NGUYEN DUY V [ $ T B mdn Tin hi$u Giao thdng Khoa Difn - Di^n tu Trudng Dpi hpc Giao thdng V^n lai Tdm tdt: Su dung phirang phdp bdng quyet dinh d4 xdy dung cay su ki^n phdn tich an
Trang 1XAY DIJlSG CAY SU KIEN PHAN TICH AN TOAN HE THONG
TiN HIEU TU DQNG DAU MAY
BANG PHUONG PHAP BANG QUYET DINH
TS NGUYEN DUY V [ $ T
B() mdn Tin hi$u Giao thdng
Khoa Difn - Di^n tu Trudng Dpi hpc Giao thdng V^n lai
Tdm tdt: Su dung phirang phdp bdng quyet dinh d4 xdy dung cay su ki^n phdn tich an
todn thay idu bdng cdch xdc Ipp mdi quan hi' qua Igi giira cdc trang thdi nguy hiem cua
chuyen ddng dodn tdu vd cdc hi4n luong xdy ra a h4 thdng hinh thanh lenh hdm trong he thong
tin hieu ddu may vd tu dpng dirng Idu
Summary: Using decision table methods to build event tree for analysis of train operation
safety by establishing relationships between the dangerous states of train movements and
phenomena occurring in the braking system in the cabin signal system and automatic tram stop
I D A T V A N D E
Khi xdy dyng he thdng kj thugt mdi, cdng viec nghien ciru cay cac trd nggi nguy hiem
(mpt dgng ciia cay sy kien) cdn dugc thyc hi6n ngay d nhiing budc ddu tien cua cdng tdc thilt
ke He thdng tin hieu dau may va ty ddng dirng tau tuy da cd mat trong cdc he thdng dieu khien
chgy tau d mpt sd nude nhung ddi vdi nude ta se la mdi khi dua hp thdng nay vao sir dung De
ddm bao an toan chay tau can xay dyng dugc cay cac trd nggi nguy hiem ciia hp thdng nay
II NOI DUNG
Trong he thdng ty ddng hinh thanh lenh ndi mgch he thdng ham cua doan tdu (hinh I) gdm
cac thilt bj ciia he thong tin hipu ty ddng dau mdy TTD, thiet bj do tdc dg thyc t l ciia doan tdu
Va
> ^
-DT va thiet bi hinh thanh lenh HL khdi dpng he
——A TTD — > thdng ham cua dodn tau Khi phan tich, thiet bi
TTD, thilt bj DT, thilt bj HL dugc xem nhu la cdc phan tii ciia he thdng
Thilt bj HL can hinh thdnh dugc lenh khdi
f , • ^ ^= , - ;- il.u- 1 done he thong ham cua dodn tdu khi tdc dp
Hinh 1 So do chtrc nang hmh thanh v & t ^ _ •
linh tu dpng khdi dpng he thong ham dodn tdu thyc te V.pi- ciia doan tdu dgt den van tdc cho
Trang 2phep Idn nhat theo dilu kipn an loan chgy tau W^p, tuc la V,-, = V^p Gid trj ciia V(.pdugc xdc
djnh bdi hp thong ddng dudng ty dgng trSn co sd cdc kit qud kiem tra sy thanh thoat cua phan khu va sy todn vpn cua ray trong phgm vi ciia nd Cdc thdng tin ve gid trj ciia V,.p dugc truyen tir thilt bj ciia h? thing ddng dudng ty d$ng len d^u mdy, chinh xdc Id den dau vao ciia bg HL theo kfinh TTD Dgi lugng V^, dugc xdc djnh bdi DT, vi dy nhu so vdng quay ciia bdnh tdu trong mgt doii vj thdi gian
