP CHi CO KHi V I £ T NAM, S6 5 nam 2016