Trong trudng hgp nlu nhu HL khdng hinh thanh dugc Ipnh khdi dgng hp thong ham doan
tdu khi Wjj = V(.p thi doan tdu cd thi di vdo phan khu bj chiem dyng bdi dodn tdu khdc hodc
phan khu cd ray khdng toan vpn Trong trudng hgp dau cd thi xay ra va chgm vdi dodn tdu khdc, trong trudng hgp thir hai cd the xdy ra sy co trgt banh tdu Cdc nguyen nhdn ciia cdc tinh trgng nhu the cd thi Id cdc trd nggi nguy hiem ciia TTD, DT ho^c HL, dan din vipc dn dinh tdc
dp cho phep qua cao ho^c xdc djdh toe dp thyc tl thap d cdc dau vdo HL so vdi cac gia trj thyc ciia chiing
Nhu vgy sy kipn dugc ggi la khdng mong muon khi maV^^=Vcp, tham chi khi V,^ > V^p, Ipnh khdi dgng he thdng hdm ciia doan tdu khdng dugc hinh thanh
Cay sy kipn sg yeu cau xdc djnh cdc dieu kipn xuat hipn ciia nd
Trdngai ngiiyliieiu Trdngai l;lidiig nguy liieiii Khdng CO ird USUI
—1 Vr„,>li,,
''7,0<1'<T
Trd ngai nguy liiein Trd nggi Uidng nguy liiein Klidng c6 ird ngai
n ^o,<v,.,
Trdngai nguy liieni Khong CO ird ngai ydii vao I I — ' 1 idiii^doP '
I ! V,„ > V,,
^i>i = V , 7
Hinh 2 Cdc sir kt4n ddu vdo vd ddu ra L ua cdc plidn ttr h^ thong
Sy kipn dau vao cua TTD, dugc coi nhu Id phdn tu ciia hp thdng, se Id cac tin tuc ve V^p
sy kien dau vdo ciia DT, dugc coi nhu Id phan tii ciia he thdng - tuong ung vdi V ^ , cdn d cdc dau vdo ciia HL, dugc coi nhu la phan tu ciia hp thdng, la cae gid trj tdc dg cho phep V^^Q nhan dugc tir ddu ra ciia hp thdng TTD vd cac gid trj tdc dg thuc te V,jy nhgn dugc tu dau ra ciia DT (hinh 2) Cdc sy kipn gdc ciia cdc phdn tu TTD va DT phan anh trgng thai ben trong cua chung
va cac trd ngai nay sinh ciia cac thilt bj, dd la: trd nggi nguy hiem, trd ngai khdng nguy hiem va khdng cd trd nggi Cac sy kien ban dau ciia HL chi cd trd nggi nguy hiem va khdng cd trd ngai Khi phan tich an toan chi cdc su kipn ndy la quan trgng
60
Trang 3Sy kipn dau ra cua TTD Id sy xuat hipn tin tuc ve toe dp cho phep Tin tdc nay cd thi bj bien dang do cd trd ngai oTTD hoac khdng bj bien dgng, vi vgy nd dugc ky hipu Id
VT-I-D-= V(-p, khi cd trd nggi nguy hilm: V^^^ > V^-p va trd ngai khdng
Khi khdng cd trd nggi Wy,
nguy hiem ^jj^ < V(.p
Sy kipn dau ra ciia DT la tin tire vl toe dg thyc, nd phy thupc vdo trd nggi ciia DT md cd khac bipt vdi gia trj thyc ciia nd, vi vgy nd dugc ky hipu V,n Khi khdng cd trd nggi: V^.^ = V^^,
trudng hgp trd ngai nguy hilm: V^,^ < V,, trudng hgp trd nggi khdng nguy hilm: W^j ^ ^n •
Cuoi ciing, sy kipn dau ra ciia HL Id cd hoac khdng cd Ipnh khdi dpng h? thdng ham ciia dodn tdu
Trong bang quyet djnh cua TTD vd DT chi ra moi quan hp giCra cdc sy kipn dau ra vd sy kien dau vdo khi d cac trgng thdi ben trong khdc nhau ciia cdc thilt bj nay (bang 1 va bdng 2)
Trong bdng quyet djnh ciia HL cung chi ra mdi quan hp giOa cdc sy kipn ddu ra vd sy ki^n dku
vao d cdc trgng thdi ben trong khdc nhau ciia HL (bang 3) Cdc sy kipn ddu vao ciia HL Id cac sy kien ddu ra ciia TTD vd DT Cd thi thay vipc cd lenh d ddu ra khdi HL khi vd chi khi cdc sy kien ddu vdo d dau vdo khdi HL khdng cd trd nggi nguy hilm Khi cd bat ky trd ngai nguy hiem nao d dau vao H L deu dan den vipc khdng hinh thanh lenh dau ra
TT
1
2
3
Cae dau vao
Su kien dau vao
VCP
VCP
VCP
Su kien gdc TTD
Trd ngai nguy hiem Trd nggi khdng nguy hiem Khdng cd trd nggi
Dau ra
Sy kien ddu raTTD
V > V
*TTD ' C P
V < V
*TTD *CP
V = V
' T T D ' C P
TT
1
2
3
Bang 2 Bdng quyet dinh cho DT
Cae dau vao
Sir kien dau vao
VTT
V,T
VpT
Sy kipn goc DT Trd ngai nguy hiem Trd nggi khdng nguy hiem Khdng cd trd ngai
Dau ra
Su kien ddu ra DT
V < V "DT *TT
V > V
"DI *TT
V = V
*DT *TT
61
Trang 4Bang 3 Bdng quyet dinh cho HL
T T
1
2
3
4
S
6
7
8
9
ID
11
12
13
14
15
16
17
18
C4e dau v4o
Su ki^n diiu vko 1
V > V
"TTO *CP
V r t i , * V,,,
V > V
* T T D * r p
V > V
" T T D * r p
V T r D > V „
V > V
" T T D * C P
V < V
' T T D ' C P
V < V
* T T D * C 1 '
V < V
*^TTD * C P
V < V
* T T D * t P
V < V
* T T D * C P
V < V ' T T D ' C P
V = V
* ' T T D * C P
V = V
V = V
" T T D * C P
V = V *TTD "CP
V = V
"TTD *CP
Vrro = \p
Sy kipn dau vdo 2
V „ T < V r r
V p T < V , r
V o r > V r r
V T > V n
V = V
* Dl * n
V = V
" D T ' l l
V < V ' D I ^ ' l l
V < V
* D T *^-| f
V > V
" DT ' 1 1
V > V
' D T ' 1 !
V = V
' DT ' T l
V „ T = V r ,
V „ r < V T T
V „ , < V , , ,
V > V
* DT ' r r
V > V ' D T ' T T
V = V ' D T ' T T
V = V
' DT ' [ [
Sy kipn goc H L
T r d nggi nguy hiem Khdng cd trd nggi
T r d nggi nguy hiem Khdng cd t r d nggi
T r d nggi nguy h i l m Khdng cd t r d nggi
T r d nggi nguy hiem Khdng cd trd nggi
T r d nggi nguy hiem Khdng ed trd nggi
T r d nggi nguy hiem Khdng cd trd nggi
T r d nggi nguy hiem Khdng cd t r d nggi
T r d ngai nguy hiem Khdng cd t r d ngai
T r d nggi nguy hiem Khdng cd t r d nggi
Ddu ra
Sy kipn dau ra H L
K h d n g cd Ipnh
K h d n g cd Ipnh Khdng cd Ipnh Khdng cd ipnh Khdng cd ipnh Khdng cd Ipnh Khdng cd Ipnh Khdng cd Ipnh Khdng cd Ipnh Lpnh Khdng cd lenh Lpnh Khdng cd lenh Khdng cd lpnh Khdng cd lenh Lpnh
K h d n g cd lenh Lpnh
Bang quylt djnh HL dugc dan gidn neu nhu chii y den cac Uudng hgp d trd ngai nguy hiem ciia nd vd d cdc sy kipn cd quan hp bat ky tgi dau vdo ciia nd d dau ra khdng cd lpnh ndi mgch he thdng ham Vi vgy cac ddng 1, 3, 5, 7, 9, 11 13 15 17 dugc thay the bdng mgt ddng Tir bdng quyet djnh, ta logi bd cac ddng 10, 12, 16, 18 vdi sy kipn dau ra ciia HL "Lpnh" bdi dgt ra su quan tam cho van de an toan ddi vdi cdc trudng hgp khdng cd lpnh khdi dgng hp thdng ham dodn tdu Ket qua vipc riit gpn Id se nhgn dirge bdng quyet djnh ciia HL don gidn hon (bang 4)
Biing 4 Bang quyet dinh dan rut gpn cho HL
TT
I
2
3
4
5
6
Cdc dau vao
Sy kipn ddu vao I
V > V
'TTD ' ( P
V > V
•TTD ' C P
V > V
*TTD CP
V < V
V = V
-Sy kipn dau vao 2
^DT < V^-, V.T > V^T
V D T = V r r
VoT<V.r
VOT<VTT
-Sy kipn gdc HL Khdng cd trd nggi Khdng cd trd nggi Khdng cd trd nggi Khdng cd trd ngai Khdng cd trd ngai Trdngginguy hiem
Dau ra
Sy kipn dau ra HL Khdng cd lenh Khdng cd lenh Khdng cd lenh Khdng cd lenh Khdng cd lenh Khdng cd lenh
62
Trang 5P P P
Oi 0- -^
•,.>Kr
> f < ' / / ' , / > ! „ N „ = l „ I , < 1 „ 1 , „ < V „
///n/i J Cdy cdc Ird nggi nguy hiem
cua he thdng tu dong hinh thdnh ii'nh khai dgng he thdng hdm dodn tdu
Nhd bdng quyet djnh ciia HL xay dyng dugc cay cac trd nggi nguy hiem ciia he thong tu ddng hinh thdnh lpnh cho he thdng ham dodn tdu (hinh 3) Ten cua cac ddng d cdy chi ra nd dugc xa\ dyng d dang ndo
V,„ <; V,-i V,„ = V „
IFinh 4 Cdy duoc dan gidn hoa cdc trd nggi nguy hiein
ciia h? thdng tu ddng hinh thdnh t?nh khdrddng he thong hdm dodn tdu
Tren hinh 4 dua ra cay riit gpn, d dd cdc su kien dugc tao nen bdi cdc trd ngai nguy hiem vdi cdc dgc tinh thong ke da rd, dugc dat d bieu tugng tron cdn cdc sy kien dugc tao nen bdi cdc trd nggi nguy hilm vdi cac dac tinh thdng ke chua ro dugc dat d bieu tugng hinh chir nhat (trang thai ciia DT)
v l trgng thdi ciia DT yeu cdu nghien ciiu bd sung cdc dac tinh ciia cac trd nggi nguy hiem cua DT, ndi dung dd cd the nhd vdo cay khac
HI KET LUAN
Thdng qua viec xay dyng bdng quylt djnh ta xay dyng dugc cay sy kipn de sii dyng trong phan tich an todn chay tau, xdc lap moi quan he qua Igi giii'a cac trgng thdi nguy hiem ciia chuyin ddng doan tau va cdc hien tugng xdy ra d he thdng ty ddng hinh thanh lenh khdi dgng
Trang 6hp thong ham dodn tau Cdn mpt so phuong phdp khdc nhung day la mpt phucmg phdp thugn tipn khi xay dyng cay sy kipn vdi so lugng phan tir khdng Idn,
Ciic hp thong thanh phan khac ciia hp thong dieu khien, ddm bdo an todn chgy tdu cd the thyc hipn tuang ty va dilu do Id can thilt dc ddm bdo an todn chgy tdu ngay tir khau khao sdt, thilt ke,
Tiii liv'u llunn khii<
[1] Ngiivh Duv Vii-t Ddnh gid an toAn cua qud trinh chgy tdu bang phuong phdp phdn tfch tan sudt Bdo
cao tgi HOi ngiij KHCN lan thy XIV (ihdng 11 nam 2005) Tgp chi Khoa hpc Giao thdng Van tai so 13 thang 2-2006 Trang 11-14
[2] Nguyen Duy Vi('t Phuong phdp chirng minh an loan vd cdp chirng chi cho cac hp thing tu dpng dieu
khiln tir xa trong giao thdng dudng sat Tgp chf Giao thdng V^n lai si thdng 9 - 2010 Tir trang 41
[3] Nguyin Duy Vii'i Cong nghp ty ddng phdng hd dodn Idu va phdn khu di dpng Tap chi Khoa hpc
Giao thdng V^n lai so 15 thdng 8 - 2006 Trang MO - 117»
DAP UNG DQNG H Q C CUA DAM VOI
(Tii'p theo trang 58)
Hinh 5 minh hpa sy phy thugc ciia dp vdng eye dgi tai cdc diem A, B vdo do cirng ciia Id
xo Khi dg cirng eiia Id xo cd gid trj trong khoang tir 0 den 10* N/m thi dg vdng eye dgi tgi diem
A, B giam ddn nhung din khi do cirng ciia Id xo Idn hon 10^ N/m thi dg vdng tgi ba diem dd co giam nhung khdng dang ke
IV KET LUAN
Bai bao nghien ciru bdi todn iing xii dgng hgc ciia dam \di cac gdi tya dan hdi chiu tdc dung ciia khdi lugng di dpng bang phuong phdp phan tu hiiu hgn Phuong trinh rdi rgc theo ngdn ngir phan tir hiiu hgn ciia bdi todn dugc xay dyng tren co sd phuong phap Galerkin Cdc ket qud sd chi ra rdng cac tinh chit dpng hpc ciia dam bj anh hudng mgnh bdi do cimg ciia cac gdi tya Tan sd dao ddng rieng thii nhat ciia dam tang dan va tipm cgn tdi gid trj tan sd dao dpng rieng thir nhdt cua dam da nhjp vdi cdc dp cimg ly tudng khi gid trj dg cirng gdi tya tien tdi 10
N/m DQ vdng dgng eye dgi tgi cdc diem giii'a ciia ba nhjp gidm dan vd tipm can tdi dg vdng
tucmg irng trong trudng hprp cdc gdi tya cung ly tudng khi dg cirng ciia cdc gdi tya tdng len
Tdi livu tham khao
[\] L Fiyba, Vibration of solids and structures under moving loads, Academia, Prague, 1972
[2], K Henchi, M Farard G Dhatl, M Tolbol, "Dynamic behavior of multi-span beam under moving
load" Journal ofSound and Vibration, 1997, Vol 199 pp 33-50
[3] R.T Wang, TY Lin, "Random vibration of multi-span Timoshenko beam due to a moving load"
Journal ofSound and Vibration, 1999, Vol 213, pp 127-138
[4] Nguyen Dinh Kien Le Thi Ha, Dynamic characteristics of elastically supported beam subjected to a
compressive force and amoving load, Vietnam Journal of Mechanics, 2011, Vol 33, pp 113-131
[5] Le Thi Hd, Nguyin Dinh Kien, "Ung xii dpng hpc ciia ddm Bernoulli nSm tren nIn dan h6i Pastemark
chju lyc dpc tryc va tai trpng di d^ng cd vgn tic thay ddi", Tgp chi Khoa hpc Giao thong Vgn tai, Truong Dgi hpc Giao thdng Van tai, so 33, 03/2011, trang 85-95 •